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OPTIMAL AND ROBUST SLIDING MODE CONTROL FOR LINEAR
SYSTEMS WITH MULTIPLE TIME DELAYS IN CONTROL INPUT

Michael Basin, Leonid Fridman, Jesus Rodriguez-Gonzélez, and Pedro Acosta

ABSTRACT

This paper presents the optimal regulator for a linear system with mul-
tiple time delays in control input and a quadratic criterion. The optimal regu-
lator equations are obtained using the duality principle, which is applied to
the optimal filter for linear systems with multiple time delays in observations.
Performance of the obtained optimal regulator is verified in the illustrative
example against the best linear regulator available for linear systems without
delays. Simulation graphs and comparison tables demonstrating better per-
formance of the obtained optimal regulator are included. The paper then pre-
sents a robustification algorithm for the obtained optimal regulator based on
integral sliding mode compensation of disturbances. The general principles of
the integral sliding mode compensator design are modified to yield the basic
control algorithm oriented to time-delay systems, which is then applied to
robustify the optimal regulator. As a result, the sliding mode compensating
control leading to suppression of the disturbances from the initial time mo-
ment is designed. The obtained robust control algorithm is verified by simu-

lations in the illustrative example.

KeyWords: Linear system, multiple delays, optimal control, filtering, slid-

ing mode regulator.

1. INTRODUCTION

Although the optimal control (regulator) problem
for linear system states was solved, as well as the filter-
ing one, in 1960s [15,22], the optimal control problem
for linear systems with delays is still open, depending on
the delay type, specific system equations, criterion, etc.
Such complete reference books in the area as [7,10,20,
21,25] note, discussing the maximum principle [19] or
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the dynamic programming method [26] for systems with
delays, that finding a particular explicit form of the op-
timal control function might still remain difficult. A par-
ticular form of the criterion must be also taken into ac-
count: the studies mostly focused on the time-optimal
criterion (see the paper [27] for linear systems) or the
quadratic one [9,13,34]. Virtually all studies of the opti-
mal control in time-delay systems are related to systems
with delays in the state (see, for example, [1]), although
the case of delays in control input is no less challenging,
if the control function should be causal, i.c., does not
depend on the future values of the state. A considerable
bibliography existing for the robust control problem for
time delay systems (such as [12,24]) is not discussed
here.

The first part of this paper concentrates on the so-
lution of the optimal control problem for a linear system
with multiple time delays in control input and a quad-
ratic criterion, which is based on the duality principle in
a closed-form situation [3] applied to the optimal filter
for linear systems with multiple time delays in observa-
tions recently obtained in [5]. Taking into account that
the optimal control problem can be solved in the linear
case [22] applying the duality principle to the solution of
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the optimal filtering problem, this paper exploits the
same idea for designing the optimal control in a linear
system with multiple time delays in control input, using
the optimal filter for lincar systems with multiple time
delays in observations. In doing so, the optimal regulator
gain matrix is constructed as dual transpose to the opti-
mal filter gain one and the optimal regulator gain equa-
tion is obtained as dual to the variance equation in the
optimal filter. The results obtained by virtue of the dual-
ity principle can be rigorously verified through the gen-
eral equations of the maximum principle [19,29] or the
dynamic programming method [6,26] applied to a spe-
cific time-delay case, although the physical duality
seems obvious: if the optimal filter exists in a closed
form, the optimal closed-form regulator should also exist,
and vice versa [3]. It should be noted, however, that ap-
plication of the maximum principle to the present case
gives one only a system of state and co-state equations
and does not provide the explicit form of the optimal
control or co-state vector. So, the duality principle ap-
proach actually provides one with the explicit form of
the optimal control and co-state vector, which should be
then substituted into the equations given by the rigorous
optimality tools and thereby verified.

Finally, performance of the obtained optimal con-
trol for a linear system with multiple time delays in con-
trol input and a quadratic criterion is verified in the illus-
trative example against the best linear regulator available
for linear systems without delays. The simulation results
show a definitive advantage of the obtained optimal
regulator in both the criterion value and the value of the
controlled variable.

