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Abstract. Control system design of switching power converters and electrical ma-
chines based on the sliding mode approach is presented. The structural similarities
among switching converters and electrical machines are used to show that the same
structure of the controller could be used for plants under consideration. The con-
troller is designed as a cascade structure with inner current loop designed as a
sliding mode system with discontinuous control and outer loop (voltage or mechan-
ical motion) being designed as a discrete-time sliding mode controller.

1 Introduction

The aim of this paper is to present an application of sliding mode control
in switching power converters and electrical drives. Our intention is to show
that, due to the structural similarities, switching power converters and electri-
cal machines could be analysed in the same framework and that the structure
of the control system is the same for both plants. The basis for our approach
is the analysis of switching converters and electrical machines as the set of
energy storage elements with their interconnections dynamically changed by
the operation of the switching matrix [2]. The switching matrix plays the role
of a control element determining the power exchange between energy storing
elements, introducing change in the structure of the system and, thus mak-
ing design in the framework of variable structure systems and sliding mode
control [1] a natural choice. Engineering methods rather than a historical
overview of published results will be presented.

A functional description of switching power converters and electrical ma-
chines is presented in section 2. As a result of this analysis mathematical
description that treats both converters and machines is devised and a for-
mulation of the converters and electrical drive control, in the framework of
VSS is derived. In the third section some results of VSS theory that are used
in this paper are reviewed and the control algorithms common in switching
converters and electrical machines control are discussed. In the same section
design of voltage and power flow control for power converters and design of
the motion control of electrical machines is presented. In the forth section
the design of IM observer is discussed in details. The last section presents
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experimental example of the neural network realisation of the sliding mode
system for induction machine control.

2 Functional description of switching power converters
and electrical machines

The role of the power converter is to modulate electrical power flow between
power sources (Fig. 1). In general power flow can be bi-directional so both
sources may the play role of power generator or power sink (load). The con-
verter should enable that interaction of any input source to any output source
of the power systems. It acts as a link having matrix-like structure. Efficient
modulation of power flow is realised using switch-like elements having zero
voltage drop when conducting and fully blocks current flow when open. Use of
switches as structural elements of a converter offers opportunity to consider
a converter as switching matrix. Disregarding the wide variety of designs in
most switching converters, control of power flow is accomplished by varying
the length of time intervals for which one or more energy storage elements are
connected to or disconnected from the energy sources. Due to the restriction
imposed by Kirchoff’s circuit laws the nature of sources at zhe input and
output sides of the switching matrix must be different (voltage or current
sources)[2].

For purposes of mathematical modelling the operation of a switch may
be described by a two-valued variable uik(t), (i = 1, ..., n; k = 1, ...,m) ,
having value 0 when the switch is open and value 1 when the switch is closed
with average value 0 ≤ ũik(t) ≤ 1 . If voltage sources are connected to
input side of the switching matrix then restrictions imposed due to Kirchoff’s
circuit laws allow only one switch connecting one of the n input lines to the
k−th (k = 1, ...,m) output line can be closed during any time interval, or
mathematically

∑n
1=1 uik(t) = 1, k = 1, ...,m . Allowed connections will be

referred as permissible combinations.
An analogous requirement can be derived if the current source is attached

at the input side of the switching matrix. The operation of the switching
matrix changes the connections among elements of the switching converter

Fig. 1. Converter as a connection between power sources in a switching matrix
connecting n-dimensional input and m-dimensional output.
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and introduces variation in the dynamical structure of the system. Since the
role of switching matrix is to control power flow, the most natural way to
model the matrix is by introducing a control vector that will represent the
effect of the matrix operation. Let the state of the switches be defined by
the vector sT

sw = [u11 .. uik .. unm] whose elements are two-valued variables
uik(t), (i = 1, ...n; k = 1, ...,m) describing the state of switches in each node
of the switching matrix [3],[4]. The topological connection of the switches
in the switching matrix is defined by the matrix AM with elements being
from the discrete set S3 = {1, 0,−1}. The topological connection of the load
with respect to the switching matrix defines the relations of the variables
at the output lines of the switching matrix to the load quantities and could
be defined by matrix AL. The operation of the switching matrix can be
expressed by vector u = AMssw. Vector u has a number of distinctive values
equal to the number of permissible switch connection.

2.1 Common converters and their operational properties

In Table 1 topological structure of the most common converters having volt-
age or current sources on input or output sides are depicted with transforma-
tion of variables. The simplest matrix - representing DC-to-DC converters -
has only two switches interconnecting two unipolar sources. If unipolar and
bipolar sources are to be interconnected then the switching matrix must have
at least four switches. If one of the sources to be interconnected is three-phase
then the structure has three output or three input lines, depending on the
position of the AC source. These structures are representing three phase in-
verters (DC source at input side) and rectifiers (three phase source at input
side).

The role of energy storing elements (L,C) is to balance power flow be-
tween source and sink by temporarily storage and release of energy [2]. The
dynamics of converters depends on the topological relation of the energy stor-
age elements to the switching matrix. Further analysis will be concentrate on
two generic structures - both with inductance energy transfer. In the first
- so called buck structure - inductance is connected to the output of the
switching matrix, energy flow from the source is pulsating being modulated
by the switching matrix. In the other - so called boost structure - inductance
is connected to the source and the energy flow from the source is continuous
while the switching matrix is modulating discontinuous energy flow to the
output side.

Dynamics of DC-to-DC converters. Buck and boost structures of DC-
to-DC power converters are shown in Table 2 along with their mathematical
models. In the buck structure the dynamical structure of the system remains
the same - an LC filter is connected to the variable source. In the case of
the boost converter the dynamical structure is changed depending on the
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Table 1. Topological structure of the most common switching matrices and their
functional characteristics.

DC-to-DC converters

Buck structure Common relations Boost structure

vs = vgALu

u = AMssw

AL = [1]

AM = [1 0]

ssw = [u11 u21]
T

is = igALu

u = AMssw

DC-to-AC and AC-to-DC single phase converter

Buck structure Common relations Boost structure

vs =
1

2
vgALu

u = AMssw

AL = [1 − 1]

AM =

[
1 0 −1 0

0 1 0 −1

]
ssw = [u11 u12 u21 u22]

T is = igALu

u = AMssw

Three phase converters

Inverters Common relations Rectifiers

vs =
1

2
vgALu

u = AMssw

AL =

 1 −1 0

0 1 −1

−1 0 1


AM =

 1 0 0 −1 0 0

0 1 0 0 −1 0

0 0 1 0 0 −1



ssw =



u11

u12

u13

u21

u22

u23


or

ssw =



u11

u12

u2”1”

u22

u31

u32



vs = vT
g ALu

u = AMssw

AL = E

AM =

 1 −1 0 0 0 0

0 0 1 −1 0 0

0 0 0 0 1 −1


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Table 2. Structures and mathematical models of DC-to-DC converters.

