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Abstract

This paper presents the optimal regulator for a linear system with state delay and a quadratic

criterion. The optimal regulator equations are obtained using the maximum principle. Performance

of the obtained optimal regulator is verified in the illustrative example against the best linear

regulator available for linear systems without delays. Simulation graphs demonstrating better

performance of the obtained optimal regulator are included. The paper then presents a

robustification algorithm for the obtained optimal regulator based on integral sliding mode

compensation of disturbances. The general principles of the integral sliding mode compensator

design are modified to yield the basic control algorithm oriented to time-delay systems, which is then

applied to robustify the optimal regulator. As a result, the sliding mode compensating control leading

to suppression of the disturbances from the initial time moment is designed. The obtained robust

control algorithm is verified by simulations in the illustrative example.
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1. Introduction

Although the optimal control (regulator) problem for linear system states was solved in
1960s (see [1,2]), the optimal control problem for linear systems with delays is still open,
depending on the delay type, specific system equations, criterion, etc. A detailed comment
on the up-to-date state of the control theory for time-delay systems is given in [3–5].
Comprehensive reviews of theory and algorithms for time-delay systems can be found in
[6–15]. Among many other papers devoted to the general optimal control theory for
time-delay systems, the following five could be specially mentioned. The paper [16]
establishes the necessary optimality conditions for time-optimal control systems. In [17,18],
the linear-quadratic problem is solved for state-delay and state-and-input-delay systems,
respectively, where the optimal control is obtained in the form of the integral over the
previous system trajectory and depends on the system co-state satisfying a system of
partial differential equations. The papers [19,20] develop the generalized Riccati approach,
where the optimal control depends on the current system state and is determined by
the gain matrices satisfying a set of Riccati-type differential and partial differential
equations.

The first part of this paper concentrates on the solution of the optimal control problem
for a linear system with state delay and a quadratic criterion. Using the maximum principle
[21,22], the solution to the stated optimal control problem is obtained in a closed form,
i.e., it is represented as a linear in state control law, whose gain matrix satisfies an ordinary
differential (quasi-Riccati) equation, which does not contain time-advanced arguments
and does not depend on the state variables. The obtained optimal regulator makes an
advance with respect to general optimality results for time-delay systems (such as given in
[16–20]), since (a) the optimal control law is given explicitly and not as a solution of a
system of integro-differential or PDE equations, and (b) the quasi-Riccati equation for the
gain matrix does not contain any time advanced arguments and does not depend on the
state variables and, therefore, leads to a conventional two points boundary-valued
problem generated in the optimal control problems with quadratic criterion and finite
horizon (see, for example, [1]). Thus, the obtained optimal regulator is realizable using two
delay-differential equations. Taking into account that the state space of a delayed system is
infinite-dimensional [6], this seems to be a significant advantage.

Performance of the obtained optimal control for a linear system with state delay and a
quadratic criterion is verified in the illustrative example against the best linear regulators
available for the system without delay and the first-order approximation of the original
state-delay system. The simulation results show a definitive advantage of the obtained
optimal regulator in the criterion value.

The second part of the paper presents an integral sliding mode regulator robustifying the
optimal regulator for linear systems with state delay and a quadratic criterion. The idea is
to add a compensator to the known optimal control to suppress external disturbances
deteriorating the optimal system behavior [23,24]. The integral sliding mode compensator
is realized as a relay control in a such way that the sliding mode motion starts from the
initial moment, thus eliminating the matched uncertainties from the beginning of system
functioning. This constitutes the crucial advantage of the integral sliding modes in
comparison to the conventional ones. Note that in the framework of this modified (with
respect to [3,23]) integral sliding mode approach, the optimal control is not required to be
differentiable and the sliding mode manifold matrix is always invertible. Other original
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modifications of the sliding mode control technique applicable to disturbance suppression
were suggested in [25,26].
The proposed solution to the optimal control problem for linear state-delay system

assumes that the system state is completely measured. Nonetheless, the obtained result can
be readily extended to the case of unmeasured system state, using the optimal filter for
linear state-delay systems [27] and applying the separation principle substantiated for
linear time-delay systems in [28].
The paper is organized as follows. Section 2 states the optimal control problem for a

