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Abstract

Tuning of second-order sliding mode control (2-SMC) algorithms in linear systems with dynamic actuators is considered. By means of
a describing function (DF) approach, it is investigated how the parameters of a 2-SMC algorithm (the so-called “generalized sub-optimal”
algorithm) affect the frequency and the magnitude of the limit cycles that occur when the overall relative degree of the plant plus the actuator is
three or more. Explicit formulas are given that allow for setting the parameters of the algorithm to obtain a periodic solution with the prescribed
characteristics. By means of simulation examples, we show that the estimated chattering parameters are in good agreement with the actual ones.
We also show that the proposed design procedure can also be useful when the local linearization of a nonlinear dynamics is sufficiently accurate.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Sliding mode control (SMC) is a popular approach to control
system design under heavy uncertainty, which remains one of
the main subjects of modern control theory. SMC is precise,
rather insensitive to disturbances (Utkin, 1992; Utkin, Guldner,
& Shi, 1999), and usually very simple to implement.

The main drawbacks of classical first-order Sliding Modes
(1-SM) are principally related to the so-called chattering ef-
fect (Boiko, 2003; Fridman, 2001; Utkin et al., 1999). The
main cause of chattering has been identified as the presence
of unmodelled parasitic dynamics in the switching devices
(Bondarev, Bondarev, Kostylyeva, & Utkin, 1985).
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Three main approaches to counteract the chattering phe-
nomenon in SMC systems were proposed in the mid-eighties:
the use of a continuous approximation of the relay (e.g. the
saturation function (Burton & Zinober, 1986)), the use of an
asymptotic state-observer to confine chattering in the observer
dynamics bypassing the plant (Bondarev et al., 1985), the use
of higher-order sliding mode control algorithms (Emelyanov,
Korovin, & Levantovsky, 1986).

The higher-order sliding mode approach has been actively
developed over the last two decades not only for chattering
attenuation but also for the robust control of uncertain sys-
tems with relative degree two and higher (see Bartolini, Pisano,
Punta, & Usai, 2003; Bartolini, Pisano, & Usai, 2001; Fridman
& Levant, 2002; Levant, 1993, 2003; Orlov, Aguilar, & Cadiou,
2003; Sira-Ramirez, 2002 and references therein).

The main drawbacks of the continuous approximations and of
the observed-based approach are the deterioration of accuracy
and system robustness, respectively. In recent papers (Boiko &
Fridman, 2004; Boiko, Fridman, & Castellanos, 2004; Boiko,
Fridman, Pisano, & Usai, 2004a) it has been shown that even
the second-order sliding mode (2-SM) algorithms suffer from
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chattering if parasitic dynamics are present increasing the sys-
tem relative degree.

In this note we consider the generalized sub-optimal control
algorithm (Bartolini et al., 2001, 2003), which is the generaliza-
tion of a 2-SM control algorithm derived from the time-optimal
control law of a double integrator (Bartolini, Ferrara, & Usai,
1997). We analyze the dependence of the frequency and the
amplitude of chattering from the tuning parameters of the al-
gorithm when it applied to dynamical systems with relative de-
gree three and higher. The capability of affecting the frequency
of the residual steady state oscillations may be useful, for ex-
ample, to keep it far enough from the resonant frequencies of
the plant.

There are two main approaches to chattering analysis: the
time-domain analysis of the system dynamics or the use of
frequency-domain techniques.

Analysis of the magnitude of the oscillations based on sin-
gularly perturbed relay systems was developed in Utkin (1992)
and Fridman (2002). Poincare maps and LMIs have been sug-
gested to investigate the existence and stability of periodic so-
lutions in relay systems (Di Bernardo, Johansson, & Vasca,
2001; Goncalves, Megretski, & Dahleh, 2001 and the refer-
ence therein). A special decomposition of Poincare maps al-
lowing for analyzing chattering in 1-SM control systems has
been proposed in Fridman (2001). Preliminary results regard-
ing the time-domain analysis of chattering in 2-SMC systems
were presented in Boiko et al. (2004a).

