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Integral HOSM Semiglobal Controller for Finite-Time
Exact Compensation of Unmatched Perturbations

Antonio Estrada and Leonid M. Fridman

Abstract—The present technical note studies a class of nonlinear systems
with unmatched perturbations. The combination of integral high-order
sliding modes with the hierarchical quasi-continuous controller is pro-
posed allowing finite-time exact compensation of unmatched perturbations
with semiglobal convergence features for both regulation and tracking.

Index Terms—High-order sliding modes (HOSM), nonlinear block con-
trollable form (NBC-form), sliding mode (SM) control.

I. INTRODUCTION

It is a known issue that classical sliding mode (SM) control [22] is
not able to compensate unmatched perturbations [25].

Combinations of different robust techniques and SM have been ap-
plied to deal with systems with unmatched uncertainties [11]-[14]. In
order to reduce the effects of the unmatched uncertainties [9] proposes
a method that combines H ., and integral sliding mode control. The
main idea is to choose a projection matrix, which ensures that un-
matched perturbations are not amplified and moreover minimized. For
uncertain nonlinear systems in strict-feedback form [19], [20] develop
the technique known as backstepping where a virtual control based on
Lyapunov methods is constructed step by step. In a similar manner to
backstepping, Multiple surface sliding control is proposed in [21] to
simplify the controller design of systems where model differentiation
is difficult.

The combination of the backstepping design and sliding mode con-
trol is studied in [6] for systems in strict-feedback form with parameter
uncertainties and extended to the multi-input case in [7]. The procedure
proposed in [6], [7] reduces the computational load, as compared with
the standard backstepping strategy, because it only retains n —2 steps of
the original backstepping technique, coupling them with with an aux-
iliary second order subsystem to which a second order sliding mode
control is applied. In [8] the combination of dynamical adaptive back-
stepping and first and second order sliding mode control is applied to
both triangular and nontriangular uncertain observable minimum phase
nonlinear systems.

Another approach to the problem of unmatched uncertainty compen-
sation is based on the nonlinear block controllable form (NBC-form)
[1]. In [1] the sliding mode technique is applied to compensate the
matched perturbations. A high gain approach is used to achieve com-
pensation of unmatched uncertainties and stabilization of the sliding
mode dynamics. In [15] a sliding mode controller is designed using the
combination of block control [16], a sigmoid aproximation to the inte-
gral sliding mode control [17] and nested sliding mode control [18]. A
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coordinate transformation is applied to design a nonlinear sliding man-
ifold. This transformation requires smoothness of each virtual control,
that is why sigmoid, instead of signum functions are used. With the
use of the high gain approach in [1] and sigmoid functions in [15], [18]
they prove that asymptotic tracking is achieved.

In [2] a new design algorithm for systems in strict-feedback form,
a special case of the BC-form, is proposed. This algorithm achieves
finite-time exact tracking of the desired output in the presence of
smooth unmatched perturbations. These features are accomplished via
the usage of quasi-continuous high-order sliding modes (HOSM) and
a hierarchical design approach. In the first step the desired dynamic for
the first state is defined by the desired tracking signal. After the first
step the desired dynamic for each state is defined by the previous one.
Each virtual control is divided into two parts, the first one is intended
to compensate the nominal nonlinear part of the system and the second
one is aimed to achieve the desired dynamics in spite of perturbations.

Difficulties arise when initial conditions lead to big initial errors be-
cause then the smoothness needed to achieve and keep the HOSM of
each virtual control could be broken in some of them leading to loss
of control. One possible solution is to increase the gains of the HOSM
term included in each virtual control, nevertheless it goes against a key
motivation of the algorithm which is to reduce discontinuous control
gain via the use of information on the known nominal part of the system
[24]. The solution proposed in the present technical note is to apply the
integral HOSM approach reported in [3] in which the desired reference
is reached by means of a previously designed auxiliary smooth trajec-
tory that depends on the initial conditions of the error and its derivatives
up to the order of the HOSM control used. Thus each state starts in the
proper auxiliary sliding motion and the entire internal dynamics remain
controlled from the beginning.

The present technical note proceeds as follows. In Section II the class
of nonlinear systems to be treated and the problem formulation are de-
scribed. Section III introduces the Quasi-continuous control [4], the hi-
erarchical design algorithm proposed in [2] and finally introduces the
integral HOSM [3]. Section IV presents the modification to the hier-
archical design algorithm and its convergence proof. In Section V the
algorithm is applied and simulation results are presented. The note then
concludes with a brief comment on the proposed algorithm.