linear system with state delay. The solution to the optimal control problem is given in
Section 3. The proof of the obtained results, based on the maximum principle [21,22], is
given in Appendix. The paper then presents a robustification algorithm for the obtained
optimal regulator based on integral sliding mode compensation of disturbances [23].
Section 4 outlines the new general principles of the integral sliding mode compensator
design, which yield the basic control algorithm oriented to time-delay systems. This basic
algorithm is then applied to robustify the optimal regulator. As a result, the sliding mode
compensating control leading to suppression of the disturbances from the initial time
moment is designed. Section 5 presents an example illustrating the quality of control
provided by the obtained optimal regulator for linear systems with state delay against the
best linear regulators available for the system without delay and the first-order
approximation of the original state-delay system. Simulation graphs and comparison
tables demonstrating better performance of the obtained optimal regulator are included.
The example is then continued illustrating the quality of disturbance suppression provided
by the obtained robust integral sliding mode regulator against the optimal regulator under
the presence of disturbances. Satisfactory results are obtained.
2. Optimal control problem for linear state-delay system

Consider a linear system with time delay in the state

_xðtÞ ¼ a0ðtÞ þ aðtÞxðt� hÞ þ BðtÞuðtÞ, (1)

with the initial condition xðsÞ ¼ jðsÞ, s 2 ½t0 � h; t0�, where xðtÞ 2 Rn is the system state,
uðtÞ 2 Rm is the control variable, and jðsÞ is a piecewise continuous function given in the
interval ½t0 � h; t0�. Existence of the unique solution of Eq. (1) is thus assured by the
Carathéodory theorem (see, for example, [29]). The quadratic cost function to be
minimized is defined as follows:

J ¼
1

2
½xðTÞ�Tc½xðTÞ� þ

1

2

Z T

t0

uTðsÞRðsÞuðsÞdsþ
1

2

Z T

t0

xTðsÞLðsÞxðsÞds, (2)

where R is a positive definite symmetric matrix, c and L are nonnegative definite
symmetric matrices, and T4t0 is a certain time moment.
The optimal control problem is to find the control u�ðtÞ, t 2 ½t0;T �, that minimizes

the criterion J along with the trajectory x�ðtÞ, t 2 ½t0;T �, generated upon substituting
u�ðtÞ into the state equation (1). The solution to the stated optimal control problem
is given in the next section and then proved using the maximum principle [21,22]
in Appendix.
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3. Optimal control problem solution

The solution to the optimal control problem for the linear system with state delay (1)
and the quadratic criterion (2) is given as follows. The optimal control law is given by

u�ðtÞ ¼ ðRðtÞÞ�1BTðtÞQðtÞxðtÞ, (3)

where the matrix function QðtÞ satisfies the matrix equation

_QðtÞ ¼ LðtÞ �QðtÞM1ðtÞaðtÞ � aTðtÞMT
1 ðtÞQðtÞ �QðtÞBðtÞR�1ðtÞBTðtÞQðtÞ, (4)

with the terminal condition QðTÞ ¼ �c. The auxiliary matrix M1ðtÞ is defined as M1ðtÞ ¼

ðqxðt� hÞ=qxðtÞÞ, whose value is equal to zero, M1ðtÞ ¼ 0, if t 2 ½t0; t0 þ hÞ, and is
determined as M1ðtÞ ¼ F�1ðt; t� hÞ ¼ Fðt� h; tÞ ¼ expð�

R t

t�h
BðsÞR�1ðsÞBTðsÞQðsÞdsÞ, if

tXt0 þ h, where Fðt; tÞ satisfies the matrix equation

dFðt; tÞ
dt

¼ BðtÞR�1ðtÞBTðtÞQðtÞFðt; tÞ,

with the initial condition Fðt; tÞ ¼ I , and I is the identity matrix.
Upon substituting the optimal control (3) into the state equation (1), the optimally

controlled state equation is obtained

_xðtÞ ¼ a0ðtÞ þ aðtÞxðt� hÞ þ BðtÞR�1ðtÞBTðtÞQðtÞxðtÞ, (5)

with the initial condition xðsÞ ¼ jðsÞ, s 2 ½t0 � h; t0�.
The results obtained in this section by virtue of the duality principle are proved in

Appendix using the general equations of the Pontryagin maximum principle [21,22].
It should also be noted that the obtained optimal regulator makes an advance with

respect to general optimality results for time-delay systems (such as given in [16–20]), since
(a) the optimal control law is given explicitly and not as a solution of a system of integro-
differential or PDE equations, and (b) the quasi-Riccati equation (4) for the gain matrix
does not contain any time advanced arguments and does not depend on the state variables
and, therefore, leads to a conventional two points boundary-valued problem generated in
the optimal control problems with quadratic criterion and finite horizon (see, for example,
[1]). Thus, the obtained optimal regulator is realizable using two delay-differential
equations. Taking into account that the state space of a delayed system (1) is infinite-
dimensional [6], this seems to be a significant advantage.