Converter substructure Converter mathematical model

Buck structure
dvo

dt
=

iL
C

− vo

RC
diL
dt

=
Vg

L
u − vo

L
u = AMssw

dvo

dt
= fv(iL, vo)

diL
dt

= fi(vo) + b(Vg)u

Boost structure
dvo

dt
=

iL
C

(1 − u) − vo

RC
diL
dt

=
Vg

L
− vo

L
(1 − u)

u = AMssw

dvo

dt
= fv(iL, vo) + b1(iL)u

diL
dt

= fi(vo, Vg) + b2(vo)u

switch position having either two isolated power storage elements (L and
C) or a power filter (L,C) connected to the power source. These facts are
reflected in the mathematical description of the converters: buck structures
being represented in regular form [5] (system is split in the blocks so the
first block has the same dimension as control and the second block does not
explicitly depend on control input) (see Fig. 2.a). Boost converter have control
entering both equations as depicted in Fig. 2.b. These features are common
for converters with depicted position of the switching matrix independent on
the number of input and output lines of the switching matrix.

Fig. 2. Dynamical structure of: a) buck converters and b) boost converters.
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Dynamics of single phase DC-to-AC and AC-to-DC converters. The
dynamics of converters with alternative voltage or current sources connected
to either input or output side of the switching matrix is the same as for
DC-to-DC converters as illustrated in Table 3. The only difference is in the
values that control could take being from discrete set S3 = {−1, 0, 1} for
these converters and from discrete set S2 = {0, 1} for DC-to-DC converters.
This allows to regard a DC-to-AC converter as a structure in which the load
is connected between two DC-to-DC converters.

Table 3. Structures and mathematical models of single-phase converters.

Converter substructure Converter mathematical model

dvo

dt
=

iL
C

− vo

RC
diL
dt

=
Vg

L
u − vo

L
u = AMssw

dvo

dt
=

iL
C

u − vo

RC
diL
dt

=
Vg

L
− vo

L
u

u = AMssw

Dynamics of three phase converters. The switching matrix for all three
phase converters DC-to-AC (inverters) and AC-to-DC (rectifiers) is the same.
Buck and boost structures for both inverters and rectifiers could easily be
recognised for three phase converters as clearly shown in Table 4. In our
analysis balanced three phase systems is assumed which can be described
in different frames of references: stationary three-phase (a, b, c), orthogonal
two-phase (α, β) and synchronous frame of references (d, q). Mapping be-
tween these frames of references is defined by matrix Aαβ

abc for (a, b, c) to
(α, β) and for Adq

αβ to (d, q). In Table 4 mathematical models are presented
in a synchronous frame of references with θr as angular position of the se-
lected orthogonal frame of references. Matrix F (θr) = Adq

αβAαβ
abc is defining

the nonlinear transformation between three phase (a, b, c) and synchronous
orthogonal (d, q) frames of references. The (d, q) frame of references is de-
termined in such a way that it is synchronous with the three-phase side of
a converter (input side for rectifiers and output side for inverters). In the
presented models notation is used as follows: vT

o = [vod voq] the capacitance



Sliding Modes Applications 229

Table 4. Structures and mathematical models of three-phase converters.

Converter substructure Converter dynamics

and control

Adq
αβ =

[
cos θr sin θr

− sin θr cos θr

]

Aαβ
abc =

[
1 −1/2 −1/2

0
√

3/2 −√
3/2

]

[
dvod

dt

dvoq

dt

]
=

[
− vod

RC
+ ωrvoq

− voq

RC
− ωrvod

]
+

1

C

[
1 0

0 1

][
iLd

iLq

]
[

diLd
dt

diLq

dt

]
=

[
− vod

L
+ ωriLq

− voq

L
− ωriLd

]
+

Vg

2L

[
1 0

0 1

][
ud

uq

]
F (θr) = Adq

αβ Aαβ
abc

udq = F (θr)AMssw

dvod

dt
= − vo

RC
+

iL
C[

diL
dt

igq

]
=

[
− vo

L

0

]
+

[
Vg

L
0

0 iL

][
ud

uq

]
F (θr) = Adq

αβ Aαβ
abc

udq = F (θr)AMssw

F (θr) = Adq
αβ Aαβ

abc

udq = F (θr)AMssw

[
dvod

dt

dvoq

dt

]
=

[
− vod

RC
+ ωrvoq

− voq

RC
− ωrvod

]
+

iL
C

[
1 0

0 1

][
ud

uq

]
diL
dt

= −vd

L
ud − vq

L
uq +

Vg

L

F (θr) = Adq
αβ Aαβ

abc

udq = F (θr)AMssw

dvod

dt
= − vo

RC
+

iLdud + iLquq

2C[
diLd

dt
diLq

dt

]
=

[
ωriLq +

Vg

L

−ωriLd

]
− vo

2L

[
1 0

0 1

][
ud

uq

]
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voltage vector, iT
L = [iLd iLq] inductor current vector and uT = [ud uq]

is the control vector, Vg is amplitude of input voltage, R,L,C - converter
parameters.

The above analysis shows that switching converters can be described as
shown in equations (1)-(3) where for particular converter functions f c(vo, iL),
f i(vo, iL), matrices Bc(iL, Vg), Bu(iL, Vg) and control u could be determined
from the above tables. The DC-to-DC and DC-to-AC single phase convert-
ers are SISO systems while three-phase converters are MIMO systems with
the three dimensional control vector. The relation (3) is shown for the pur-
pose of having complete definition of the control input in the (d, q) frame of
references.