The paper then presents a robustification algorithm
for the obtained optimal regulator based on integral slid-
ing mode compensation of disturbances. Conventional
(non-integral) sliding modes are widely used for uncer-
tainties compensation (see, for example, [35]). On the
other hand, time delay effects that take place in relay and
sliding mode control systems must be taken into account
for the systems analysis and control design [2,35].

It is also known that time delays do not allow to
design the sliding mode control in the space of state
variables. Moreover, papers [16,17] show that even in
the simplest one-dimensional delayed relay control sys-
tem only oscillatory solutions can occur. That is why
there are the two following main research directions in
sliding mode uncertainties compensation for delay sys-
tems.

1.1 Time delay compensation

Pade approximation of delay reducing the relay
delay output tracking problem to the sliding mode con-
trol for nonminimum phase systems was suggested in
[33]. In [11,23,31], the sliding mode control in the space
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of predictor variables was realized. However, subsequent
research [18,32] has demonstrated that the conventional
sliding mode control design in the space of predictor
variables

e cannot compensate even for the matching uncertain-
ties;

o in the case of square systems, if the dimensions of state
space and control are the same, sliding mode design in
the space of predictor variables can remove the uncer-
tainties in the space of predictor variables but cannot
guarantee suppression of uncertainties in the space of
state variables.

1.2. Sliding mode control design via feedback control

In a series of papers (see for example, [30,28]), the
conventional sliding modes in the space of state vari-
ables of delayed systems are specifically used for elimi-
nation of uncertainties. Recently, application of the inte-
gral sliding mode to time-delay systems has been initi-
ated: in [4], the integral sliding mode is used for robusti-
fication of optimal filters over observations with delay.

The second part of this paper presents an integral
sliding mode regulator robustifying the optimal regulator
for linear systems with multiple time delays in control
input. The idea is to add a compensator to the known
optimal control to suppress external disturbances dete-
riorating the optimal system behavior [8,35]. The inte-
gral sliding mode compensator is realized as a relay con-
trol in a such way that the sliding mode motion starts
from the initial moment, thus eliminating the external
disturbances from the beginning of system functioning.
This constitutes the crucial advantage of the integral
sliding modes in comparison to the conventional ones.

The paper is organized as follows. Section 2 states
the optimal control problem for a linear system with
multiple time delays in control input and describes the
duality principle for a closed-form situation [3]. For ref-
erence purposes, the optimal filtering equations for a
linear state and linear observations with multiple time
delays [5] are briefly reminded in Section 3. The optimal
control problem for a linear system with multiple time
delays in control input is solved in Section 4, based on
application of the duality principle to the optimal filter of
the preceding section. The paper then presents a robusti-
fication algorithm for the obtained optimal regulator
based on integral sliding mode compensation of distur-
bances [35]. Section 5 presents the new general princi-
ples of the integral sliding mode compensator design,
which yield the basic control algorithm oriented to
time-delay systems. This basic algorithm is then applied
to robustify the optimal regulator. As a result, the sliding
mode compensating control leading to suppression of the
disturbances from the initial time moment is designed.
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Section 6 presents an example illustrating the quality of

control provided by the obtained optimal regulator for
linear systems with multiple time delays in control input
against the best linear regulator available for systems
without delays. Simulation graphs and comparison tables
demonstrating better performance of the obtained opti-
mal regulator are included. This section then presents an
example illustrating the quality of disturbance suppres-
sion provided by the obtained robust integral sliding
mode regulator against the optimal regulator under the
presence of disturbances. Satisfactory results are ob-
tained.