4. Robust control problem

Consider a nominal control system with state delay, which for generality is assumed to
be nonlinear with respect to the state x,

_xðtÞ ¼ f ðxðt� hÞÞ þ BðtÞuðtÞ, (6)

where uðtÞ 2 Rm is the control input, the rank of matrix BðtÞ is complete and equal to m for
any t40, and the pseudoinverse matrix of B is uniformly bounded:

kBþðtÞkpbþ; bþ ¼ const40; BþðtÞ :¼ ½BTðtÞBðtÞ��1BTðtÞ; and BþðtÞBðtÞ ¼ I ,

where I is the m-dimensional identity matrix.
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Suppose that there exists a state feedback control law u0ðxðtÞ; tÞ, such that the dynamics
of the nominal closed loop system takes the form

_x0ðtÞ ¼ f ðx0ðt� hÞÞ þ BðtÞu0ðx0ðtÞ; tÞ, (7)

and has certain desired properties. However, in practical applications, system (6) operates
under uncertainty conditions that may be generated by parameter variations and external
disturbances. Let us consider the real trajectory of the disturbed closed loop control system

_xðtÞ ¼ f ðxðt� hÞÞ þ BðtÞuðtÞ þ g1ðxðtÞ; tÞ þ g2ðxðt� hÞ; tÞ, (8)

where g1; g2 are smooth uncertainties presenting perturbations and nonlinearities in the
system (6). For g1; g2, the standard matching and conditions are assumed to be held:
g1; g2 2 spanB, or, in other words, there exist smooth functions g1; g2 such that

g1ðxðtÞ; tÞ ¼ BðtÞg1ðxðtÞ; tÞ,

g2ðxðt� hÞ; tÞ ¼ BðtÞg2ðxðt� hÞ; tÞ,

kg1ðxðtÞ; tÞkpq1kxðtÞk þ p1; q1; p140,

kg2ðxðt� hÞ; tÞkpq2kxðt� hÞk þ p2; q2; p240.

The last two conditions provide reasonable restrictions on the growth of the uncertainties.
The following initial conditions are assumed for system (6)

xðyÞ ¼ jðyÞ, (9)

where jðyÞ is a piecewise continuous function given in the interval ½t0 � h; t0�.
Thus, the control problem now consists in robustification of control design in system (7)

with respect to uncertainties g1; g2: to find such a control law that the trajectories of system
(8) with initial conditions (9) coincide with the trajectories x0ðtÞ with the same initial
conditions (9). The integral sliding mode technique [3,23,24], enabling one to follow the
sliding mode manifold from the initial time moment, is first developed for the general
nonlinear state-delay system and then specified for the original linear state-delay system (1)
in the next two subsections.
4.1. Design principles

Let us redesign the control law for system (6) in the form

uðtÞ ¼ u0ðxðtÞ; tÞ þ u1ðtÞ, (10)

where u0ðxðtÞ; tÞ is the ideal feedback control designed for (6), and u1ðtÞ 2 Rm is the relay
control generating the integral sliding mode in some auxiliary space to reject uncertainties
g1; g2: Substitution of the control law (10) into the system (6) yields

_xðtÞ ¼ f ðxðt� hÞÞ þ BðtÞu0ðxðtÞ; tÞ þ BðtÞu1ðtÞ þ g1ðxðtÞ; tÞ þ g2ðxðt� hÞ; tÞ. (11)

Define the auxiliary function

sðtÞ ¼ zðtÞ þ s0ðxðtÞ; tÞ, (12)
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where s0ðxðtÞ; tÞ ¼ BþðtÞxðtÞ, and zðtÞ is an auxiliary variable defined below. Then,