Buck structure Boost structure

dvo

dt
= f c(vo, iL)

diL

dt
= f i(vo, iL) + Bu(iL, Vg)u

dvo

dt
= f c(vo, iL) + Bc(iL, Vg)u

diL

dt
= f i(vo, iL) + Bu(iL, Vg)u

(1)

usw = AMssw = u (2)

F (θr) = Adq
αβ Aαβ

abc , udq = F (θr)AMssw

Adq
αβ =

[
cos θr sin θr

− sin θr cos θr

]
, Aαβ

abc =

[
1 −1/2 −1/2

0
√

3/2 −√
3/2

]
(3)

Dynamics of electrical machines. To realise necessary power flow a
switching converter (or at least a switching matrix) must be inserted be-
tween the source and a machine. Since the electrical subsystem of machines
are modelled as predominantly inductive, the voltage source shall be used at
the source side of the switching matrix. Mathematical models of the most
common machines connected to a switching matrix are shown in Table 5.
Mechanical motion is the same for all rotating machines and is described as
a second order system with electromagnetic torque as the input. The elec-
tromagnetic subsystem depends on the magnetic circuitry of the particular
machine and can be described by a simple first order equation for DC ma-
chines, by a second order system for PM machines and by a fourth order
system for induction machines. Descriptions of the electromagnetic subsys-
tem of a machine in Table 5 are presented in (d, q) synchronous orthogonal
frame of references with orientation for all of the machines under considera-
tion along the rotor flux vector (so called field orientation). The notation is
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Table 5. Structure and mathematical models of common electrical machines

Dynamics of electromagnetic system

DC machine supplied from DC source

diq
dt

= −R

L
iq − Ke

L
ω +

Vg

L
uq , u = AMssw

DC machine supplied from three-phase source

diq
dt

= −R

L
iq − Ke

L
ω +

Vg

L
uq , u = F (θr)AMssw

iq(machine) = id(converter) , iq(converter) = id(machine)(power factor)

PM three-phase machine supplied from DC source[
did
dt

diq

dt

]
=

[
−R

L
id − ωiq

−R
L

iq − ωid − Ke
L

ω

]
+

[
1
L

0

0 1
L

][
ud

uq

]
, u = F (θr)AMssw

Induction machine supplied from DC source[
did
dt

diq

dt

]
=

[
−a1id + a3ωrΨq − a2Ψd

−a1iq − a3ωrΨd + a2Ψq

]
+

[
Kid 0

0 Kidq

][
ud

uq

]
; u = F (θr)AMssw

[
dΨd
dt

dΨq

dt

]
=

[
−ωΨq −a4Ψd

a4Ψd ωΨd

]
+

[
KΨ 0

0KΨ

][
id

uiq

]
;

Kid = Kiq = 1
σmLs

KΨ = Rr
Lr

Lm

a1 =
1

σmLs

(
Rs + Rr(

Lm

Lr
)2
)

, a2 =
Rr

σmLs
(
Lm

Lr
)2 , a3 =

Lm

σmLsLr
,

a4 =
Rr

Lr
, σm = 1 − Lm

LsLr

Dynamics of mechanical subsystem for all machines[
dθ
dt

dω
dt

]
=

[
ω

−TL(θ,ω,t)
J

]
+

[
0

KT (id)

]
iq

as follows: θ, ω angular position and speed of machine, ΨT = [Ψd Ψq] is rotor
flux vector; iT = [id iq] is stator current vector; uT = [ud uq] is the control
vector; Vg is amplitude of input voltage; J is moment of inertia; TL(θ, ω, t) is
load torque; KT (id) is torque coefficient which depends on the d -component
of stator current; Ke, Kiq, Kid, KΨ are coefficients depending of the machine
parameters and flux, Rr ,Rs are rotor and stator resistance, Lr ,Ls are rotor
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Fig. 3. Dynamical structure of electrical machines: a) DC machines and b) induc-
tion three phase machines.

and stator inductance, Lm mutual inductance, σm leakage factor. For a DC
machine supplied from a three-phase rectifier the selection of the dq frame
is related to supply voltage and is reflected in the change of the d and q
coordinates in comparison with dc machine supplied from the DC source. A
model of a DC machine is given for machines without field winding.

The dynamical structure of a machines is presented in Fig. 3. The differ-
ence among DC and AC machines is in the structure of the switching matrix
and thus the dimensionality of the control input. For an induction machine,
the dynamics of the rotor flux, with currents as input and rotor flux vector as
output, should be added to the structure. A mathematical model similar to
the one describing buck switching power converters could be used to describe
the dynamics of electrical machines [7]

didq

dt
= f i(z, idq,Ψ ) + Bu(idq,z,Ψ )u ,

dz

dt
= fz(z, idq) ;

dΨ

dt
= fφ(Ψ ,z, idq) . (4)

The elements of vector z are the angular position and the angular velocity
of the machine. The third equation describing the change of the rotor flux is
present only for the induction machine. The control input for DC machines
supplied through DC-to-DC or single-phase converters is scalar. If the DC
machine is supplied from a three phase source than the control input is the
same as for three phase rectifiers and three phase inverters and it has the
form as given in (5):

udq = F (θr)AMssw ,

F (θr) =
[

cos θr sin θr
-sin θr cos θr

] [
1 −1/2 −1/2
0
√

3/2 −√
3/2

]
, (5)

where θr is the position of the synchronous frame of reference.
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3 Control of power converters and electrical machines

The goal of the control system design of switching converters, in most of the
practical cases, is reduced to the requirement that the output voltage of the
converter tracks its reference while satisfying certain dynamical constrains
(overshoot, load rejection etc.). The same is true for electrical machines for
which the control goal could be stated as the requirement to have tracking
in the torque, or velocity or angular position. In the following sections the
unified approach to the control of switching converters and electrical machines
based on the introduction of sliding mode in the control system will be shown.
First we will briefly discuss some results in sliding mode design applicable to
switching converters and electrical machines control.

3.1 Some results in sliding mode control

Variable structure systems are originally defined for dynamic systems de-
scribed by ordinary differential equations with a discontinuous right hand
side. In such a system so-called sliding mode motion can result. This motion
is represented by the state trajectories in the sliding mode manifold and high
frequency changes in the control. For sliding mode applications the equa-
tions of motion and the existence conditions are two basic questions to be
discussed. Since models of switching converters and electrical machines are
linear with respect to control further analysis will be restricted to the systems
defined in the following form

ẋ = f(x, t) + B(x, t)u , (6)

where B(x, t) is an n × m matrix, x ∈ Rn, u ∈ Rm. For such a system
boundary-layer regularisation [1],[9] enables the substantiation of the so-
called equivalent control method. In accordance with this method, in (6)
control should be replaced by the equivalent control, which is the solution
to σ̇ = Gf(x, t) + GB(x, t)ueq = 0, G = {∂σ/∂x}, where σ = 0, σ ∈ Rm

is defining sliding mode manifold while σi = 0 describe the so-called switch-
ing surfaces. For detGB �= 0 equivalent control is ueq = −(GB)−1Gf , the
sliding mode equation in the manifold σ = 0 is

ẋ =
(
E − (GB)−1G

)
f , σ = 0 . (7)

From σ = 0, m components x2 ∈ Rm of the state vector x may be found
as a function of the rest (n−m) components x1 ∈ Rn−m as x2 = −σ0(x1),
σ0 ∈ Rm and the order of the sliding mode equation (7) may be reduced by
m:

ẋ = f1 (x1,−σ0(x1)) , f1 ∈ Rn−m . (8)