When linear plants are considered several frequency-
domain techniques can be used to assess the existence and
stability of periodic solutions. The Tsypkin locus method
(Tsypkin, 1984) provides exact values of the amplitude and
frequency of chattering. The recently proposed “Locus of
a Perturbed Relay System” (LPRS) method (Boiko, 2005)
gives the exact values of chattering frequency and amplitudes
and also allows to perform some robustness analysis (Boiko,
2003). All these approaches require quite tedious computa-
tions. Therefore the application of the approximate analysis
method based on the Describing Function (DF) technique
could be useful whenever the low-pass filtering condition is
satisfied (Atherton, 1975). The DF method has already been
used to estimate the frequency and the amplitude of the pe-
riodic motions in the 1-SMC systems (Shtessel & Lee, 1996;
Zhilcov, 1974). The results obtained via the use of exact
frequency-domain techniques feature a satisfactory correspon-
dence with those obtained via the approximate DF method
(Boiko, 2003).

In the present paper a parametric relay representation of
the generalized sub-optimal 2-SMC algorithm (Bartolini et al.,
2003) is given. The “Twisting” algorithm (Levant, 1993), the
“sub-optimal” algorithm (Bartolini et al., 1997) and even the
classical relay (Utkin, 1992) can be obtained as particular cases.
Such representation is exploited for analysis and design pur-
poses in the frequency domain in order to provide effective tun-
ing rules for chattering attenuation. We assume that the cascade
actuator-plant dynamics is a low-pass filter. We also assume
that the steady-state oscillations are periodic, symmetric and
with zero mean. The analysis results give the designer useful

2-SMC algorithm

W ( jω)

Fig. 1. The feedback control system.

tuning rules to set the controller parameters so as the chattering
effect is counteracted.

This paper is organized as follows: in Section 2 we formu-
late the problem under investigation and detail the class of con-
trolled plants we are concerned with. Section 3 contains the
main results, namely a DF analysis of the considered class of
control systems and the derivation of tuning rules for setting the
parameters of the 2-SMC algorithm. In Section 4 the proposed
tuning procedure is applied and verified by means of computer
simulations. The estimated chattering parameters (amplitude
and frequency of the periodic solution) obtained via the DF
analysis are shown to be in good agreement with the simulated
system’s behaviour. Section 5 provides concluding remarks.

2. Problem formulation

Consider the feedback control system in Fig. 1.
Let the linear plant, including the actuator, be described by

the state-space representation
{

ẋ(t) = Ax(t) + bu(t), x ∈ Rn, u ∈ R,

y(t) = cx(t), y ∈ R,
(1)

where x is the state vector, u is the actuator’s input and A, b, c
are matrices of appropriate dimensions. y can represent either
the sliding variable or the plant output. Assume that matrix A
is Hurwitz. The harmonic response W(j�) = c(j�I − A)−1b
can be then used as the SISO plant model.

The 2-SMC algorithm is the generalized sub-optimal con-
troller (Bartolini et al., 2003), i.e.

u(t) = −�(t)UM sign(y(t) − �yM(t)),

�(t) =
{

1 if yM(t)(y(t) − �yM(t))�0,

�∗ if yM(t)(y(t) − �yM(t)) < 0,
(2)

where yM(t) is a piece-wise constant function representing the
value of the last singular point of y(t) (i.e., the most recent value
y(tMi

) such that ẏ(tMi
) = 0). UM is the control authority, � ∈

[0, 1) is the anticipation parameter and �∗ �1 is the modulation
parameter.