_sðtÞ ¼ _zðtÞ þ GðtÞ½f ðxðtÞÞ þ BðtÞu0ðxðtÞ; tÞ

þ Bðg1ðxðtÞ; tÞÞ þ g2ðxðt� hÞ; tÞ þ BðtÞu1ðtÞ� þ ðqs0ðxðtÞ; tÞ=qtÞ, ð13Þ

GðtÞ ¼ qs0ðxðtÞ; tÞ=qx ¼ BþðtÞ and qs0ðxðtÞ; tÞ=qt ¼ ðdðBþðtÞÞ=dtÞxðtÞ. Note that in the
framework of this modified (with respect to [3,23]) integral sliding mode approach, the
optimal control u0ðxðtÞÞ is not required to be differentiable and the sliding mode manifold
matrix GB ¼ BþB ¼ I is always invertible.

The philosophy of integral sliding mode control is the following: in order to achieve
xðtÞ ¼ x0ðtÞ at all t 2 ½t0;1Þ, the sliding mode should be organized on the surface sðtÞ ¼ 0,
since the following disturbance compensation should have been obtained in the sliding
mode motion

BþðtÞBðtÞu1eqðtÞ ¼ �BþðtÞBðtÞg1ðxðtÞ; tÞ � BþðtÞBðtÞg2ðxðt� hÞ; tÞ,

that is

u1eqðtÞ ¼ �g1ðxðtÞ; tÞ � g2ðxðt� hÞ; tÞ.

Note that the equivalent control u1eqðtÞ can be unambiguously determined from the last
equality and the initial condition for xðtÞ.

Define the auxiliary variable zðtÞ as the solution to the differential equation

_zðtÞ ¼ �BþðtÞ½f ðxðt� hÞÞ þ BðtÞu0ðxðtÞ; tÞ� þ ðdðB
þðtÞÞ=dtÞxðtÞ,

with the initial conditions zðt0Þ ¼ �s0ðt0Þ ¼ �Bþðt0Þjðt0Þ. Then, the sliding manifold
equation takes the form

_sðtÞ ¼ BþðtÞ½BðtÞðg1ðxðtÞ; tÞÞ þ g2ðxðt� hÞ; tÞ þ BðtÞu1ðtÞ�

¼ g1ðxðtÞ; tÞ þ g2ðxðt� hÞ; tÞ þ u1ðtÞ ¼ 0.

Finally, to realize sliding mode, the relay control is designed

u1ðtÞ ¼ �MðxðtÞ;xðt� hÞ; tÞsign½sðtÞ�, (14)

M ¼ qðkxðtÞk þ kxðt� hÞkÞ þ p,

q4q1; q2; p4p1 þ p2.
The convergence to and along the sliding mode manifold sðtÞ ¼ 0 is assured by the

Lyapunov function V ðtÞ ¼ sTðtÞsðtÞ=2 for the system (11) with the control input u1ðtÞ of
Eq. (14):

_V ðtÞ ¼ sTðtÞ½g1ðxðtÞ; tÞ þ g2ðxðt� hÞ; tÞ þ u1ðtÞ�

p� jsðtÞjð½qðkxðtÞk þ kxðt� hÞkÞ þ p� þ ½g1ðxðtÞ; tÞ þ g2ðxðt� hÞ; tÞ�Þo0,

where jsðtÞj ¼
Pm

i¼1jsiðtÞj.
The next subsection presents the robustification of the designed optimal control (3). This

robust regulator is designed assigning the sliding mode manifold according to (12)–(13)
and subsequently moving to and along this manifold using relay control (14).
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4.2. Robust sliding mode control design for linear state-delay system

Returning to the original particular linear case, consider the disturbed linear state-delay
system (1), whose behavior is affected by uncertainties g1; g2 presenting perturbations and
nonlinearities in the system

_xðtÞ ¼ a0ðtÞ þ aðtÞxðt� hÞ þ BðtÞuðtÞ þ g1ðxðtÞ; tÞ þ g2ðxðt� hÞ; tÞ. (15)

It is also assumed that the uncertainties satisfy the standard matching and growth
conditions

g1ðxðtÞ; tÞ ¼ BðtÞg1ðxðtÞ; tÞ,

g2ðxðt� hÞ; tÞ ¼ BðtÞg2ðxðt� hÞ; tÞ,

kg1ðxðtÞ; tÞkpq1kxðtÞk þ p1; q1; p140,

kg2ðxðt� hÞ; tÞkpq2kxðt� hÞk; q2; p240.

