
OPTIMAL CONTROL APPLICATIONS AND METHODS
Optim. Control Appl. Meth. 2007; 28:289–300
Published online 12 April 2007 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/oca.805

Numerical method for weights adjustment in minimax
multi-model LQ-control

Alexander Poznyak1, Francisco Javier Bejarano1,∗,† and Leonid Fridman2
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SUMMARY

The minimax linear quadratic problem, where ‘max’ is taken over a finite set of indices (models) and ‘min’
is taken over the set of admissible controls, is considered. The solution is obtained by the robust optimal
control application. The control turns out to be a linear combination of the controls optimal for each
individual model. This paper develops a numerical method for the optimal weights adjustment. An example
shows a quick convergence of the proposed procedure. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Dealing with designing of control for some uncertain systems, there exist situations when the
model of the system cannot be defined exactly since the more adequate model can depend on
several possible scenarios. In this case, the control can be designed as a multi-model control (see,
e.g. [1–4]). To design such control, the minimax approach has been suggested (see [5, 6]) where
‘max’ is taken over all possible models (scenarios) and ‘min’ is taken over all admissible controls.
Evidently that such control does not depend on an individual model and serves simultaneously
for the set of possible scenarios. The minimax approach was generalized in [7, 8]. Specifically
the version of the robust maximum principle for a linear quadratic (LQ) problem was considered
in details. The minimax problem was considered in the following aspect. One has N linear state
dynamics equations (ODE) each of them corresponding a possible model. The same control law
should be applied to all of them in such a way that the worst LQ-index would be minimal over
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all admissible controls. Such robust optimal control is shown to be a weighted combination of the
controls optimal for each individual model. Hence, the problem is reduced to a finite dimensional
optimization problem since this robust optimal control depends on a weighting vector belonging
to the N -dimensional simplex which should be selected providing a minimal value for the original
worst LQ-functional. Finding an analytical expression for this function as a function of the weights
seems to be very difficult task. In the simplest cases with two (N = 2) and three (N = 3) models
such expression can easily obtained in a graphic form using standard PC. However, for more
complex situations (N�4) such approach cannot be realized and any numerical procedure for the
corresponding weight adjustment (optimization) is welcomed.

In [9–11] was considered a similar (to the first glance) problem. But, in fact, it differs in
many aspects with the problem which we are dealing with. First, the dynamics, considered in the
references above, does not contain any exogenous input. Second, they considered only a single
plant with a multi-criterion cost functional. In our paper, we are dealing with a really multi-plant
(or multi-model dynamic system) but having the same criterion for each possible scenario. Evi-
dently, these two problems have a different philosophical treatment, but, sure, they may be attacked
by closed mathematical methods. The main difference between these two considerations consists in
the corresponding differential Riccati equations used in the min–max feedback realization: we deal
with different matrices Ai and Bi in the differential equation, governing the considered dynamics,
but with the same matrix R (the control-cost matrix); in the papers, cited above, the authors have
only a single matrix A and a single matrix B but several Ri . The corresponding weight dependence
in both cases is absolutely different since we have the right-hand side of the Riccati ODE which
is linearly dependent on weights, and in the cited papers this dependence is essentially nonlinear
that significantly complicates the analysis of the weight-adjustment procedure. Moreover, there is
no any convergence analysis of the suggested iterative weight-adjustment procedure in the papers
referred above (only [11] contains some brief scheme of the convergence analysis, but not a proof).

In this paper, we suggest a new numerical (iterative) method which provides a quick convergence
of the weighting vector to its optimal value. This numerical method practically makes workable
the realization of the robust optimal control suggested in [7, 8] and complements the results given
in [12–14].

1.1. Structure of the paper

In Section 2, the model description is presented and the purpose of the control law is formulated.
A preliminary result, needed for the following consideration, is given in Section 3. Then the
iterative numerical procedure is suggested. The convergence analysis of this numerical procedure
is given in Section 4. An example, illustrating a quick convergence of the method, is presented in
Section 5.