For a system subject to disturbances h(x, t) it has been shown [17] that if
h(x, t) ∈ rangeB the sliding mode motion is independent of the disturbance
h(x, t) [7].
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To derive the sliding mode existence conditions in analytical form the
stability of the projection of the system motion on subspace σ

σ̇ = Gf(x, t) + GB(x, t)u (9)

should be analysed. If GB is an identity matrix system (9) is decomposed on
m first order systems and selecting the control such that signs of each compo-
nent σi and its derivative are opposite the sliding mode motion will occur in
each discontinuity surface. Other procedures and selection of the Lyapunov
functions for VSS are discussed in details in [1]. The most interesting fact
is that the Lyapunov function affirming the convergence to the sliding mode
manifold is finite function of time. It vanishes after the finite time interval tes-
tifying that sliding mode motion arises in a finite time instant. Sliding mode
equations (8) and existence conditions constitute the basis for the variety of
design procedures in VSS. To demonstrate some of the design procedures,
let us write system (6), subject to disturbance Dh = Bλ, in the so-called
regular form

ẋ1 = f1(x1,x2) ,
ẋ2 = f2(x1,x2) + B2u + B2λ , (10)

where x1 ∈ Rn−m, x2 ∈ Rm, f1(x1,x2), and f2(x1,x2) are vectors of
appropriate dimensions and rankB2 = rankB = m. Assume that the sliding
mode manifold is defined as σ = σ0(x1) + x2 = 0, σ ∈ Rm. Then the
equivalent control is expressed as ueq = −B−1

2 (G1f1(x1,x2) + f1(x1,x2))−
λ. It depends on disturbance and in most cases its realization is unpractical.
Calculating (u + λ) from dσ/dt = 0 and substituting it to second equations
in (10) then, when the sliding mode appears in this manifold, the system
behaviour is governed by the (n−m) order equation

ẋ1 = f1 (x1,−σ0(x1)) , x2 = −σ0(x1) . (11)

In (11) vector σ0(x1) could be treated as ”virtual control” and should be
selected to satisfy the desired system dynamics. For control input selection
the projection of the system motion on m-dimensional space σ is found

σ̇ = f(x1,x2,λ) + B2u, f ∈ Rm ,

f(x1,x2,λ) = G1f1 + f2x2 + B2λ . (12)

The discontinuous control u = −B−1
2 Msign(σ), M = const. > 0 leads to

σ̇i = fi(x1,x2,λ) −Mui, i = 1, ...,m . (13)

There exists large enough M > 0 such that the functions σi, i = 1, ...,m
and derivatives σ̇i have opposite signs, sliding mode will occur in each of the
discontinuity surfaces.

Discrete time sliding mode was introduced for discrete time plants [11],[13],[15].
The most significant difference with the continuous time sliding mode is that
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motion in the sliding mode manifold may occur in discrete time systems with
continuous right hand side By applying the sample and hold process with
sampling period T , and integrating the solution over interval t ∈ [kT, (k+1)T ]
with u(t) = u(kT ) and d(t) = d(kT ), the discrete time model of plant (6)
may be represented as

xk+1 = F kxk + B̄uk + Pdk . (14)

The sliding manifold is defined as σk = Gxk, k = 1, 2, . In [11] the equivalent
control ueq

k = ueq
k (kT ) is defined as the solution of

σk+1 = Gxk+1 = GF kxk + GB̄ueq
k + GPdk = 0 . (15)

Provided that detGB̄ �= 0 the equivalent control can be expressed as

ueq
k = −(GB̄)−1G(F kxk + Pdk) . (16)

It is important to note that matching conditions now are defined in terms of
matrices G, B̄, P . The required magnitude of control (16) may be large and
limitation should be applied, so the final form of the control is

ueq
k =

{−(GB̄)−1G(F kxk + Pd∗
k), if |uk| < Uo

−Uosign(σk), if |uk| ≥ Uo
, (17)

where d∗
k is the estimated disturbance and Uo is a control input bound. In an-

other approach for system (6) asymptotic stability of the solution σ(x) = 0
can be assured if one can find a control input such that the stability crite-
ria are satisfied for the following Lyapunov function ν = σT σ/2 with the
requirement that the time derivative (dν/dt) has a certain form, for exam-
ple dν/dt = −σT Dσ, D > 0, [16]. Then the control input, with sampling
interval T , that satisfy the given requirements is in the form

uk = uk−1 − (GBT )−1 ((E + TD)σk − σk−1) . (18)

The realisation of control (18) requires information on the sliding functions
and the plant gain matrix, which is much easier to obtain than information
necessary to implement algorithm (17).

Mathematical models of the switching converters and electrical machines
could be presented in regular form (10) with discontinuous control influencing
the change of the currents and currents being treated as ”virtual control” in
the voltage dynamics (for converters) or mechanical motion dynamics (for
machines). The structure of the boost converters is more complicated with
control entering all the equations of the system. Despite the differences in the
dynamical structure the control system design for buck and boost converters
and electrical machines may follow the two-step procedure:

• Select control u such that inductor current (or electromagnetic torque in
electrical machines) tracks its reference;
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• Select the current reference (virtual control) so that capacitance voltage
(or mechanical coordinates) satisfy prescribed dynamical behaviour.

This procedure is not so obvious for the boost structures since control en-
ters both equations. In the framework of sliding mode systems the above
procedure for boost converters requires substitution of the equivalent control
to the first equation and then taking current reference as ”virtual control”
input. In the following sections we will show the consequent application of
the above procedure in details without presenting unnecessary details for
particular converters or machines.

3.2 Control of DC-to-DC converters and DC machines

In this section the control of DC-to-DC converters and DC machines both
having scalar control input is discussed. Control of DC machines supplied
from three-phase sources will be discussed in the section dealing with control
of three-phase converters and AC machines.

Control of DC-to-DC buck converter. Assume the current reference as
continuous function iref

L (t) then, for the tracking error σ = iref
L (t) − iL(t)

and the control selected as u = (1 − signσ)/2 the sliding mode exists if the
equivalent control 0 ≤ ueq ≤ 1 is calculated as:

dσ

dt
=
d(iref

L − iL)
dt

=
diref

L

dt
+
vo
L

− Vg

L
ueq = 0

⇒ ueq =
1
Vg

(L
diref

L

dt
+ vo) . (19)

Substituting the equivalent control to the original equations of the system
one can obtain:

dvo

dt
=
iref
L

C
− vo
RC

; iL(t) = iref
L (t) . (20)

From (20) reference current could be selected using well-established design
procedures for linear systems. For example, if the first order response σv =
ρ(vref

o − vo) + d(vref
o − vo)/dt = 0 of closed loop system is required, the

reference current could be easily determined as

iref
L = sat

(
vo
R

+ ρC(vref
o − vo) + C

dvref
o

dt

)
⇒ iref

L = sat(iL + Cσv)(21)

where sat(•) is the saturation function. Structure of system (21) is shown in
Fig. 4. Another structure of the control system may be determined from the
required closed loop dynamics by inserting dvo/dt = iL/C − vo/RC into the
expression for σv which leads to σv = ρ(vref

o −vo)+dvref
o /dt+vo/RC−iL/C =
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Fig. 4. Structure of the converter control system.