The quadratic cost function (2) is the same as in Section 2.
The problem is to robustify the obtained optimal control (3), using the method specified

by (12)–(13). Define this new control in the form (10): uðtÞ ¼ u0ðxðtÞ; tÞ þ u1ðtÞ, where the
optimal control u0ðxðtÞ; tÞ coincides with Eq. (3) and the robustifying component u1ðtÞ is
obtained according to Eq. (14)

u1ðtÞ ¼ �MðxðtÞ; xðt� hÞ; tÞsign½sðtÞ�,

M ¼ qðkxðtÞk þ kxðt� hÞkÞ þ p,

q4q1; q2; p4p1 þ p2. Consequently, the sliding mode manifold function sðtÞ is defined as

sðtÞ ¼ zðtÞ þ s0ðxðtÞ; tÞ, (16)

where

s0ðxðtÞ; tÞ ¼ BþðtÞxðtÞ, (17)

and the auxiliary variable zðtÞ satisfies the delay-differential equation

_zðtÞ ¼ �BþðtÞ½a0ðtÞ þ aðtÞxðt� hÞ þ BðtÞu0ðxðtÞ; tÞ�, (18)

with the initial conditions zðt0Þ ¼ �Bþðt0Þjðt0Þ.
5. Example

This section presents an example of designing the optimal regulator for a system (1) with
a criterion (2), using the scheme (3)–(5), and comparing it to the regulator where the matrix
Q is selected as in the optimal linear regulator for a system without delays, disturbing the
obtained regulator by a noise, and designing a robust sliding mode compensator for that
disturbance, using the scheme (16)–(18).
Consider a scalar linear system

_xðtÞ ¼ 10xðt� 0:25Þ þ uðtÞ, (19)
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with the initial conditions xðsÞ ¼ 1 for s 2 ½�0:1; 0�. The control problem is to find the
control uðtÞ, t 2 ½0;T �, T ¼ 0:5, that minimizes the criterion

J ¼
1

2

Z T

0

u2ðtÞdtþ

Z T

0

x2ðtÞdt

� �
. (20)

In other words, the control problem is to minimize the overall energy of the state x using
the minimal overall energy of control u. Since the initial criterion value is zero, the
criterion is quadratic, and the state initial condition is positive, the criterion value
would necessarily increase: in the part of the state, if the control is small, or in the part of
control, if the control is large. Thus, it is required to find such a balanced value of the
control input that the total system energy, i.e., state energy plus control one, would
increase in the interval ½0;T � as minimally as possible. Note that it is not assumed to
maintain the state at a given point, such as x ¼ 0; both, the state and absolute control
values, are permitted to increase while keeping the total system energy at the minimal
possible level.

Let us first construct the regulator where the control law and the matrix QðtÞ are
calculated in the same manner as for the optimal linear regulator for a linear system
without delays, that is uðtÞ ¼ R�1ðtÞBTðtÞQðtÞxðtÞ (see Ref. [1]). Since BðtÞ ¼ 1 in Eq. (19)
and RðtÞ ¼ 1 in Eq. (20), the optimal control is actually equal to

uðtÞ ¼ QðtÞxðtÞ, (21)

where QðtÞ satisfies the Riccati equation

_QðtÞ ¼ �aTðtÞQðtÞ �QðtÞaðtÞ þ LðtÞ �QðtÞBðtÞR�1ðtÞBTðtÞQðtÞ,

with the terminal condition QðTÞ ¼ �c. Since aðtÞ ¼ 10, BðtÞ ¼ 1 in Eq. (19), and LðtÞ ¼ 1
and c ¼ 0 in Eq. (20), the last equation turns to

_QðtÞ ¼ 1� 20QðtÞ �Q2ðtÞ; Qð0:5Þ ¼ 0. (22)

Upon substituting the control (21) into Eq. (19), the controlled system takes the form

_xðtÞ ¼ 10xðt� 0:25Þ þQðtÞxðtÞ. (23)

The results of applying the regulator (21)–(23) to the system (19) are shown in Fig. 1,
which presents the graphs of the criterion (20) JðtÞ and the control (21) uðtÞ in the interval
½0;T �. The value of criterion (20) at the final moment T ¼ 0:5 is Jð0:5Þ ¼ 15:94.