2. MOTIVATION AND PROBLEM STATEMENT

Let us consider a set of linear state models given by

ẋ�(t) = A�(t)x�(t) + B�(t)u(t) + d�(t), x�(0) = x�
0 (1)

where the index � belongs to a finite set, that is, � ∈ 1, N , (N is a positive integer), x�(t), d�(t) ∈
Rn , u(t) ∈ Rm and A�(t), B�(t), d�(t) are continuous functions on t ∈ [0, T ]. Let us define the
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performance index as

h� := 1

2
(x�(T ),G�x�(T )) + 1

2

∫ T

t=0
[(x�(t), Q�x�(t)) + (u(t), Ru(t))] dt (2)

where Q��0, G��0, R>0. The minimax LQ control problem was formulated in [8] as
max

�∈ 1,N
h� −→ min

u ∈ Rm
(3)

The solution of this problem, also given in [8], is as follows. Define the following extended system:

ẋ(t) =Ax(t) + Bu(x, t) + d

where

x :=

⎡
⎢⎢⎢⎢⎣
x1(t)

...

xN (t)

⎤
⎥⎥⎥⎥⎦ , A :=

⎡
⎢⎢⎢⎢⎢⎣

A1(t) 0 · · · 0

0
...

. . .

...

0

0 · · · 0 AN (t)

⎤
⎥⎥⎥⎥⎥⎦ , B :=

⎡
⎢⎢⎢⎢⎣

B1(t)

...

BN (t)

⎤
⎥⎥⎥⎥⎦ , d :=

⎡
⎢⎢⎢⎢⎣
d1(t)

...

dN (t)

⎤
⎥⎥⎥⎥⎦

Q :=

⎡
⎢⎢⎢⎢⎢⎣

Q1 0 · · · 0

0
...

. . .

...

0

0 · · · 0 QN

⎤
⎥⎥⎥⎥⎥⎦ , G :=

⎡
⎢⎢⎢⎢⎢⎣

G1 0 · · · 0

0
...

. . .

...

0

0 · · · 0 GN

⎤
⎥⎥⎥⎥⎥⎦ , K :=

⎡
⎢⎢⎢⎢⎢⎣

�1 In×n 0 · · · 0

0
...

. . .

...

0

0 · · · 0 �N In×n

⎤
⎥⎥⎥⎥⎥⎦

(4)

with � = (�1, . . . , �N ) ∈ SN

SN =
{
� ∈ RN : �i�0,

N∑
i=1

�i = 1

}

Then, the robust optimal control realizing (3) is of the form

u =−R−1BT(P�x + p�) (5)

where the matrix P� =PT
� ∈ RnN×nN is the solution of the parameterized differential matrix Riccati

equation:

Ṗ� + P�A + ATP� − P�BR
−1BTP� + KQ= 0, P�(T ) =KG (6)

and the shifting vector p� satisfies

ṗ� + ATp� − P�BR
−1BTp� + P�d= 0, p�(T ) = 0
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Thus, the solution of (3) is reduced to the finding of the optimal weighting vector �∗ which solves
the following finite dimensional optimization problem:

�∗ = arg min
�∈ SN

J (�) (7)

J (�) := max
�=1,N

h�

= 1

2
xT(0)P�(0)x(0) + xT(0)p�(0)

+ 1

2
max

�=1,N

[
x�T(T )G�x�(T ) +

∫ T

t=0
x�T(t)Q�x�(t) dt

]

− 1

2

N∑
�=1

�i

[
x�T(T )G�x�(T ) +

∫ T

t=0
x�T(t)Q�x�(t) dt

]

+ 1

2

∫ T

t=0
pT� [2d − BR−1BTp�] dt (8)

Thus, the goal of this paper is to develop a numerical method which allows to find the optimal
weighting vector �∗ for any finite number N of possible models (or, scenarios).