(iref
L − iL)/C and selecting the control as u = (1 − sign(Cσv))/2 the sliding

mode motion is established in manifold σv = 0 if 0 ≤ ueq ≤ 1 and the same
result is obtained as in algorithm (21).

The structure in Fig. 4 is suitable for the implementation of different
control algorithms in designing the reference current, thus it leaves more
room for merging other control techniques with the sliding mode. This will
be especially clear in the control of the boost type of power converters.

Control of DC machines. By following the same procedure as for buck con-
verters the DC machine tracking error could be defined as σ = iref

q (t)− iq(t)
with the control u = (1 − signσ)/2 the sliding mode exists if the equivalent
control satisfies −1 ≤ ueq = (L/Vg)(diref

q /dt+R/Liq +Ke/Lω) ≤ 1. By sub-
stituting ueq to the original system the motion of the Dc machine is reduced
to the second order system

dθ

dt
= ω ;

dω

dt
= −TL(θ, ω, t)

J
+
KT (id)
J

iref
q . (22)

By requiring the closed loop transient to satisfy σθ = Cθ(θref−θ)+Cω
d(θref−θ)

dt

+d2(θref−θ)
dt2 = 0 determined by the design parameters Cθ and Cω the refer-

ence current becomes

σθ = Cθ(θref − θ) + Cω
d(θref − θ)

dt
+
d2(θref − θ)

dt2
=
KT

J
(iref

q − iq) ,

iref
q = sat

(
TL

K(id)
+ Cθ(θref − θ) + Cω

d(θref − θ)
dt

+
d2θref

dt2

)
. (23)

Note that for Cθ = 0ω the above dynamics reduces to σω = Cω(ωref −
ω) + Cω(d(ωref − ω)/dt) = 0 and defines the desired dynamics for velocity
control. Implementation of control (23) requires information on the machine
load which could be obtained using disturbance observer techniques proposed
by Ohnishi in [18]. Manipulating (23) one can determine a much more simple,
way of calculating reference current

iref
q = sat

(
iq +

J

KT (id)
σθ

)
. (24)
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Structure of the control system is the same as the one depicted in Fig. 4.
These results depict earlier shown similarities between buck converters and
electrical machines. The structure of the control is the same, with necessary
changes in measured variables. In [22], [23] the application of the sliding
mode control to DC machine combining the acceleration, the velocity and the
position control is proposed. Proposed algorithm ensures robustness against
parameters and disturbance changes even in the acceleration stage. Design
of the sliding mode control for DC electrical machines based on the reduced
order model (dynamics of the electrical current is neglected) is discussed in
details in [4] and [26].

Control of boost DC-to-DC converter. Assume the current reference
as the continuous function iref

L (t) then, selecting tracking error σ = iref
L (t)−

iL(t) and control u = (1 − signσ)/2 the sliding mode exists if equivalent
control (25) satisfies conditions 0 ≤ ueq ≤ 1

dσ

dt
=
d(iref

L − iL)
dt

=
diref

L

dt
+
vo
L

(1 − ueq) − Vg

L
= 0

⇒ ueq =
1
vo

(
L
diref

L

dt
+ vo − Vg

)
. (25)

By substituting ueq to the original equations of the boost converter one could
determine

C

2
d(vo)2

dt
+
v2o
R

= Vgi
ref
L − L

2
d(iref

L )2

dt
= (Vg − vL)iref

L , iL = iref
L , (26)

where vL represents the voltage drop on the inductance L. System (26)
may be interpreted as the description of power conservation in the circuit
(C/2)d(vo)2/dt + vLi

ref
L = Vgi

ref
L − (v2o/R) . From the control point of

view it could be regarded as a linear first order system with the square
of the output voltage v2o as output and reference inductor current as con-
trol. With such definition of variables the mathematical description reduces
to the first order system nonlinear with respect to the control. For DC-to-
DC converters the change of energy stored in inductance could be neglected
(average vL = 0) and the system reduces to the first order linear system
(C/2)d(vo)2/dt+ (v2o/R) = Vgi

ref
L and selection of the reference current may

follow the same procedure as for buck converters [3],[17]. Another often ap-
plied solution is the feed-forward calculation of the reference current from
the reference voltage [26].

3.3 Control of three phase converters and three phase machines

Three phase converters and electrical machines structurally differ from their
DC counterparts in the number of energy storage elements and in the struc-
ture of the switching matrix. The dynamical structure of the systems remains
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the same as for their DC counterparts except that the there-phase are MIMO
systems. That allows conduct design of the control in the same two-step pro-
cedure as applied for dc systems.

Current control in three phase systems. For modelling and control
design purposes the three phase switching matrix has been defined by the
three-dimensional control vector u = AMssw . Vector ssw has six elements
but due to electric circuits constraints for buck inverter and boost rectifier,
vector ssw may have the following values S1 = [1 0 0 0 1 1], S2 = [1 1 0 0 0 1],
S3 = [0 1 0 1 0 1], S4 = [0 1 1 1 0 0], S5 = [0 0 1 1 1 0], S6 = [1 0 1 0 1 0],
S7 = [1 1 1 0 0 0], S8 = [0 0 0 1 1 1]; for boost inverter and buck rectifier
vector ssw may have the following values S1 = [1 0 0 0 0 1], S2 = [0 0 1 0 0 1],
S3 = [0 1 1 0 0 0], S4 = [0 1 0 0 1 0], S5 = [0 0 0 1 1 0], S6 = [1 0 0 1 0 0],
S7 = [1 1 0 0 0 0], S8 = [0 0 1 1 0 0], S9 = [0 0 0 0 1 1].

For inverters and rectifiers the number of independent control inputs is
three. As depicted in Fig. 5 for three-phase inverters the number of inde-
pendent variables to be controlled is two: for inverters these are the d and
q components of output voltage, for AC machines they are the same as the
components of supply voltage. For inverters and machines supplied from DC
sources there is no variable to be controlled on the input side. For three-phase
rectifiers the output is the DC source and thus only one independent variable
(output current or voltage) is to be controlled. On the input side of the rec-
tifier, the magnitude of voltage or current are defined thus only phase shift
between the voltage and the current vector could be controlled. This allows
introduction of an additional requirement to the control system design. The

Fig. 5. The assignment of the degrees of freedom in control for three-phase switch-
ing matrix.
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most natural choice is to relate this additional requirement to the selection
of the switching pattern.