Let us now apply the optimal regulator (3)–(5) for linear states with time delay to the
system (19). The control law (3) takes the same form as Eq. (21)

u�ðtÞ ¼ Q�ðtÞxðtÞ, (24)

where Q�ðtÞ satisfies the equation

_Q
�
ðtÞ ¼ 1� 20Q�ðtÞM1ðtÞ �Q�2ðtÞ; Q�ð0:5Þ ¼ 0, (25)

where M1ðtÞ ¼ 0 for t 2 ½0; 0:25Þ and M1ðtÞ ¼ expð�
R t

t�0:25 Q�ðsÞdsÞ for t 2 ½0:25; 0:5�.
Since the solution Q�ðtÞ of Eq. (25) is not smooth, it has been numerically solved with the
approximating terminal condition Q�ð0:5Þ ¼ 0:04, in order to avoid chattering.

Upon substituting the control (24) into Eq. (19), the optimally controlled system takes
the same form as Eq. (23)

_xðtÞ ¼ 10xðt� 0:25Þ þQ�ðtÞxðtÞ. (26)
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Fig. 1. Best linear regulator available for linear systems without state delay. Graphs of the criterion (20) JðtÞ and

the control (21) uðtÞ in the interval ½0; 0:5�.
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The results of applying the regulator (24)–(26) to the system (19) are shown in Fig. 2,
which presents the graphs of the criterion (20) JðtÞ and the control (24) u�ðtÞ in the interval
½0;T �. The value of the criterion (20) at the final moment T ¼ 0:5 is Jð0:5Þ ¼ 4:63. There is
a definitive improvement (three and half times) in the values of the criterion to be
minimized in comparison to the preceding case, due to the optimality of the regulator
(3)–(5) for linear states with time delay.
Let us also compare the optimal regulator (3)–(5) to the best linear regulators based on

linear approximation of the original time-delay system (19). The input-state transfer
function of Eq. (19), GðsÞ ¼ ðs� 10 expð�shÞÞ�1, h ¼ 0:25, is approximated by a rational
function up to the first order of h: G�1ðsÞ ¼ sð1þ 10hÞ � 10þOðh2

Þ (h ¼ 0:25)

_xðtÞ ¼ ð20=7ÞxðtÞ þ ð2=7ÞuðtÞ, (27)

with the initial condition xð0Þ ¼ 1. The control law is calculated as the optimal control for
the linear system without delays (27):

u1ðtÞ ¼ ð2=7ÞQ1ðtÞxðtÞ, (28)
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Fig. 2. Optimal regulator obtained for linear systems with state delay. Graphs of the criterion (20) JðtÞ, and the

optimal control (24) u�ðtÞ in the interval ½0; 0:5�.
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and Q1ðtÞ satisfies the Riccati equation

_Q1ðtÞ ¼ 1� ð40=7ÞQ1ðtÞ � ð2=7Þ
2Q2

1ðtÞ, (29)

with the terminal condition Q1ð0:5Þ ¼ 0. The control (28) is then substituted into the
original time-delay system (19).

The results of applying the regulator (27)–(29) to the system (19) are shown in Fig. 3,
which presents the graphs of the criterion (20) JðtÞ and the control (28) u1ðtÞ in the interval
½0;T �. The value of the criterion (20) at the final moment T ¼ 0:5 is Jð0:5Þ ¼ 9:77. Thus,
the simulation results show that application of the regulator (27)–(29), based on the first-
order approximation, yields still unsatisfactory values of the cost function in comparison
to the optimal regulator (24)–(26).

The next task is to introduce a disturbance into the controlled system (26). This
deterministic disturbance is realized as a constant: gðtÞ ¼ 100. The matching conditions are
valid, because state xðtÞ and control uðtÞ have the same dimension: dimðxÞ ¼ dimðuÞ ¼ 1.
The restrictions on the disturbance growth hold with q1 ¼ q2 ¼ p2 ¼ 0 and p1 ¼ 100, since
kgðtÞk ¼ 100. The disturbed system equation (26) takes the form