II. PROBLEM STATEMENT

Consider a class of nonlinear systems presented in the special NBC-
form [1]

1 = fi(z1,t) + Bi(z1, )xe + wi(wy, )

T, = fZ(J_“ t) + B; (Tiﬂt)IiJrl + Wz'(il_Tiv t)

1
ii;n = fn (173 t) + Bn (wq t)u =+ wn (J,t) ( )
i=2,...n—1
where @ € R" is the state vector, x; € R, T; = [21 ....ri]T; u € Ris

the control vector. Moreover f;(7;,t) and B;(7;,t) are smooth func-
tions, w; is a bounded unknown perturbation term due to parameter
variations and external disturbances with at least n — ¢ bounded deriva-
tives w.r.t. system (1). B; # 0 forz € X C R",t € [0,0).

The relative degree, 04, of the output is assumed to be constant and
known. To simplify the exposition, only the case of a ps = n is con-
sidered i.e. y = x; however, if zero dynamics stability is assumed,
the approach can be used in the case of ps < n. The whole state is as-
sumed to be known. The goal is to achieve exact tracking of a smooth
desired signal, yq by the output y.

In [2], HOSM and feedback compensation is introduced through sev-
eral virtual controls in order to ensure the desired tracking. The results
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achieved in [2] are local and, for the sake of completeness, described
in next section.

III. HIERARCHICAL QUASI-CONTINUOUS CONTROLLER DESIGN [2]

In the first part of this section the Quasi-continuous controller is
briefly introduced, after that the design algorithm reported in [2] is re-
stated for reader convenience and in the third part the integral HOSM
approach is introduced.

A. Quasi-Continuous Controller [4]

Consider a single-input-single-output system of the form

E=a(t, &) +b(t,&u, ¢E€R", w€ER
o:(t,&)—o(t,§) ER 2)

where o is the measured output of the system,  is the control. Smooth
functions a, b, o are assumed to be unknown, the dimension n can also
be uncertain. The task is to achieve ¢ = 0.

It is assumed that system (2) has a constant and known relative de-
gree 7. From [23] it follows that o) = h(t, &) + g(t, €)u, g(t,€) # 0
holds, where h(t,&) = 0 |u=0, g(t,€) = (8/0u)o ™. If the in-
equalities 0 < K, < (8/811,)0(” < Ky, |0'(” lu=o| < C are ful-
filled for some K., K7, C' > 0. Trajectories of (2) are assumed infin-
itely extendible in time for any Lebesgue-measurable bounded control
u(t,x). The next differential inclusion is implied

o € =C,Cl + [Kom, Karlu. (3)

The above problem can be solved by the Quasi-continuous controller

[4], that is constructed such that 0 = ¢ = ... = ™D = 0is
established in finite time
u=—a¥, i, (a,[r,...,a(Tfl)) “4)
vor =0, Nor=lo|l, Tor=o,r/No,r=signo
i =0 4 B NITH DY,
Noy = |o @] 4 g emen
Y, - (:) =@ir/Nir; i=0,...,7r—1 5)

where 31, ..., 8-—1, are positive numbers.

Theorem 1: [4] Provided that 31, ..., 3.—1,a > 0 are chosen suffi-
ciently large in the listed order, the above design results in the r-sliding
homogeneous controller

u=—a¥,_q, (J, G,... 70(7'_1)) 6)

providing for the finite-time stability of (3), (6). The finite-time stable
r-sliding mode o = 0 is established in system (2), (6).

B. Hierarchical Quasi-Continuous Controller Design Algorithm [2]

Each state is seen as a function of the previous states, x;1(t) =
¢i(F;i(t)), i.e., as a virtual control. For example consider the state @
in (1) as a virtual control, then uncertainty w1 (1, ) is seen as matched.
The next algorithm is proposed to achieve tracking of yq.

Step 1: Defining 2 = ¢, the n-sliding homogeneous quasi-con-
tinuous controller is included in ¢, where ¢ is an n — 1 times differ-
entiable function defined as

Gr(zr,tyung) =B, )™ {=fi(wrt) +ui )

U1 = U122

Upn—1=—a1¥n_1 (Ulwdln Cee 057171)) (@)
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where 01 = x1 — ya. The first part of control ¢1(x1) is aimed at
compensating the nominal part of the system. The second part, 1,1,
is aimed at compensating perturbations; it is introduced through n — 1
integrators in order to maintain the relative degree of @1. ¥,,—1 . (+) is
defined as in (5) with the substitutions r = n, ¢ = 7.