Let us now look at design of the switching pattern for the three phase
converters in more details. Current control is based on the sliding mode ex-
istence in the manifold σT = [iref (t) − i]T = 0 where vector σT = [σd σq]T

with σd = iref
d (t) − id, σq = iref

q (t) − iq and iref
d , iref

q are continuous func-
tions to be determined later. Design of the current controller is based on the
system description (4) didq/dt = f idq + Budqudq where matrix Budq is diag-
onal. The structure of function f idq and matrix Budq could be easily found
from mathematical models given in Tables 4 and 5. The time derivative of
σT = [σd σq]T is determined as

dσ

dt
=
diref

dq

dt
− didq

dt
=
diref

dq

dt
f idq − Budqudq, uT

dq = [ud uq] . (27)

Equivalent control can be calculated as B−1
udq[di

ref
dq /dt − f idq] = ueq and

equation (27) is expressed as

dσdq

dt
= Budq[ueq − udq(Si)], i = 1, ..., 9 . (28)

Control vectors could take values from the discrete set S8 = {S1,S2,S3,S4,
S5,S6,S7,S8,S9} as depicted in Fig. 6.a. All realizable values of the equiv-
alent control lie inside the hexagon spaned by the elements of the set S8[7].
The rate of change of error is proportional to the differences between the
vector of equivalent control and the realisable control vectors. For a partic-
ular combination of errors all permissible vectors Si that satisfy the sliding
mode existence conditions could be determined from (dσd/dt)σd < 0 and
(dσq/dt)σq < 0 or sign(ueq − udq(Si)) = −sign(σdq) as shown in Fig. 6.b.
For some combinations of errors there are more than one permissible vector

Fig. 6. Control vectors and selection of permissible control for given combination
of the signs of control errors.
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that leads to an ambiguous selection of the control and consequently existence
of more than one solution for the selection of switching pattern .

The same could be concluded from rankF (θr) = rank(Adq
αβAαβ

abc) = 2.
Ambiguity in selection of the control vector based on selected ud and uq

allows us to have a number of different PWM algorithms based on satisfying
sliding mode conditions in (d, q) frame of references. In early works [7] the
following solution was proposed: add an additional requirement ϑ(t) = 0 to
the control system specification so that (27) is augmented to have the form[ dσdq

dt
dϑ
dt

]
=
[

diref

dt − f idq

fϑ

]
−
[

BudqF (θr)
bT

ϑ

]
u(Si) , (29)

dσN

dt
= fN − BNu(Si), uT (Si) = [ua ub uc] . (30)

Vector bϑ should be selected so that rankBN = 3. the simplest solution is for
ϑ̇(t) = ua +ub +uc [7],[26] then matrix BN will have full rank. To determine
the switching pattern, the simplest way is to use the nonlinear transformation
σs = B−1

N σN , then the sliding mode conditions are satisfied if the control is
selected as

sign (uj(Si)) = −sign(σsj), −1 ≤ ueq ≤ 1 . (31)

This line of reasoning with some variations has been the most popular in
designing the sliding mode based switching pattern [4],[7].

Another solution implicitly applied in most of the so-called space vector
PWM algorithms is based on the simple idea [5] using transformation

uabc = rank(Adq
αβAαβ

abc)
T udq

to the (a, b, c) reference frame. Then components ua, ub and uc of u = AMssw

are selected according to the following rule

Si =

 sign(ua(Si)) = sign(udcosθr − uqsinθr)
sign(ub(Si)) = sign(udcos(θr − 2π/3) − uqsin(θr − 2π/3))
sign(ub(Si)) = sign(udcos(θr − 4π/3) − uqsin(θr − 4π/3))

i = (1, 2, ..., 8, 9) . (32)

This idea is analysed in details in [7]. Further simplification of this algorithm
leads to its implementation using a look-up table [19].In [24] and [25] the so-
called space vector PWM based on the sliding mode approach is discussed.
The solution is based on the expression (32) but it is realized using space
sectors.

In the application of above algorithms switching is realized using hystere-
sis which, as follows from (28) directly determine the current ripple to be
equal to the half of the hysteresis width. For the given current ripple (con-
stant hysteresis width) the time between two switching for each component
is directly proportional to [ueqj − udqj ], (j = d, q), (i = 1, ...9). A new class
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of the switching algorithms based on the simple requirement that control
should be selected to give the minimum rate of change of control error could
be designed for which the same error will be achieved with less switching
effort. The algorithm can be formulated in the following form [3]

Si =

min ‖ ueq(t) − uj(Si) ‖
sign ([ueqd − ud(Si)] • σd(t)) = −1
sign ([ueqq − uq(Si)] • σq(t)) = −1

, i = (1, 2, ..., 8, 9) . (33)

The difference in behaviour for algorithm (32) and (33) is depicted in Fig. 7,
where the steady state operation of buck inverter current control is shown.
The operating point for both algorithms is the same and the width of hys-
teresis is also kept the same. The difference in the switching frequency of the
voltage is easily detectable.

All of the above algorithms naturally include so-called over-modulation
functionality. This can be seen in the diagrams depicted in Fig. 8. For al-
gorithm (33) behaviour of an induction machine (P=4kVA, p=2, U=220 V)
current control loop is depicted. (α, β) currents and control are shown in
Fig. 8.a. for a loaded machine and wref=50p [rad/s]. Note that switching
is regular between the two closest vectors and zero vector. In Fig. 8.b. the
current vector is depicted for wref = 95π [rad/s]. For this condition the slid-
ing mode existence conditions are violated in certain regions of the plane.
In Fig. 8.c. the current vector is depicted for wref = 100π [rad/s]. For this
condition the sliding mode existence conditions cannot be satisfied and the
system operates under a six-step mode.

Due to the specifics of three-phase balanced systems the number of inde-
pendent controls for the switching matrix is higher than the dimension of the
controlled current vector This is the basic reason that three-phase PWM, un-
der many different names, is still attractive as a research topic. The solution
proposed in [15] shows that the formalization of the minimization of TDF in

Fig. 7. The steady state operation
of buck inverter current control for
switching algorithms (32) - lower
trace and (33) - upper trace.

Fig. 8. Change of the current and control
vectors in (α, β) frame of references.
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the above framework has lead to a solution that is far better in comparison
with other so-called space vector approaches [16].