_xðtÞ ¼ 100þ 10xðt� 0:25Þ þQ�ðtÞxðtÞ. (30)
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Fig. 3. Best linear regulator based on the first-order approximation of the transfer function of the original time-

delay system. Graphs of the criterion (20) JðtÞ, and the control (28) u1ðtÞ in the interval ½0; 0:5�.
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The system state behavior significantly deteriorates upon introducing the disturbance.
Fig. 4 presents the graphs of the criterion (20) JðtÞ and the control (24) uðtÞ in the interval
½0;T �. The value of the criterion (20) at the final moment T ¼ 0:5 is Jð0:5Þ ¼ 398:68. The
deterioration of the criterion value in comparison to that obtained using the optimal
regulator (24) is more than 80 times.
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Fig. 4. Controlled system in the presence of disturbance. Graphs of the criterion (20) JðtÞ and the control (24) uðtÞ

in the interval ½0; 0:5�.
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Let us finally design the robust integral sliding mode control compensating for the
introduced disturbance. The new controlled state equation should be

_xðtÞ ¼ 100þ 10xðt� 0:25Þ þQ�ðtÞxðtÞ þ u1ðtÞ, (31)

where the compensator u1ðtÞ is obtained according to Eq. (14)

u1ðtÞ ¼ �MðxðtÞ;xðt� hÞ; tÞsign½sðtÞ�, (32)

and M ¼ 100:44p1 ¼ 100. The sliding mode manifold sðtÞ is defined by Eq. (21)

sðtÞ ¼ zðtÞ þ s0ðxðtÞ; tÞ,

where

s0ðxðtÞ; tÞ ¼ BþðtÞxðtÞ ¼ xðtÞ,

and the auxiliary variable zðtÞ satisfies the delay-differential equation

_zðtÞ ¼ �BþðtÞ½10xðt� 0:25Þ þ u0ðtÞ� ¼ �½10xðt� 0:25Þ þQ�ðtÞxðtÞ�,

with the initial conditions zð0Þ ¼ �xð0Þ ¼ �1.
Upon introducing the compensator (32) into the state equation (31), the system state

behavior is much improved. Fig. 5 presents the graphs of the criterion (20) JðtÞ and the
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Fig. 5. Controlled system after applying robust integral sliding mode compensator. Graphs of the criterion (20)

JðtÞ and the control (24) uðtÞ in the interval ½0; 0:5�.
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control (24) uðtÞ, after applying the compensator (32), in the interval ½0;T �. The value of
the criterion (20) at the final moment T ¼ 0:5 is Jð0:5Þ ¼ 4:64. Thus, the criterion value
after applying the compensator (32) is only slightly different from the criterion value given
by the optimal regulator (24)–(26) for linear state-delay systems.
6. Conclusions

The optimal regulator for linear system with state delay and a quadratic cost function
has been designed in a closed form. It is represented as a real-time feedback control whose
gain matrix satisfies a quasi-Riccati equation without time advanced arguments, which
provides a significant advantage with respect to previously obtained results in the area of
optimal control for time-delay systems. A robustifying control for the obtained optimal
regulator has then been designed based on the integral sliding mode technique. The
integral sliding mode compensator is realized as a relay control in a such way that the
sliding mode motion starts from the initial moment, thus eliminating the matched
uncertainties from the beginning of system functioning. This constitutes the crucial
advantage of the integral sliding modes in comparison to the conventional ones.
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Performance of the optimal regulator for linear systems with state delay has been
verified in the illustrative example against the best linear regulators available for the system
without delay and the first-order approximation of the original state-delay system. The
simulation results show a definitive improvement in the values of the criterion in favor of
the designed regulator. Subsequent introduction of disturbances significantly affects
system behavior in the example: the criterion value to be minimized increases more than 80
times. However, upon applying the robust integral sliding mode compensator, the system
behavior is much improved: the criterion value after applying the compensator is
insignificantly different from the criterion value given by the optimal regulator. Thus, it
can be concluded that the designed optimal regulator and robust integral sliding mode
compensator provide together the optimal control technique for linear state-delay systems,
which is also resistible to influence of external disturbances.

Appendix
Proof of the optimal control problem solution. Define the Hamiltonian function [21,22] for
the optimal control problem (1), (2) as

Hðx; u; q; tÞ ¼ 1
2
ðuTRðtÞuþ xTLðtÞxÞ þ qT½a0ðtÞ þ aðtÞx1 þ BðtÞu�, (33)

where x1ðxÞ ¼ xðt� hÞ. Applying the maximum principle condition qH=qu ¼ 0 to this
specific Hamiltonian function (33) yields

qH=qu ¼ 0 ) RðtÞuðtÞ þ BTðtÞqðtÞ ¼ 0,

and the optimal control law is obtained as

u�ðtÞ ¼ �R�1ðtÞBTðtÞqðtÞ.