The derivatives o1, 51, ..., 01(”_1) are calculated by means of ro-
bust differentiators with finite-time convergence [5].

The convergence proof is based on the assumption of a constant and
known relative degree, equal to n, of the output which leads to the exis-
tence of a differential inclusion o' € [—C1, C1]+[Kn1, Kas1]t1,n—1
for some constants C'y, I,,,1, K31 and thus the establishment of the
finite-time stable n-sliding mode for the constrain ¢y . An analog pro-
cedure is applied for each state. As it was mentioned before only local
convergence can be assured.

Step i: The desired dynamics for x; is ¢;_1(z;). The control pro-
posed is analogous to (7), but with some changes in the order

Oi(Tirt,uin) = Bi(Ti,t) " {=fi(Tiyt) +uin }

Uil = Uiz

. . (n—i
Uin—i = —;Wn_jn_it1 ((Ti.(fz‘,---,tf; )) (8)

where 0; = x; — ¢;—1 and ¥p_; n—;11(-) is defined as in (5), with
the proper substitution ¢ = ¢; in those equations.

Step n: In this step the real control is calculated, ,, = &, — ¢n—1
then

U= Bn(w,f)71 {—fulz,t) +un1}

where un,1 = — apsign(on). 9)

Remark 1: If the existence of perturbations and desired signal
derivatives of the proper order can be assured, the order of the HOSM
in each virtual control could be increased and thus the real control can
be softened.

Theorem 2: [2] Provided that w; in system (1) and y4 are smooth
functions with n — ¢ and n bounded derivatives respectively the above
hierarchic design results in an ultimate controller v = ¢,, (x5 ) pro-
viding for the finite time stability of 01 = ©1 —ya = 61 = ... =
a§"*1) = 0 in system (1).

Remark 2: The above theorem is valid only locally and stability is
strongly dependent on the initial conditions of the system.

C. Integral HOSM [3]

In order to illustrate the convenience of the integral HOSM approach
in combination with the above described design algorithm, consider the
state x,, and recall the first step of the convergence proof for the control
(9) as stated in [2]:

* For the state n

irz = fn + Bnu + W,Z(I,t)
with w :B;1 {—fn + ansign(on)}

On =Tn — On_1; ¢n—1 sufficiently smooth.
Then ¢, = —ansign(on) + wn(w,t) + &n,,l and taking «,, >
|wr |+ | & —1| provides for the appearance of a 1-sliding mode for

the constraint ¢,, after a finite time 7'n. Thus the subsystem
-in—l = fn—] + Bn—]-'rn—1 + Wn—1 (Tn—‘l-/t)

could be unstable in the transient, when ', # ¢,_1. The same
can be said, unless the system is bounded-input-bounded-state
(BIBS), for each of the remaining states used as virtual controls
before they reach the desired dynamics.
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In order to overcome the problem of transient dynamics, use of inte-
gral High-order sliding modes is proposed. The main idea is that each
virtual control starts in the sliding mode of the proper order from the
very beginning. The procedure is as follows.

Consider the r-sliding controller (6) and suppose a transient trajec-
tory o (t, z(t)) = p(t), to <t < ty such that

pto) = a(to)s-...pP (te) = 0 (to) 10
j=1,....r—1; p(t)EOVtth}' (10)
Integral r-Sliding Mode: Let p(rfl)(t) be a Lipschitz function,
then it has a globally bounded derivative p(r)(f) almost every-
where, and the new output X(¢t,z) = o(t,z) — p(t) satisfies
0< K, < (O/Ou)z(’") < Ky, |Z(T)|u:0| < C' with some changed
constants I{,,,, Knr, C > 0.
Let the (r — 1)—smooth function p(t) satisfying (10) have the form

p=(t—tp) (cotcr(t—to)+...+cor(t—t) 1), (A

Parameters ¢; are now to be found from conditions (10) after ¢; is
assigned. In order to avoid the necessity of very large control values to
reach the r-slidingmode @ (to) = 0 (ile.o =6 = ... = o'~ = 0)
due to far distanced initial values, or a very low convergence rate if
T (to) is close to zero, instead of a constant let ¢ — £ be a continuous
positive-definite r-sliding homogeneous function of the initial condi-
tions @ (to) of homogeneity degree 1, i.e.

ty—to=T (?(to))g T(d.T) = wT(T) VYr>0. (12)

Theorem 3: [3] The function p(t — to, @ (t0)) is uniquely deter-
mined by (10), (11), (12). Then with any sufficiently large «, indepen-
dent of the initial conditions @ (o), the controller (6):

v=a¥,_;, (Eg 2, RN Z(Tfl))
a(t,x)

+ (t=10, 7 (00)) . to<t<t0+T (T (1))
t2t0+T (7o)

Y(t,x)=
0'(7‘77 .’L’),
13)

establishes the finite-time-stable r-sliding mode ¢ = 0 with the tran-
sient time (12). The equality o (t, 2(t)) = p(t — to, o (to))) is kept
during the transient process.