If the plant, even nonlinear, has relative degree two and its
uncertain input–output dynamics can be represented as follows:

ÿ(t) = �(y(t), ẏ(t), t) + �(y(t), ẏ(t), t)u(t),

|�(y(t), ẏ(t), t)|��,

0 < �m ��(y(t), ẏ(t), t)��M , (3)
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then the control law (2) with the tuning conditions

UM >
�

�m

,

�∗ ∈ [1; +∞) ∩
(

2� + (1 − �)�MUM

(1 + �)�mUM

; +∞
)

, (4)

enforces a 2-SM onto the sliding surface y =0 (Bartolini et al.,
2003). Special tuning of the controller (2) gives the “Twisting”
algorithm (Levant, 1993) (� = 0), the “sub-optimal” algorithm
(Bartolini et al., 1997) (� = 0.5) and the relay controller (� =
0, �∗ = 1).

The presence of dynamic actuators increasing the relative
degree calls for special investigation techniques.

In this paper we show that periodic motions may occur in the
linear case when the overall relative degree is three or more.
We define a procedure, based on the DF method, devoted to
estimate the frequency and maximal deviation from zero of the
periodic solution. We also derive constructive controller tuning
rules that allow to “shape” within a certain range the parameters
(frequency and amplitude) of the periodic solution.

Remark 1. The combined effect of unmodelled stable lin-
ear actuators and matched disturbances has been analyzed in
(Boiko, Fridman, Pisano, & Usai, 2004b). System (3) was aug-
mented as follows:

�mu(m) +
m−1∑
i=0

pi�
iu(i) = v, � > 0,

v = −�(t)VM sign(y − �yM), (5)

where u(0) = u and coefficients pi (i = 0, . . . , m − 1) are such
that the polynomial P(s) = sm + ∑m−1

i=0 pis
i is an Hurwitz

one. It has been shown that bounded oscillations around the
sliding manifold will eventually occur. It has also been shown
that the amplitude of such oscillations is of order O(�2) and
that there is no obvious way to affect the oscillation amplitude
and frequency by changing the controller parameters. Tools
developed in (Boiko, 2005; Fridman, 2001) could be promising
to this end.

3. Describing-function analysis of the generalized
sub-optimal algorithm

The generalized sub-optimal controller can be described as
an active hysteretic relay whose hysteresis magnitude varies
according to the past history of the relay input. The relay rep-
resentation of controller (2) is given in Fig. 2.

Let us assume that the actual steady-state behaviour of the
system (1), (2) is a periodic, unimodal symmetric motion with
zero mean. Let y

p
M be the fixed point of the Poincare map

y(tMi+1) = −y(tMi
) (the construction of the Poincare map has

been dealt with in Boiko et al., 2004a).
Then, the sequence of the sliding variable singular points,

yMk
=y(tMk

) (k=1, 2, . . .), is the alternating (ringing) sequence
of positive and negative values y

p
M , −y

p
M , y

p
M , −y

p
M (here “p”

y(t)
 βyM,k

yM,k

UM

α*UM

−UM

−α*UM

yM,k+1

 βyM,k+1

u(t)

Fig. 2. Relay representation of the generalized sub-optimal controller.

stands for periodic). The control sign switching would occur at
the times when the system output is equal to �y

p
M .

The above assumptions regarding the characteristics of the
periodic motion imply that in steady state the control u can be
represented as a symmetric relay. Frequency domain methods
(Atherton, 1975; Tsypkin, 1984) can therefore be used for the
steady state motion analysis if the plant is a low-pass filter. In
some cases asymmetric limit cycles can take place even with
symmetric system nonlinearities (Di Bernardo et al., 2001).
However, in this paper we will consider the symmetric case
only.