II. OPTIMAL CONTROL PROBLEM FOR
LINEAR SYSTEM WITH MULTIPLE TIME
DELAYS IN CONTROL INPUT

Consider a linear system with time delay in control
input

() = ay () + a(0)x(0) + B(Eu(r) + iBi(t)u(tfh, ),
(1)

with the initial condition x(s) = @(s), s € [-A, 0]. Here,
x(f) € R" is the system state, u(f) € R" is the control
variable, h = max{h,, ..., h,} is the maximum delay shift,
@(s) is a piecewise continuous function given in the in-
terval [—h, 0], and ai(?), a(?), B(?), and B(r) are piecewise
continuous matrix functions of appropriate dimensions.
Existence of the unique solution of the equation (1) is
thus assured by the Caratheodori theorem (see, for ex-
ample, [14]).

The control function u(¢) regulates the system state
by fusing the values of u(f) at various time moments f —
hi, i =1, ..., p, where h; are delay shifts, as well at the
current time ¢ which assumes that the current system
state depends not only on the current value of u(r) but
also on its values after certain time lags 4, i=1, ..., p.
This situation is frequently encountered in, for example,
network control systems.

The quadratic cost function to be minimized is de-
fined as follows:

J==[x(T)—x Y wix(T)-x]

B | —

+% j; u” (5)R(s)u(s)ds +% j{: X7 ($)L(s)x(s)ds,
2)

where x, is a given vector, R is positive and y, L are
nonnegative definite symmetric matrices, and T'> £ is a
certain time moment.

The optimal control problem is to find the control
u(f), t € [to, T), that minimizes the criterion J along with

the trajectory x'(¢), f € [f,, T], generated upon substitut-
ing 1'(1) into the state equation (1). To find the solution
to this optimal control problem. the duality principle [22]
can be used. For linear systems without delay, if the op-
timal control exists in the optimal control problem for a
linear system with the quadratic cost function J, the op-
timal filter exists for the dual linear system with Gaus-
sian disturbances and can be found from the optimal
control problem solution, using simple algebraic trans-
formations (duality between the gain matrices and be-
tween the gain matrix and variance equations), and vice
versa (see [22]). Taking into account the physical duality
of the filtering and control problems, the last conjecture
should be valid for all cases where the optimal control
(or, vice versa, the optimal filter) exists in a closed fi-
nite-dimensional form [3]. This proposition is now ap-
plied to the optimal filtering problem for linear system
states over observations with multiple time delays, which
is dual to the stated optimal control problem (1),(2). and
where the optimal filter has already been obtained (see

(5D

HI. OPTIMAL FILTER FOR LINEAR STATE
EQUATION AND LINEAR OBSERVATIONS
WITH MULTIPLE DELAYS

In this section, the optimal filtering equations for a
linear state equation over linear observations with multi-
ple time delays (obtained in [5]) are briefly reminded for
reference purposes. Let the unobservable random process
x(1) be described by an ordinary differential equation for
the dynamic system state

dx(1) = (a, (1) +a()x(0)dt + bYW, (1), x(t,) =%, (3)

and a delay-differential equation be given for the obser-
vation process:

dy(t) = (A, (1) + A@)x(1) + 2 A (Ox(t = h))dt

i=1

+F()dW,(0),

where x(¢) € R" is the state vector, y(f) € R" is the ob-
servation process, the initial condition xo € R" is a Gaus-
sian vector such that xo, W,(r), W(f) are independent.
The observation process ¥(f) depends on delayed states
x(t - h), i=1, ..., p, where h; are delay shifts, as well as
non-delayed state x(), which assumes that collection of
information on the system state for the observation pur-
poses is made not only at the current time but also after
certain time lags 4, i = 1, ..., p. The vector-valued func-
tion ay(s) describes the effect of system inputs (controls
and disturbances). It is assumed that A(?) is a nonzero
matrix and F(0)F'(f) is a positive definite matrix. All
coefficients in (3)-(4) are deterministic functions of ap-
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propriate dimensions.

The estimation problem is to find the estimate of
the system state x(f) based on the observation process (0]
= {y(s), 0 < s < ¢}, which minimizes the Euclidean
2-norm

J = E[(x(r) = ()" (x(t) = ()]

at each time moment 7. In other words, our objective is to
find the conditional expectation

m(1) = &(r) = Ex(n)| ).