The function used in this technical note for T( 7 (o)) is the one
reported in [3], which expression is

T (7 () = A (le(to)" + i (ko) P/ +

L o\ 1/
...+‘a('_1)(t0)]) TS0, (14)

As previously mentioned the initial conditions independence feature
achieved by the integral HOSM will be used in the Hierarchical Quasi-
continuous design; the details are explained in the next section.

IV. INTEGRAL HIERARCHICAL QUASI-CONTINUOUS CONTROLLER

A. Hierachical Quasi-Continuous Controller Modification

The only modification to the above described hierachical quasi-con-
tinuous controller is the substitution of each o; for ¥; = o, — p;, as
described next.
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Step i: The i-th sliding surface is chosen as ¥; = ¢; — p; where
o; = x; — ¢;—1 (with the exception 01 = 21 — yq)

6i(Tistyuin) = Bi(Ti, t) " {=fi(Tir t) +win }

Ui =iz

Uin— = — ;¥ §n it1

x (Ei,ii,...,z("*“). (15)

i
W, _i n—it1 is defined as in (5), obviously using ¢ = X; in those

equations and where p; fulfills condition (10):

pi(to) = o(to),.. .,pf."*“(to) = UETlii)(fo) } (16)

pi(t)=0 V> tp

and is constructed according to (11) settingr =n —i 41

T (7(t0)) = A (I (o) P/ o (ro) P10 +

ot Jlgnfi)(to)rp)l/p. a7

Step n: ¥, = 0n, — pn Where 6, = T, — Gn_i

w=DBn(x,t)  {=fnle,t) +uny}

where un,1 = — apsign(Z,). (18)

Theorem 4: If system (1) is BIBS then provided that w; and y4 are
smooth functions with n — ¢ and n bounded derivatives respectively
the above hierarchic design results in the controller (18) that assures
the finite time stability of 61 = x1 —yqa = 61 = ... = (n=1) _
in system (1) independently of their initial conditions z(#y).

Remark 3: Observe that the BIBS condition is only a sufficient but
not necessary condition as it can be seen in the convergence proof.

B. Convergence Proof

¢ Consider the state @,

Ln = fn + Bnu + Wn(il),t)
with w =By {=fu + ausign(S.)}

En =0n — Pn, On = Tn — d)n—1, @n—]

sufficiently smooth.

Then X, = —a, sign(o,) + wa (2,t) + ¢n_1 — pn and taking
an > wn| + |(,)n71| + |pn| provides for the appearance of a
1-sliding mode for the constraint ¥,, after ¢ = ¢, i.e. since the
beginning, and for o,, after T,, = t5, — to = A\n(|on(to)])
choosing p = 1 for (17).
* Now for the state =, —1, with ¢,y defined according to (15) and
— ¢, —o then

En—l = O0n—1 — Pn—1,0n—1 = Tn—1

En—l :i'n—l _(,brz—Z _[jn—l
:f77,—1 +Bn—1 Ty Wy —1 _f}17,—1 _Q)n—?
:fnfl+anl((,bnfl'i'pnfl)'i'wnfl_f)nfl —Pn—2.

The function f,_;, may not be compensated right from ¢ = %o
because of the arbitrary initial condition of x,,. However due to the
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BIBS condition z, 1 remains bounded and after t = to + T),, when
Tn = (,bnfl

2nfl =Un—1,1 + anl(fnflaf) - pn - ¢n72

2nfl :1"/7171,1 + d)nfl(fnflaf) - pn - (,'%72 (19)
that is (19) takes the form
in—l :hn—1(t7‘r)+gn—1 (t,.’lf)un_l (20)
with  h,_1(t,2) :in,1|u =0}
n— ’tv C) = in—
g l( l) a“’nfl !
Un—1 :ﬁnfl,l

= - anfl\lll,Z(anlyinfl)- (21)

If for some Ky, ,,Ku, ,.Cn-1 > 0 the inequalities 0 <
I{WLH,I S (8/0'un—l)zn—l S I{]\/[nfl ) |E7z—l |un,1:0 | S Cn—l
holds the next differential inclusion is implied

Y1 € [—Cn_1 y Cn_1] + [If'”n—l N If’”n—l] Un—1 (22)
and controller (21) keeps (since it was established from () stability of
(22), (21). The finite-time stable 2-sliding mode is maintained for the
constraint ¥,,_; from ¢o and for o, afterty,,—1 = to + T5.