3. PRELIMINARY RESULTS

Lemma 1
Let �∗ be a minimum point, that is, J (�∗)�J (�) for all � ∈ SN . Then, for any active index � ∈ 1, N
such that 1��∗

�>0, the functional h�(�∗) satisfies the following equality:

h�(�∗) = J (�∗) (9)

and for all inactive indices � such that �∗
� = 0

h�(�∗)�J (�∗) (10)

Proof
If for some j ∈ 1, N we have h j (�∗)>J (�∗), then

J (�∗) = max
�∈ 1,N

h�(�∗)�h j (�∗)>J (�∗)

that leads to a contradiction. So, for all indices � it follows h�(�∗)�J (�∗). Result (9) for active
indices follows directly from the complementary slackness condition established in [8]. �
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Corollary 1
The optimal performance index J (�∗) can be represented as

J (�∗) = 1

2
xT(0)P�∗(0)x(0) + xT(0)p�∗(0) + 1

2

∫ T

t=0
pT�∗ [2d − BR−1BTp�∗ ] dt (11)

Proof
Adding and subtracting the integral of uT(t)Ru(t) in (8), we get

J (�) = 1

2
xT(0)P�(0)x(0) + xT(0)p�(0)

+
[
J (�) −

N∑
i=1

��h
�(�)

]
+ 1

2

∫ T

t=0
pT� [2d − BR−1BTp�] dt

Therefore, taking � = �∗, in view of Lemma 1, specifically (9), and since
∑N

�=1 �� = 1, we find
that J (�∗) = ∑N

i=1 �∗
�h

�(�∗). Hence the performance index J (�∗) is as in (11). �

Corollary 2
If the vector �∗ is a minimum point, then for any �>0

�∗ = �{�∗ + �F(�∗)} (12)

where �{·} is the projector to the simplex SN , that is,

‖�{x} − x‖<‖� − x‖ for any � ∈ SN , � �= �{x}
and F(�) ∈ RN is the vector whose i th term is the performance functional hi , i.e.

F(�) =

⎡
⎢⎢⎢⎢⎣
h1 (�)

...

hN (�)

⎤
⎥⎥⎥⎥⎦

Proof
Since SN is a closed convex set, the following property holds:

for any x ∈ Rn, �= �{x} ⇐⇒ (x − �, � − �)�0 for all � ∈ SN (13)

Let �∗
i j , j = 1, r be the components of �∗ different from zero and �∗

ik k = r + 1, N the components
of �∗ equal to zero. Thus, taking into account Lemma 1 and, since �ik −�∗

ik�0 (�∗
ik = 0), we obtain

(�∗ + �F(�∗) − �∗, � − �∗)

= �

[
J (�∗)

r∑
j=1

(�i j − �∗
i j ) +

N∑
k=r+1

hik (�∗)(�ik − �∗
ik )

]
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��J (�∗)
[

r∑
j=1

(�i j − �∗
i j ) +

N∑
k=r+1

(�ik − �∗
ik )

]
= �J (�∗)

N∑
j=1

(�i j − �∗
i j ) = 0 (14)

for all � ∈ SN . Thus, by (13), (14) implies �∗ = �{�∗ + �F(�∗)}. �

4. NUMERICAL PROCEDURE FOR THE WEIGHTS ADJUSTMENT

In [8], there was shown that the control u(x, t) designed as in (3) is the combination (where the
weights are the components ��) of the controls optimal for each individual model. Hence, it seems
to be clear that a bigger weight �� of the control, optimizing the �-model, implies a better (smaller)
performance index h�(�). This fact may be expressed in the following manner: if �′

� �= �′′
�

(�′
� − �′′

�)[h�(�′) − h�(�′′)]<0 (15)

for any �′ �= �′′ ∈ SN . Summing (15) on � ∈ 1, N leads to the following condition which we will
accept as the assumption.

Assumption 1
For any �′ �= �′′ ∈ SN , the following inequality holds:

(�′ − �′′, F(�′) − F(�′′))<0 (16)

and the identity in (16) is possible if and only if �′ = �′′.

Proposition 1
Under Assumption 1, the functional J (�) has a unique minimum point �∗.