As usual, the matrix function

P(¢) = E[(x() = m(t)(x(D) = m(@)) |F]

is the estimate variance.

The solution to the stated problem is given by the
following system of filtering equations, which is closed
with respect to the introduced variables, m(f) and P():
dm(t) =(a, (1) +a(tym(t))dt + P A" ()

+¥exp(-]., o ()s) 4] (0]

CFOF O @O- A0 AOom
+ 34 omte i)
dP(1) = (P()a” (6)+ alt)P(1)+ )b (T)
—POAT (r)+§exp<—],’,m o ()d)4] (0]
©

X(FOFT () [40)+ 3 A Oexp
([, als)ds)P@)de.

The system of filtering equations (5) and (6) should
be complemented with the initial conditions mity) =
Elx(to)|F} ] and P(to) = E[(xto) ~ m(to)(x(to) = mto)
iF,; ]. This system is similar to the conventional Kal-
man-Bucy filter, except the adjustments for delays in the
estimate and variance equations, calculated due to the
Cauchy formula for the linear state equation.

In the case of a constant matrix ¢ in the state equa-
tion, the optimal filter takes the especially simple form
(exp (—J:Ah a'ds) =exp (—a'h))

dm(t) = (a, () + am(t)dt + P(O[A" ()

+ S exp(—a’ )47 ()]

i=1

X(FOFT(6)" (dy(t) = (A4,(0) + AWym(D)

r (@]
+ Y A, (Om{t —h))d),

dP(t) = (P(t)a” +aP(t)+b()b’ (1)

-POA" (O+ iexp(vaT h)AL (1]

W(FOFT (0) LA+ 3 4.1 expl(-ah )P(0))dr.
i=1
®

Thus, the equation (5) (or (7)) for the optimal esti-
mate m(r) and the equation (6) (or (8)) for its covariance
matrix P(¢) form a closed system of filtering equations in
the case of a linear state equation and linear observations
with multiple time delays.

IV. OPTIMAL CONTROL PROBLEM
SOLUTION

Let us return to the optimal control problem for the
linear state (1) with multiple time delays in linear control
input and the quadratic cost function (2). This problem is
dual to the filtering problem for the linear state (3) and
linear observations with multiple time delays (4). Since
the optimal filter gain matrix in (5) is equal to

K, =P@e)A" (1)
+Yexp(-], @ (M)A ONFOF @)

the gain matrix in the optimal control problem takes the
form of its dual transpose

P . X

K. =RO)'[B" 0+ Y B ()exp([._, a” (5)ds)]Q(1),
i=l !

and the optimal control law is given by

u (H=K,x=(R)'[B"(1)

’ . ©
+Y BT (Dexp(f]_, a” ()N O(O)X(®),
i=1 !

where the matrix function Q(f) is the solution of the fol-
lowing equation dual to the variance equation (6)

O(r) = —d" (NQ() - QWa(t) + (1)
- QBN+ ﬁexp( [, a" ()ds)B (TR (1)

B 1)+ B expl]l, o ()00, (10)
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with the terminal condition Q(T) = y.

Upon substituting the optimal control (9) into the
state equation (1), the optimally controlled state equation
is obtained

(1) = a, (O + al)x(t) + B)(R() [ B (1)

+ ﬁ B/ (tyexp(], a” (5)ds)O(1)x(1)
i=1 ’

+ 3 BORO) B ()
i=l

+ 3 B @ exp[|, a" (5)dNQU ~h )t~ h),
i=1 !
x(ty) = x,.

The results obtained in this section by virtue of the
duality principle could be proved using the general equa-
tions of the Pontryagin maximum principle [19,29].
(Bellman dynamic programming [6,26] could serve as an
alternative verifying approach). It should be noted,
however, that application of the maximum principle to
the present case gives one only a system of state and
co-state equations and does not provide the explicit form
of the optimal control or co-state vector. So, the duality
principle approach actually provides one with the ex-
plicit form of the optimal control and co-state vector,
which should be then substituted into the equations given
by the rigorous optimality tools and thereby verified.