The main difference between the analysis being done and the
analysis of a conventional relay system is that the hysteresis
value depends on y

p
M which is unknown. The problem can be

solved by exploiting the fact that y
p
M represents the last singular

point of y. The singular points of the output in a periodic process
define the oscillation amplitude. Therefore, y

p
M is the unknown

amplitude of the periodic solution.
The DF of the active hysteretic relay in Fig. 2, with yM,k+1=

−yM,k = −y
p
M , is as follows (Atherton, 1975):

q(y
p
M) = 2UM

�y
p
M

[
(�∗ + 1)

√
1 − �2

+ j [(�∗ − 1) + �(�∗ + 1)]
]

. (6)

A periodic solution can appear if the negative reciprocal of the
DF (6) intersects the Nyquist plot of the harmonic response
W(j�) (Atherton, 1975). The negative reciprocal of the DF (6)
is:

− 1

q
= �y

p
M

4UM

−(�∗ + 1)

√
1 − �2

�∗2
(1 + �) + (1 − �)

+ �y
p
M

4UM

j [(�∗ − 1) + �(�∗ + 1)]
�∗2

(1 + �) + (1 − �)
. (7)

The locus (7) is a straight line backing out of the origin and
forming a clockwise angle 	 with respect to the negative real
axis (see Fig. 3).
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Fig. 3. DF-analysis in the complex plane.

From (7), angle 	 can be expressed as a function of the
controller parameters

	 = arctan

⎛
⎜⎝ (�∗ − 1) + �(�∗ + 1)

(�∗ + 1)

√
1 − �2

⎞
⎟⎠ . (8)

Note that 	 is ranging between 0 and �/2. Then, the periodic
motion may exist if at some frequency � = � the phase char-
acteristic of the actuator-plant transfer function ranges between
−� and − 3

2�. This is only possible if the overall relative degree
of the actuator/process system is higher than two. If an inter-
section point exists then the frequency of the periodic solution
is � and the amplitude depends on the magnitude of W(j�)

at the frequency �. Usually, the larger 	 the greater the cor-
responding frequency �, and the smaller the magnitude of the
oscillation.

The magnitude of the steady-state oscillations y
p
M can be

evaluated according to the following formula

M = |W(j�)| = �y
p
M

2
√

2UM

√
�∗2

(1 + �) + (1 − �)

. (9)

Direct use for design of the nonlinear formulas (8) and (9)
can be avoided. In order to impose some prescribed constraints
on the amplitude and frequency of the steady-state periodic
oscillation it is convenient to refer to the curves in Fig. 4. A
three-step tuning procedure can be given as follows:

A. Let �1 ����2 be the desired range for the periodic so-
lution frequency.

B. Evaluate 	1 = −180◦ − � W(j�1) and 	2 = −180◦ −
� W(j�2).

C. Identify in the table reported in Fig. 4 proper values for
the parameters �∗ and � such that 	1 �	�	2 while max-
imizing MUM/y

p
M .

Maximizing MUM/y
p
M , i.e. minimizing the oscillation am-

plitude y
p
M , is achieved by increasing �. However, it has been

shown in Bartolini et al. (2003) that if � is too close to the unit
value then the transient could slow down heavily. On-line pa-
rameter adjustment could be necessary, in some cases, in order
to achieve satisfactory performance both during the transient
and in steady-state.
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β

�

�

SimulationDF

Fig. 5. DF analysis vs. simulation results.

4. Simulations

4.1. An academic example

The plant-plus-actuator transfer function

W(s) = 1

(s2 + s + 1)(1 + 0.01s)
(10)

was considered for the closed-loop analysis with the general-
ized sub-optimal algorithm. The relative degree of the transfer
function is three, then its Nyquist plot intersects the straight
line (7).

Let us apply the described three-step procedure to shape the
periodic solution parameters. Step A: the desired frequency
range is 55 rad s−1 ���65 rad s−1. Step B yields 	1=0.49 rad
and 	2 = 0.56 rad. Interpolation of the curves in Fig. 4 is re-
quired. It follows that choosing �∗ = 1 and � = 0.5 one keeps
	 within the prescribed interval minimizing at the same time
the amplitude of the periodic solution.

The theoretical (i.e. predicted by DF method) and actual (i.e.
arising from the plant simulation) parameters of the periodic
solution were compared also for different values of � and �∗
(see the table in Fig. 5). The actual frequency of the periodic
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Fig. 6. Block scheme of the physical simulation example.
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Fig. 8. The time evolution of q1 when � = 0.7 (left) and � = 0.9 (right).

solution when �∗ = 1 and � = 0.5 lies within the prescribed
interval.