In the sliding mode dynamics of current the control loop is reduced to
σT = [iref (t)−i]T = 0 or iref

d (t) = id and iref
q (t) = iq with equivalent control

being determined as B−1
udq [diref/dt − f idq] = ueq. In order to complete the

design of converters and electrical machines the reference currents shall be
determined.

Voltage and mechanical motion control system design. For buck con-
verters and electrical machines with reference currents interpreted as virtual
control inputs the description could be easily transformed to the following
form

dx

dt
= fx(x) + Bi(x)iref , (34)

where vector xT = [x1 x2] represent either the vector of output voltage (for
converters) or the vector with velocity and position (for electrical machines).

For the buck inverter both components of the reference current could be
determined from the specification of the voltage loop, but for buck rectifiers
only the d-component of the source current can be determined from the
voltage loop specification. The q-component of the source current does not
influence the output voltage and thus represent current circulating between
supply sources and creating reactive power flow from sources. The same is
directly applicable for a DC machine supplied by the three-phase rectifier.

Since all machines have the same structure of mechanical subsystem the
results obtained for DC machines may be directly applicable to AC machines
thus giving a way of determining one component of the current vector. The
other component of the current vector should be determined from the require-
ment of the magnetic circuits of the machine and is specific for each type of
the machine. For PM and induction three-phase machines the d-component
of the current defines the rotor flux so it should be selected taking rotor flux
behavior into consideration.

The requirements for converters and machines are presented in Table 6.
the selection of the components of the switching function vector is given along
with the expression for the reference current calculation. The reference cur-
rent is selected following the discrete time sliding mode control design and for
all systems under consideration it is iref

k = iref
k−1 − (GBT )−1((E +TD)σk −

σk−1); G = {∂σ/∂x} where T is the sampling interval. The realisation of
this control algorithm requires information on the sliding functions and the
plant gain matrix.

Consider the three-phase boost rectifier connected as a controllable cur-
rent source as shown in Fig. 9. Its role is to generate current flow so that
the energy source is loaded by active power or the reactive power of source
is zero Qs = 0 which gives iref

sq = 0. The d-component reference current
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Table 6. The selection of desired dynamics and control vector

Type Function σ Reference currents

Buck
rectifier

σd = vref
o − vo

σq = iref
qav − iqav usually iref

qav = 0

Dc machine
σd = Cθ∆θ +

d∆θ

dt
; ∆θ = θref − θ

σq = iref
qav − iqav usually iref

qav = 0

Buck
inverter

σd = vref
od − vod

σq = vref
oq − voq

i ref
k = iref

k−1 − (GBT )−1

( (E + TD)σk − σk−1);

G = {∂σ/∂x}

PM
synchronous
machine

σd = iref
dav − idav usually iref

dav = 0

σq = Cθ∆θ +
d∆θ

dt
; ∆θ = θref − θ

iref
dq = [iref

d iref
q ]T

σref
dq = [σd σq]

T

Induction
machine

σd = σφ(φ, φref ) = ∆φ;

∆φ = φref − φ

σq = Cθ∆θ +
d∆θ

dt
; ∆θ = θref − θ

Boost
rectifier

σd = µ
(
(vref

o )2 − (vo)
2
)

σq = iref
qav − iqav usually iref

qav = 0

shall be determined from the capacitance voltage. It is easy to show that
(C/2) (dv2od/dt) + v2od/R = Vgi

ref
d − vLiref

d which is the same as for the DC-
to-DC boost converter and all comments regarding the DC-to-DC boost con-
verter control are applicable.

The structure of the power converters and electrical machines system can
be presented as in Fig. 10. where the current control loop operates in sliding
mode with discontinuous control. The structure is the same as one shown
in Fig. 4. with additional details on the outer loop controller. The selected
structure is only one of the several possible solutions, other structures may
be derived by applying some other design procedures many of which are
developed in the framework of motion control systems. By doing so, essential
features of the sliding mode are preserved by current loop design.
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Fig. 9. Power flow in system when boost converter is used as an active power filter.

Fig. 10. Structure of the converters and electrical machine control system.

Application of the above algorithms requires information on currents and
voltages for converters and mechanical coordinates for electrical machines.
Usually measurement of electrical quantities is not considered demanding
so realization of the control algorithms in the case of switching converters
does not represent any problem. This may not be true for AC electrical
machines and especially for the induction machine. For these machines the
synchronous frame of references is determined by the rotor flux vector, which
is not accessible for measurement and should be derived using observer. Since
induction machine is a nonlinear system the observer design may not be so
straight forward a task. In the section 4 of this paper we will be discussing the
sliding mode based observers of induction machine rotor flux and velocity.

4 Induction machine observer

Design of a IM sensorless drives is still a challenge. The basic problem is speed
estimation especially at the low speed range and under light load conditions.
In this section the VSS approach to rotor flux and speed estimation of an
induction machine will be discussed.

The description of the machine in the (α, β) frame of references is

dΨ r

dt
= −BrΨ r +

RrLm

Lr
is; Br =

[
Rr

Lr
−ω

ω Rr

Lr

]
, (35)

dis

dt
=

1
σLs

(
Lm

Lr

(
−BrΨ r +

RrLm

Lr
is

)
−Rsis + us

)
. (36)
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Formally it is possible to design a stator current observer based on voltage
and current measurements and with a rotor flux vector derivative as the
control input:

dîs

dt
=

1
σLs

(
−Lm

Lr
uΨ −Rsîs + us

)
. (37)

This selection of the observer control input is different from the usually used
current error feedback (well known Gopinath’s method), application of slid-
ing mode control based on current feedback [17], or selecting the unknown
velocity as the control input [18],[4],[26].

The estimation error is determined as

dεi

dt = d(is−îs)
dt = 1

σLs

(
Lm

Lr

((
−BrΨ r + RrLm

Lr
is

)
+ uΨ

)
−Rsεi

)
(38)

If the sliding mode exists then from dεi/dt = 0, and εi = 0. Under the
assumption that the angular velocity is known, from (38) one can find

Ψ̂ r = B−1
r

(
uΨeq − RrLm

Lr
is

)
. (39)

In the observer design suitable for the sensorless drive, the observer control
input should be a known function of the motor speed so that, after establish-
ing sliding mode in current tracking loop, the speed can be determined as a
unique solution. This leads to the following selection of the structure of the
stator current observer

dîs

dt
=

1
σLs

(
Lm

Lr

(
−uφ +

RrLm

Lr
îs

)
−Rsîs + us

)
(40)

and the estimation error becomes:

dεi

dt
=
d(is − îs)

dt
=

1
σLs

(
Lm

Lr
(−BrΨ r + uφ) −

(
Rs +

RrL
2
m

L2
r

)
εi

)
(41)