V. ROBUSTIFICATION OF MOTIONS IN
THE DELAY CONTROL SYSTEMS VIA IN-
TEGRAL SLIDING MODES

For given control system with multiple delays
P

)= f(x(@)+B@Ou@)+ Y, B(t)u(t—h), (11)
i=1

where x € R" is the state vector, u(t) € R” is the control
input, the ranks of matrices B, B; are complete and equal
to m, and B; € Span(B), suppose that there exists a dif-
ferentiable in x state feedback control law u(x(1)), such
that the dynamics of the ideal closed loop system takes
the form

%)= f(x, (t))+B(f)No(xo(l))+ﬁB, Oy (x, (1= h)),
i=|
12)

and has certain desired properties.
However, in practical applications, system (11) op-
* erates under uncertainty conditions that may be gener-
ated by parameter variations and external disturbances.
Let us consider the real trajectory of the closed loop

control system

) = G0 + BOux() + 3 B (u(x(t— ) .

+g(x(0).x( = Iy),.oox(t — b)),

where g is a smooth uncertainty presenting perturbations
and nonlinearities in system (11). For g, the standard
matching conditions are assumed to be held: g e
Span(B), or, in other words, there exists a smooth func-
tion ysuch that

glx(), x(t=h),...,x(t - h',7 ).t)
=By (x(t),x(t=h),...,x(1 — h,)0),
“y‘ () x(t=h),...,x(t=h,), z)”

»
SqU”X(f)H“qu, ”X“_hy)”+p]w‘]a"[h--'aq/nM >0,
=

The following initial conditions are assumed for
system (11)

x(6) = ¢(0), (14)

where @(6) is a piecewise continuous function given in
the interval [-A, 0].

Thus, the control problem now consists in robusti-
fication of control design in system (12) with respect to
uncertainties g: to find such a control law that the trajec-
tories of system (13) with initial conditions (14) coincide
with the trajectories x,(r) with the same initial conditions

(14).
5.1 Design principles

Let us redesign the control law for system (11) in
the form

u(t) = u, (t)+u (1), (15)
where u(1) is the ideal feedback control designed for
(12), and u\(t) € R" is the relay control generating the
integral sliding mode in some auxiliary space to reject

uncertainties g. Substitution of the control law (15) into
the system (13) yields

1) = )+ By (1) + 3 B Oy (1— )
i=l

+ B, (0)+ 3B (0, (1= ) 16)

+g(x(t),x(t = h),...,x(1— h,),1).

Define the auxiliary function
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s(1) = z(1) + 5, (x(2)), 17)

where so(x(1)) = uy(x(r)), and z(t) is an auxiliary variable
defined below. Then,

5() = 20+ GOLF (1) + B(t)uy (1)

+ i B (o (t —h)+ B(t)u, (1)
';' (18)
+ Y B (1, (t — h)+ By (x(2), x(t — ),

s X(t=h,),0],

where G(¢) = dso(x(£))/dx(f) = duo(x(1))/dx(f) and is avail-
able for the sliding mode design, because the control
gain for uy is already known. In addition, assume that
matrix G(f)B(¢) is nonsingular, i.e., (G(£)B(1))™ exists.

The philosophy of integral sliding mode control is
the following: in order to achieve x(7) = x(¥) at all 1 €
(—h, o), the sliding mode should be organized on the
surface s(f), since the following disturbance compensa-
tion should have been obtained in the sliding mode mo-
tion

B, (0)+ 3 B (O, (1—h)
=l
= B0, = )= ), 1))

Note that the equivalent control u;(f) can be unambi-
guously determined from the last equality and the initial
condition for x(7), since the ranks of matrices B, B; are
complete and equal to m, B; € Span(B), and, therefore,
the pseudoinversion of B can be arranged.