Proof
We will show that if �̃ differs with �∗, then �̃ does not satisfy identity (12). If �̃ �= �∗, then (14)
implies

(�̃ + �F(�̃) − �̃, �∗ − �̃)

� �[(F(�̃), �∗ − �̃) + (F(�∗), �̃ − �∗)] = �(F(�̃) − F(�∗), �∗ − �̃) (17)

On the other hand, Assumption 1 yields

�(F(�̃) − F(�∗), �∗ − �̃) = −�(�̃ − �∗, F(�̃) − F(�∗))>0 (18)

Thus, both (17) and (18) imply

(�̃ + �F(�̃) − �̃, �∗ − �̃)>0 (19)

But (19) means that �̃ �= �{�̃ + �F(�̃)} (see (13)). Therefore, by Corollary 2, we deduce that �̃ is
not a minimum point. �

Now, we are ready to present a numerical method for the adjustment of the weight vector �.
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4.1. Numerical method

Define the sequence of vectors {�k} as

�k+1 = �

{
�k + �k

J (�k) + �
F(�k)

}
, �0 ∈ SN , k = 0, 1, 2, . . .

F(�k) = [h1(�k) · · · hN (�k)]T

J (�k) := max
�∈ 1,N

h�(�k)

(20)

where � is an arbitrary strictly positive (small enough) constant.

Theorem 1
Let �∗ be the minimum point for J (�). If

(1) the sequence {�k} is generated by (20);
(2) Assumption 1 holds;
(3) there exists a constant L such that for all � ∈ 1, N and for any �, � ∈ SN

|h�(�) − h�(�)|�J (�)L|� − �|
(4) the gain sequence {�k} satisfies

�k>0,
∞∑
k=0

�k = ∞,
∞∑
k=0

(�k)2<∞

then

lim
k→∞ �k = �∗ (21)

Proof
For vk := �k − �∗, in view of (12) and the property of projection ‖�{x} − �{y}‖�‖x − y‖ for all
x, y ∈ RN , we have

‖vk+1‖2 =
∥∥∥∥�

{
�k + �k

J (�k) + �
F(�k)

}
− �∗

∥∥∥∥
2

=
∥∥∥∥�

{
�k + �k

J (�k) + �
F(�k)

}
− �

{
�∗ + �k

J (�k) + �
F(�∗)

}∥∥∥∥
2

�
∥∥∥∥vk + �k

J (�k) + �
[F(�k) − F(�∗)]

∥∥∥∥
2

= ‖vk‖2 + (�k)2

J 2(�k) + 2J (�k)� + �2
‖F(�k) − F(�∗)‖2
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+ 2
�k

J (�k) + �
(vk, F(�k) − F(�∗))

� ‖vk‖2(1 + (�k)2L2) + 2
�k

J (�k) + �
(vk, F(�k) − F(�∗))

� ‖vk‖2(1 + (�k)2L2) (22)

In the last inequality of (22) we have used Assumption 1. Define the new variable wk by

wk := ‖vk‖2
∞∏
s=k

[1 + (�s)2L2]

So, (22) implies

wk+1 := ‖vk+1‖2
∞∏

s=k+1
[1 + (�s)2L2]

� ‖vk‖2(1 + (�k)2L2)
∞∏

s=k+1
[1 + (�s)2L2] =wk

which means (by the Weierstrass theorem) that the sequence {wk} converges and, hence, there
exists the limit

w := lim
k→∞ wk = lim

k→∞ ‖vk‖2

But, from (22), we have also the inequality

2
�k

J (�k) + �
|(vk, F(�k) − F(�∗))| � ‖vk‖2(1 + (�k)2L2) − ‖vk+1‖2

= wk − wk+1∏∞
s=k+1[1 + (�s)2L2]�wk − wk+1

Summation it by k from 0 up to ∞ yields

2
∞∑
k=0

�k
|(vk, F(�k) − F(�∗))|

J (�k) + �
�w0 − w<∞

In view of the property
∑∞

k=0 �k =∞, it follows that there exists a subsequence kt (t = 1, 2, . . .)
such that

|(vkt , F(�kt ) − F(�∗))|
J (�kt ) + �

−→
t→∞ 0

Since J (�kt ) is bounded, then, by (16), this implies �kt −→
t→∞ �∗, or, equivalently,

lim
t→∞ wkt = lim

t→∞ ‖vkt ‖2 = 0

Copyright q 2007 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2007; 28:289–300
DOI: 10.1002/oca



WEIGHTS ADJUSTMENT FOR THE MINIMAX LQ-CONTROL 297

But {wk} converges to w. So all its subsequences converges to the same limit that implies w = 0.
Theorem is proven. �

5. EXAMPLE

The following example illustrates the proposed numerical method (20) in the case N = 3 where
the parameters of possible models are as follows:

A1 =
⎡
⎢⎣

−2 0.5 1

0.5 1.2 −2

1 2 −1.5

⎤
⎥⎦ , A2 =

⎡
⎢⎣

−0.3 1.5 −0.15

−1 0.12 2

1 2 −3

⎤
⎥⎦ , A3 =

⎡
⎢⎣
0.4 −1 0.3

0.5 −0.4 0.3

0.5 0.6 −1

⎤
⎥⎦

B1 =
⎡
⎢⎣
0.5

1

1

⎤
⎥⎦ , B2 =

⎡
⎢⎣
1.5

−2

1

⎤
⎥⎦ , B3 =

⎡
⎢⎣
0.5

0.2

1

⎤
⎥⎦

d1 =
⎡
⎢⎣

0.1

0.05

0.01

⎤
⎥⎦ , d2 =

⎡
⎢⎣

0.1 sin(t)

0.2 sin(t/2)

0.1

⎤
⎥⎦ , d3 =

⎡
⎢⎣

0.1

0.05 cos(t)

0.1

⎤
⎥⎦

Table I. Values of �k and h�(�k).

k �1 �2 �3 h1 h2 h3 J

1 0.5 0.4 0.1 116.060 109.897 977.037 977.037
2 0.208365 0.102057 0.689576 236.303 1116.18 310.533 1116.18
3 0.065899 0.353738 0.580362 489.798 349.164 503.783 503.783
4 0.093832 0.288619 0.617548 360.415 462.742 460.030 462.742
5 0.057465 0.307535 0.634999 555.476 432.953 451.644 555.476
6 0.084632 0.290587 0.624780 393.174 461.878 455.737 461.878
7 0.068843 0.299589 0.631567 471.404 447.301 453.104 471.404
8 0.073125 0.296569 0.630305 446.649 452.593 453.386 453.386
9 0.071960 0.297042 0.630997 453.083 451.886 452.979 453.083

10 0.072066 0.296855 0.631077 452.488 452.251 452.875 452.875
...

...
...

...
...

...
...

...
31 0.072036 0.296664 0.631299 452.660 452.656 452.665 452.665
32 0.072036 0.296664 0.631299 452.661 452.657 452.664 452.664
33 0.072036 0.296663 0.631300 452.666 452.658 452.664 452.665
34 0.072036 0.296663 0.631300 452.661 452.658 452.664 452.664
35 0.072036 0.296663 0.631300 452.660 452.658 452.664 452.664
36 0.072035 0.296663 0.631300 452.660 452.660 452.663 452.663
37 0.072035 0.296663 0.631300 452.661 452.659 452.663 452.663
38 0.072035 0.296663 0.631300 452.660 452.660 452.663 452.663
39 0.072035 0.296663 0.631301 452.662 452.659 452.663 452.663
40 0.072035 0.296663 0.631301 452.662 452.659 452.663 452.663
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Figure 1. Control law u for �∗.
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Figure 2. Trajectories of the state corresponding to �= 1.

We select the matrices Q� =G� = I, R = 1. Using the gain-step sequence {�k} (20) with
�k = 1/(k + 1), k = 0, 1, 2, . . . , we obtained the results presented in Table I. There are shown
the values of the vector �k and the performance index h�(�k) for each iteration k.

From Table I, one can see that the weights practically converge after 10 iterations. Since all
indices are active (�∗

�>0), all performance functional h�(�k) practically turn out to be equal after
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Figure 3. Trajectories of the state corresponding to �= 2.
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Figure 4. Trajectories of the state corresponding to �= 3.

40 iterations. Thus, we have �∗
� (0.072035, 0.296663, 0.631301). The control law u = u(�∗) is

depicted in Figure 1. Figures 2–4 show the trajectories of x� for � = 1, 2, 3.

6. CONCLUSIONS

In this paper, the numerical method for finding the optimal weights in the robust optimal control
representation is proposed. The suggested procedure is workable without any changes in the
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gain-step sequence and shows a quick convergence. It may be successfully applied also for multi-
model stochastic LQ-control [15].
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