Algorithm (18) could be used to calculate the control uφk = uφk−1 +
+(σLsLr/LmT )((1 + ρT )εik − εik−1) with εi = [εiα εiβ ]. From dεi/dt = 0
the equivalent control is determined as uφeq = BrΨ r. The rotor flux observer
could be selected as having the same structure as (35) with the additional
convergence term f whose structure will be explained later

dΨ̂ r

dt
= −uφ +

RrLm

Lr
îs + f . (42)

Now flux estimation error can be calculated as:

dεΨ

dt
=
d(Ψ r − Ψ̂ r)

dt
= −BrΨ r + uφ +

RrLm

Lr
is − f . (43)
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To ensure convergence f could be selected in the following form:

f = kε̂Ψ , (44)

where[
ε̄Ψα

ε̄Ψβ

]
=
[
Ψ̂α −Ψ̂β

Ψ̂β Ψ̂α

] [
µ
η

]
, µ =

∆x̂r x̂r +∆ω̂ ω
ω̂2 + x̂2

r

, η =
∆x̂r ω̂ −∆ω̂ x̂r

ω̂2 + x̂2
r

,

and[
ω̂
x̂r

]
=

1
‖ Ψ̂r ‖2

[
Ψ̂β −Ψ̂α

Ψ̂α Ψ̂β

] [
uφα

uφβ

]
, (45)

[
∆ω̂
∆x̂r

]
=
σmLsLr

LmT

[
Ψ̂α −Ψ̂β

Ψ̂β Ψ̂α

](
ρεi +

dεi
dt

)
. (46)

If the sliding mode in the current control loop (41) exists and both ∆ω̂ =
0 and ∆x̂r = 0, then µ = 0 and η = 0 and consequently ε̂Ψ = 0. The
convergence of the observer is easier to analyse by projecting errors in the
(d, q) frame of references as given by (47)[

ed
eq

]
=
[
Ψ̂α −Ψ̂β

Ψ̂β Ψ̂α

] [
εΨα

εΨβ

]
. (47)

After some algebra one can find[ ded

dt
deq

dt

]
= −

[ −k Te + ω̂
Te − ω̂ −k

] [
ed
eq

]
+ k ‖ Ψ ‖

[
µ
η

]
. (48)

The design parameter k could be selected from (48) so that the estimated
rotor flux tends to its real value. Te denotes the electromagnetic torque of
the machine.

5 Neural network application in sliding mode systems

As an example of the application of the above ideas in this section a neu-
ral network controller for the induction machine will be discussed [21]. The
procedure below is valid for all converters and electrical machines since all of
them could be presented in the form (34). The structure of the system with
a neural network controller is depicted in Fig. 11. For system (34) and the
sliding mode manifold selected as given in Table 6. The equivalent control
could be determined as iref

eq = −(GBi)−1(Gfx). In the system of Fig. 11 the
neural network is used to determine the unknown part of equivalent control
in the system. The control input could be expressed as

iref = −(GBi)−1(GN(x, t)) − (GBi)−1Dσ , (49)
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Fig. 11. The structure of the control system.

where GN(x, t) is the output of the neural network. This control input gives
the time derivative of the Lyapunov function candidate V = σT σ/2 as [20]

dV

dt
= σT dσ

dt
= σT (G(fx − N(x, t))) − σT Dσ . (50)

The stability conditions will be satisfied if ‖ σT G(fx − N(x, t)) ‖<‖
σT Dσ ‖ holds, in other words if neural network is trained to make zero
the error function Z = G(f(x, t) − N(x, t)) = Dσ + σ̇. This means that
the neural network approximation error could be calculated from the sliding
mode function. An obvious selection of the role of the neural network is to
minimise

Γ =
1
2
ZT Z =

1
2
(Dσ + σ̇)T (Dσ + σ̇) (51)

thus to assure mapping GN → Gf . An important feature of the developed
scheme is that the approximation error is available on-line. It is important to
notice that the feedback controller assures the stability of the overall system.
Assume neural network model

yl
i = gl

i

 k∑
j=1

wl
ija

l
j + bli

 , gl
i(net

l
i) = tanh(netli) =

2
1 + e−2netl

i

− 1 ,

where al
j is the j-th input of the l-th layer, yl

i is the output of the i-th neuron
in the l-th layer, wl

ij is the weight connecting the j-th input and the i-th
neuron in the l-th layer and bli is the bias of the i-th neuron in the l-th layer
of the neural network. Learning proceeds using a gradient descent where η
denotes the learning rate ∆wl

ij = −η ∂E/∂wl
ij . For the output layer, denoted

by L, the following equations can be used:

∂Γ

∂yL−l
i

= G(fx − N(x))(−gm) , (52)

∆wL
ij = ηgm(Dσ + σ̇)gl(aL

i )yL
j . (53)
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Fig. 12. Experimental system. Fig. 13. The structure of the neural network.

Fig. 14. Desired values of position, ve-
locity and acceleration.

Fig. 15. Experimental results for per-
forming task presented in Fig. 14.

For the hidden layer a back-propagation learning algorithm as is used with
∆wl

ij = η δlj y
l
j .

The mechanism featured in Fig. 12 was used in the experiment [21]. A
hammer, mounted on the axis of the induction motor was used and a mass -
spring - damper load was added to show effects of coupling. The two layered
neural network used as an on-line estimator is featured in Fig. 13. ϕd is the
desired position and ωd is the desired velocity of the system. The system
task was to learn to perform the operation, described in Fig. 14. Movement
is performed using the so-called sin2 shaped acceleration. The results are
depicted in Fig. 15, and good tracking performance is obtained.

6 Conclusions

A unified approach to control system design for switching converters and
electrical machines is discussed. It has been shown that, due to the struc-
tural similarities, switching power converters and electrical machines could
be analysed in the same framework and the control system structure is the
same for both classes of the plant. The switching matrix plays the role of a
control element, introducing change in the structure of the system and, thus
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making design in the framework of variable structure systems and sliding
mode control a natural choice. Engineering methods rather than historical
overview of published results is presented. As an example of the possibility of
combining neural networks and VSS approaches the induction machine neu-
ral network controller is discussed. Due to the appropriate selection of the
system’s error the learning procedure has been determined so that it does not
require any measurements except those needed for the sliding mode function
calculation. This error signal has been used for the gradient descent algo-
rithm. Theoretical results have been confirmed by experiments on IM loaded
with a nonlinear load.

References

1. Utkin, V. I.,(1992) Sliding modes in control and optimization, Springer-Verlag.
2. Wood, P., (1981) Switching Power Converters, Van Nostrand Reinholh.
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