Define the auxiliary variable z(¢) as the solution to
the differential equation

(0= =GO (K(O) + Bwo 1)+ 3, B (0ot =),

with the initial conditions z(8) = —so(¢X8)) for 8 € [,
0]. Then, the sliding manifold equation takes the form

$(0) = GOIBOY KO, 3 — ). x(E= B )1)
+ B, () + 3B, (0, (1~ ).
i=1

Finally, to realize sliding mode, the relay control is
designed

u (£) = =M (x(t),x(t = ),..., x(t =k, ), NSIGN[S(1)],
S =[GOBO] s(1), (19)

M = q(xo]+ ;”luxo—h,)||>+po,

where SIGN[S(£)] = [sign[S\()], sign[Sx(®)], ..., sign[S()]).
S{#), i =1, ..., m, are the coordinates of the vector S(#), and
9> qo, 41, ---» Gp, Po > p1. At this point, let us assume that
the matrices B, B;, i = 1, ..., p, and delay shifts 4, i=1, ...,
. satisfy the following stability-ensuring inequality for any
t20:

H iB' O (¢ =) < KB, )], (20)

where K is a constant or uniformly bounded function of
time. Then, the convergence to and along the sliding
mode manifold s(f) = 0 is assured by the Lyapunov func-
tion ¥(r) = s"(#)s(t)/2 for the system (16) with the control
inputs ue(f) of (9) and u(¢) of (19):

V()= sT()G)[B(Ou, (1) + 2 B(t)u,(t—h)
i=1
+BUYY(), X~ B )oee X(E = ), 0)]
<—[S@| K (x| + S xte =) + py)
i=l

+STIGBO] GOB@)y (x(0), x(t — hy),
Xt =1, ),0] <0,

where [S()|= 3./,

The next section presents the robustification of the
designed optimal control (9). This robust regulator is
designed assigning the sliding mode manifold according
to (17)-(18) and subsequently moving to and along this
manifold using relay control (19). :

5.2 Robustification of optimal control problem solu-
tion

Consider again the linear system (1) with multiple
time delays in control input, whose behavior is now af-
fected by smooth uncertainties g presenting perturbations
and nonlinearities in the system (1)

K1) = ay (1) + aO)x(t) + B(u(t) + 3 B, (0t~ h)
i=1
+ (RO, X( =) Xt~ )0,

with the initial condition x(s) = ¢(s), s € [~h, 0], where
¢(s) is a piecewise continuous function given in the in-
terval [—h, O0]. It is also assumed that the disturbances
satisfy the standard matching conditions

SO~ R X~ B, )1)
= BOYG0), X~ Ryt~ h)u0),
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I e, (¢ =)ot = ).
P
< o |[xO|+ X g, |5 =+ prodos 1524, 21 > 05
i=1

providing reasonable restrictions on their growth. The
quadratic cost function (2) is the same as in Section 2.
The problem is to robustify the obtained optimal
control (9), using the method specified by (17)-(18). De-
fine this new control in the form (15): u(?) = uo(t) + w (1),
where the optimal control ue(?) coincides with (9) and the
robustifying component u(z) is obtained according to

(19)
10, (6) = =M, X(0 = ), (0 = 1, ) SIGNIS ()],
S(t) =G (B s(1),

M =g + §|\x<z —m+ P

4> qo, q1s -+ Gps Po > P1, assuming that the condition (20)
holds. Consequently, the sliding mode manifold function
s(¢) is defined as

s(t) = z(0) + 5, (x(1)), @D

where
$o(x(0) = u,(H) = (RGN [B” (1)
b - ©2)
+ 3B (Oexp([_, @’ (5)ds)Q(0)x(1),
i=l

and the auxiliary variable z(f) satisfies the delay differen-
tial equation

() = =G(1)ay (1) + a(t)x(6) + B(O)u, (1)
v (23)
+2 B, (Du(t— ),

with the initial conditions z(6) = —s¢(¢(8)) for 0 € [-A,
0]. In accordance with (18), the matrix G(f) is equal to