4.2. A physical example

We are going to investigate, by means of a simulation ex-
ample, if the proposed results are still applicable in the non-
linear setting. We argue that if the nonlinear system is steered

near some constant operating point, and the corresponding lo-
cal linearization is asymptotically stable, then the given tuning
guidelines still apply. Consider the simplified model of a rotat-
ing arm driven by a torque motor through an elastic link

1
2 ML2q̈1 + Bq̇1 + 1

2 MgL sin(q1) = K(q2 − q1),

J q̈2 + K(q2 − q1) = 
, (11)
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where q1 and q2 represent the arm and motor coordinates, M
and L are the mass and length of the arm, b is the viscous fric-
tion coefficient, J is the motor inertia reflected to the link-side
of the gears and K is the joint stiffness coefficient. We consider
the electrical dynamics of the drive as a first-order stable trans-
fer function relating the “command” torque 
∗ (output by the
controller) and the actual torque acting on the link:


 = 1

1 + �s

∗, � = 0.01. (12)

The overall control system is represented in Fig. 6.
The task is to regulate the arm position to the constant set-

point q∗
1 by using only motor-side measurements (motor posi-

tion and velocity).
The sliding variable is defined as y1 = q̇2 + c(q2 − q∗

1 ),
with c being a positive design parameter. Add an integrator at
the input side (“anti-chattering 2-SMC design (Bartolini et al.,
2003)) and set the discontinuous derivative of the command
torque according to the generalized sub-optimal controller with
�∗ =1 and UM =50. The simulation parameters are: M =2 Kg,
L=1 m, J =0.1 Kg m2, b=1 Nm s, K =500 Nm, q∗

1 =�/3 rad,
c = 3.

The relative degree between y1 and 
̇∗ is three and the lin-
earized dynamics around the target point is stable. Thus we
can argue that in spite of the nonlinear dynamics of the system
the sliding quantity y1 could exhibit a periodic oscillation in
steady-state.

The transfer function G(s) between the arm coordinate devi-
ation �q1 = q1 − q∗

1 and the sliding variable deviation �y1 = y1
is

G(s) = K

(s + c)( 1
2 ML2s2 + bs + 1

2 MgL cos(q∗
1 ) + K)

. (13)

The frequency response G(j�) features a resonant mode near
25 rad s−1. In order to obtain at least −60 db of attenuation
near the resonant frequency, the oscillation frequency of y1
should be larger than 80 rad s−1. By considering the linearized
transfer function between y and 
̇∗ it follows that angle 	 must
be larger than 0.9 rad. In order to minimize at the same time
the oscillation amplitude, the parameters � and �∗ must be set
according to � > 0.8, �∗ ≈ 1.

The y1 waveforms obtained when �=0.7 and 0.9 are reported
in Fig. 7. As expected, increasing � the amplitude of the periodic
oscillation reduces and the corresponding frequency increases.
According to the previous considerations the behaviour of q1
considerably improves by increasing �, as can be verified by
comparing the plots in Fig. 8.

5. Conclusions

The describing function approach to the analysis of feedback
control systems with linear plants driven by 2-SMC schemes
has been presented. As a unified representation of several ex-
isting SMC algorithms, the generalized sub-optimal 2-SM con-
troller is considered. The proposed graphical analysis indicates
that if the plant-plus-actuator relative degree is three or more
then a periodic solution can take place in steady-state. It has

also been shown that changing the controller parameters al-
lows varying the magnitude and frequency of the possible peri-
odic solution. A constructive three-step procedure for shaping
the periodic solution parameters via controller tuning has been
developed and tested by simulations. The proposed approach
proved to be effective to achieve a sufficiently accurate estima-
tion of the steady-state control system performance.
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