The same procedure can be applied to each one of the states of (1).

Remark 4: As it was previously mentioned it becomes clear that
the BIBS condition is not a necessary one, it will suffice that in each
subsystem of (1)

& = fi(Ti, t) + Bi(Ti, t)axipr + wi(Ti, t)

x; remains bounded with the input ;4 bounded, at least during the
time interval ¢ < t;; because after that time f; is compensated. This
BIBS condition may be relaxed with the application of the new ad-
vances in HOSM adjustment [10].

Notice that, with the use of integral HOSM in each virtual control,
it is possible to introduce suitable dynamics on each of them. If direct
application is used, in which only the input and the output is considered,
this is not possible. The algorithm proposed in this technical note can
be applied in physical systems such as synchronous machines and some
underactuated manipulators that can be brought to the form (1).

V. EXAMPLE

Consider the perturbed third order system

1 =2sin(x1) + L.5xs + wi (w1, t)
;i’g = ().81’1172 —|— €3 + w2 (fzg t)

iy = — 1543 + 2u 4 ws(w, 1) (23)

where functions wi, w2 are the unmatched bounded perturbations and
function wy is the matched perturbation. These functions were defined
as follows:

wi(x1,t) =0.2sin(t) + 0.1x1 + 0.12
w2 (T2, t) =0.3sin(2t) + 0.2x1 + 0.2z, — 0.4
ws(z,t) =0.25in(2t) 4+ 0.221 + 0.3z2 + 0.223 + 0.3

a controller that achieves tracking of ys = 2sin(0.15¢)+4cos(0.1t) —
4 by a; is desired. In addition to the previous perturbations the nominal
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X1 Vd

0 10 20 30 40 50 60
time (s)

Fig. 1. States evolution (x(0) = [3 — 2 4]7).

compensation term of the first two virtual controls is not exact. The first
sliding surface is ¥y = 1 — p1, 01 = x| — yaq and the virtual control
for x1

o1 (z1, tyurr)= 11—5 {-1.8sin(z1)+ui1}
Ui =112
ﬂr12=—&1q’2,3(21,$1,i1)§
Uy 5(51. 51, 50)
2

. . . -1/ . .
21+2(|21|+|21|2/3) (21+|21|2/35ign(21))

N . /2
1142 (151 ]+1312/7)
pr=(t—ts)* (Clo+Cu(t—f0)+612(t—t0)2)

Ty =1 (|or (to) >+ 161 (1) [P 4151 (0) ) /°.

For the next state Yo = 02 — p2, 02 = x2 — ¢4 then

qﬁQ(.’ItQ,f, U221 ) = — 0.7,771.’82 —|— w21
w21 = — aa¥q 2(Zg, Xo)
22 —|— |Eg|1/25ign(22)

W o(Sa, )

|S2] + [S2]1/2
p2 = (t — tf2)2 (c20 + c21(t — to))
Ty = o (|oa(to)] + |62 (t)2)/”..

Finally for state x3, X3 = 03 — p3, 03 = @3 — ¢2
U= 1 {1.5:02 + ufﬂ}
2 2T

uz1 = — agsign(Ts)

(t=tp) (es0): Ts = Az (Jos(to)]).

pP3

Results obtained in simulations are shown in Figs. 1 and 2, using
(a5 — 4, g = 10, o3 = 8, )\1 = 6, )\2 = 05, )\3 = lln Flg 1,
2(0) = [3 —24]7 is used. In Fig. 2, #(0) = [-3 1.5 2]7 and a phase
lead of 30 s is introduced in yq4 (seeFigs. 3 and 4).

VI. CONCLUSION

The problem of control design for nonlinear systems with unmatched
perturbations is treated in this technical note. A design algorithm pro-
viding finite-time exact tracking of a smooth desired signal is given.
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Fig. 3. States evolution (z(0) = [—3 1.5 2]").
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100
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time (s)

Fig. 4. Control signal u.

The proposed algorithm uses nested quasi-continuous HOSM in a hi-
erarchical manner. The combination with integral HOSM in each vir-
tual control allows introducing suitable dynamics on each of them thus
providing semiglobal convergence.
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