Taking linearity and causality of the problem into account, let us seek qðtÞ as a linear
function in xðtÞ

qðtÞ ¼ �QðtÞxðtÞ, (34)

where QðtÞ is a square symmetric matrix of dimension n. This yields the complete form of
the optimal control

u�ðtÞ ¼ R�1ðtÞBTðtÞQðtÞxðtÞ. (35)

Note that the transversality condition [21,22] for qðTÞ implies that qðTÞ ¼ qJ=qxðTÞ ¼

cxðTÞ and, therefore, QðTÞ ¼ �c.
Using the co-state equation dqðtÞ=dt ¼ �qH=qx and denoting ðqx1ðtÞ=qxÞ ¼M1ðtÞ yields

�dqðtÞ=dt ¼ LðtÞxðtÞ þ aTðtÞMT
1 ðtÞqðtÞ, (36)

and substituting Eq. (34) into Eq. (36), we obtain

_QðtÞxðtÞ þQðtÞdðxðtÞÞ=dt ¼ LðtÞxðtÞ � aTðtÞMT
1 ðtÞQðtÞxðtÞ. (37)

Substituting the expression for _xðtÞ from the state equation (1) into Eq. (37) yields

_QðtÞxðtÞ þQðtÞaðtÞxðt� hÞ þQðtÞBðtÞuðtÞ ¼ LðtÞxðtÞ � aTðtÞMT
1 ðtÞQðtÞxðtÞ. (38)

In view of linearity of the problem, differentiating the last expression in x does not imply
loss of generality. Upon substituting the optimal control law (35) into Eq. (38), taking into
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account that ðqxðt� hÞ=qxðtÞÞ ¼M1ðtÞ, and differentiating Eq. (38) in x, it is transformed
into the quasi-Riccati equation

_QðtÞ ¼ LðtÞ �QðtÞM1ðtÞaðtÞ � aTðtÞMT
1 ðtÞQðtÞ �QðtÞBðtÞR�1ðtÞBTðtÞQðtÞ (39)

with the terminal condition QðTÞ ¼ �c.
Let us now obtain the value of M1ðtÞ. By definition, M1ðtÞ ¼ ðqxðt� hÞ=qxðtÞÞ.

Substituting the optimal control law (35) into Eq. (1) gives

_xðtÞ ¼ a0ðtÞ þ aðtÞxðt� hÞ þ BðtÞR�1ðtÞBTðtÞQðtÞxðtÞ, (40)

with the initial condition xðsÞ ¼ fðsÞ, s 2 ½t0 � h; t0�. Integrating Eq. (40) yields

xðt0 þ hÞ ¼ xðt0Þ þ

Z t0þh

t0

ða0ðsÞ þ aðsÞxðs� hÞÞds

þ

Z t0þh

t0

BðsÞR�1ðsÞBTðsÞQðsÞxðsÞds. ð41Þ

Analysis of the formula (41) shows that xðtÞ does not depend on xðt� hÞ, if t 2 ½t0; t0 þ hÞ.
Therefore, M1ðtÞ ¼ 0 for t 2 ½t0; t0 þ hÞ. On the other hand, if tXt0 þ h, the following
Cauchy formula is valid for the solution xðtÞ of Eq. (40)

xðtÞ ¼ Fðt; t� hÞxðt� hÞ þ

Z t

t�h

Fðt; sÞða0ðsÞ þ aðsÞxðs� hÞÞds, (42)

where Fðt; tÞ satisfies the matrix equation

dFðt; tÞ
dt

¼ BðtÞR�1ðtÞBTðtÞQðtÞFðt; tÞ,

with the initial condition Fðt; tÞ ¼ I , and I is the identity matrix. Expression (39)
immediately implies that M1ðtÞ ¼ F�1ðt; t� hÞ ¼ Fðt� h; tÞ ¼ expð�

R t

t�h
BðsÞR�1ðsÞBTðsÞ

QðsÞdsÞ for tXt0 þ h. The optimal control problem solution is proved. &
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