2 '
GO =ROY'BT(O+Y B/ () eXP(j,,h a’ (5)ds)10(),
i=1 !
where Q(#) is the solution of the Riccati equation (10).
VI. EXAMPLE

This section presents an example of designing the
optimal regulator for a system (1) with a criterion (2)
using the scheme (9)~(10), comparing it to the regulator
where the matrix Q is selected as in the optimal linear
regulator for a system without delays, disturbing the ob-
tained optimal regulator by a noise, and designing a ro-

bust sliding mode compensator for that disturbance using
the scheme (21)-(23).
Let us start with a scalar linear system

#(0) = x() +u(t—0.1) +u(?), 24)

with the initial conditions x(s) = 0 for s € [-0.1, 0) and
x(0) = 1. The optimal control problem is to find the con-
trol u(f), t € [0, T, T= 0.15, that minimizes the criterion

J :%[X(T)ka]l +%j§zf(t)dt, (25)

where 7= 0.15, and x" = 25 is a large value of x(¢) a pri-
ori unreachable for time 7. In other words, the optimal
control problem is to maximize the state x(¢) using the
minimum energy of control %.

Let us first construct the regulator where the opti-
mal control law and the matrix Q(#) are calculated in the
same manner as for the optimal linear regulator for a
linear system without delays in control input, that is uo,(#)
= (R())"'BT(1)Q(H)x(1) (see [22] for reference). Since B(f)
= 1 in (24) and R(?) = 1 in (25), the optimal control is
actually equal to

u(ty = Q(0x (), (26)

where Q(/) satisfies the Riccati equation

O(1) =—a" (HQ() - Q(a(t) + L(®)
—-0(OBOR™ ()BT (1)),

with the terminal condition Q(T) = . Since a(?) = 1, B(f)
=1in(24),and L = 0 and =1 in (25), the last equation
turns to

0(1) =200 - (1), Q(0.15)=1. @n

Upon substituting the optimal control (26) into (24), the
controlled system takes the form

x(t) = x(£) + Oz = 0.1)x(z = 0.1) + Q(1)x(1). (28)

The results of applying the regulator (26), (27) to
the system (24) are shown in Fig. 1, which presents the
graphs of the controlled state (28) x(r) in the interval [0,
T], the criterion (25) J(¢) in the interval [0, 7], and the
control (26) u(f) in the interval [0, T]. The values of the
state (28) and the criterion (25) at the final moment 7 =
0.15 are x(0.15) = 1.4923 and J(0.15) = 276.4835.

Let us now apply the optimal regulator (9)-(10) for
linear systems with multiple time delays in control input
to the system (24). Since a(t) = 1, B(f) = 1, By(t) = 1, and
h=0.11in(24)and y =1, R() = 1, and L = 0 in (25),
hence, exp(J'// haT(s)dx) =exp(0.1) and the optimal con

trol law (9) takes the form



[ 0.05 0.1 0.15
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Fig. 1. Best linear regulator available for linear systems without delays.
Graphs of the controlled state {28) x(7) in the interval [0, 0.15],

the criterion (25) J(f) in the interval [0, 0.15], and the control
(26) u(?) in the interval [0, 0.15].

u,,, (t) = (1+exp(0.1)Q(1)x(2), 29)
where Q(#) satisfies the Riccati equation
O(1) =-20(1)— (1+exp(0.)Q)Y,  Q(0.15)=1 (30)

Upon substituting the optimal control (29) into (24), the
optimally controlled system takes the form

#(£) = x(1) + (1+exp(0. ))[Q( — 0. 1)x(r — 0.1)
+Q()x(1)].

@31)

The results of applying the regulator (29), (30) to
the system (24) are shown in Fig. 2, which presents the
graphs of the optimally controlled state (31) x(¢) in the
interval [0, T], the criterion (25) J(¢) in the interval [0, T,
and the optimal control (29) u,,(?) in the interval [0, T].
The values of the state (31) and the criterion (29) at the
final moment 7 = 0.15 are x(0.15) = 2.8944 and J(0.15)
=248.8386.

The next task is to introduce a disturbance into the
optimally controlled system (31). This deterministic dis-
turbance is realized as a constant: g(r) = —10. The
matching conditions are valid, because state x(r) and
control u(f) have the same dimension: dim(x) = dim(u) =
1. The restrictions on the disturbance growth hold with
go = 0 and p, = 10, since ||g(#)]| = 10. The disturbed sys-
tem equation (31) takes the form

£() = =10+ x(1)+ (1 + exp(0. )0 — 0.1)x(t —0.1)
+0(@)x()].

The system state behavior significantly deteriorates
upon introducing the disturbance. Figure 2 presents the
graphs of the disturbed state (32) x(t) in the interval

32)
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Fig. 2. Optimal regulator obtained for linear systems with multiple
time delays in control input. Graphs of the optimally controlled
state (31) x(z) in the interval [0, 0.15], the criterion (25) J() in
the interval [0, 0.15], and the optimal control (29) u,,(f) in the
interval [0, 0.15].

[0, T, the criterion (25) J(¢) in the interval [0, 77, and the
control (29) u(¢) in the interval {0, T]. The values of the
state (32) and the criterion (25) at the final moment 7 =
0.15 are x(0.15) = 0.6472 and J(0.15) = 298.5231. The
state (32) decreases from its initial value x(0) = 1, al-
though it should be maximized, and the criterion value
increases from its initial value J(0) = 288, although it
should be minimized, and becomes much larger than in
the preceding cases.

Let us finally design the robust integral sliding
mode control compensating for the introduced distur-
bance. The new controlled state equation should be

#(#) = =10+ x(2) + (1 +exp(0.1)[O(t — 0.1)x(t - 0.1) “
+ O]+, (=01 +1,(8), @3

where the compensator u(f) is obtained according to

(19

w, (1) = =M (x(2), x(t — h),t)sign[s()]. (34)
The sliding mode manifold s(7) is defined by (21)

s(5) = 2(0) + 5, (x(0)),
where

3o (x(1)) = o (x(1)) = (1+exp(0.1)Q(1)x(2),

and the auxiliary variable z(f) satisfies the delay differen-
tial equation

2(1) = =G(O)[x(#) +uy () +u, (£ = h)]
= —G(N)[x(t) + (1 + exp(0.1))[ Ot — 0. 1)x(r — 0.1)
+0(0)x0]),
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0 0.05 0.1

time 0.15

Fig. 3. Controlled system in the presence of disturbance. Graphs of the
disturbed state (32) x(7) in the interval [0, 0.15], the criterion
(25) J(¢) in the interval [0, 0.15], and the control (29) (¢) in the
interval [0, 0.15].

with the initial conditions z(s) = 0 for s € [-0.1, 0) and
2(0) = —(1 + exp(0.1))Q(0). In accordance with (18), the
matrix G(?) is equal to

G(2) = ds, (x(0))/ dx(1) = (1+exp(0.1)Q(7),

where Q(f) is the solution of the Riccati equation (30).

Upon introducing the compensator (34) into the
state equation (33), the system state behavior is very
much improved. Figure 3 presents the graphs of the
compensated state (33) x(¢) in the interval [0, T}, the cri-
terion (25) J(¢) in the interval [0, T], and the sum of the
control (29) and compensator (34), u(?) + u,(¢) (equiva-
lent sliding mode control), in the interval [0, 7). The
values of the state (33) and the criterion (25) at the final
moment 7 = 0.15 are x(0.15) = 2.893 and J(0.15) =
267.6933. Thus, the value of the controlled state after
applying the compensator (34) is only indistinguishably
less than those values for the optimal regulator (29)-(30)
for linear systems with multiple time delays in control
input, and much better than the values for the disturbed
system (32). Of course, the criterion value here is worse
than for the optimal regulator (although it is even better
than for the regulator (26),(27)), since an additional con-
trol energy is required to suppress the disturbance.
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