Chapter

Linear Algebra

3.1 Intfroduction .

T

This chapter reviews & number of concepts and results in linear algebra that are essential in the
study of this text. 'The topics are carefully selected, and only those that will be used subsequently

are introduced.
the ideas. Thev are stated as theorems for easy reference in later chapters. However, no formal

proofs are given.

As we saw in the preceding chapter, all parameters that arise in the real world are real
numbers. Therelote we deal only with real numbers, unless stated otherwise, throughout this
text. Let A. B. (. sl D be, respectively, n x m, m X r, I x n,and r x p real matrices. Let a;

. ,B. (.
be the ith column v A, and b; the jth row of B. Then we have

r~ bl
by
,r\" = [al a - am] . = albl + aZbZ + -+ ambm (31)
by
CA=Cla; ap --- a,]=[Ca Ca; --- Ca,] (3.2)
and
b, b;D
b, b,D
BD=| |D=]| _ (3.3)
s bnl me

Alont results are. developed intuitively in order for the reader to better grasp
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These identities can easily be verified. Note that a;b; is an  x r matrix; it is the product of an
n x 1 column vector and a 1 x r row vector. The product b;a; is not defined unless n = r; it

becomes a scalar if n = r.

3.2 Basis, Representation, and Orthonormalization

Consider an n-dimensional real linear space, denoted by R". Every vector in R" is an n-tuple
of real numbers such as

X1
X2
X =
X,
To save space, we write itas x = [x; x, --- x,]’, where the prime denotes the transpose.
The set of vectors {X|, X3, ..., X} in R" is said to be linearly dependent if there exist
real numbers ¢, a3, ..., «,, not all zero, such that
o1X) +oXo + -+ apX, = 0 (34)
If the only set of «; for which (3.4) holds is ¢} = 0, ay = 0, ..., «a, = 0, then the set of
vectors {X|, X2, ..., X,,} is said to be linearly independent.

If the set of vectors in (3.4) is linearly dependent, then there exists at least one «;, say,
«, that is different from zero. Then (3.4) implies

1
X| = ——[(‘1:.‘(: +o3x3+ - + amxm]
oy

= ﬁ?xl - [33)(3 + -+ ﬂmxm

where 5; = —a; /). Suich an expression is called a linear combination.

The dimension of a linear space can be defined as the ‘maximum number of linearly
independent vectors in the space. Thus in R", we can find at most n linearly independent
vectors.

Basis and representation A set of linearly independent vectors in R" is called a basis if
every vector in R” can be expressed as a unique linear combination of the set. In R”, any set
of n linearly independent vectors can be used as a basis. Let {q;, q2, -...q,} be such a set.
Then every vector x can be expressed uniquely as '

X =wq) +CY2Q2+--'+CYnQn (35)
Define the n x n square matrix
Q:= [a 92 - qu ] (3.6)

Then (3.5) can be written as
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an
x=Q] . =: Qx 3.7
oy
We call X = [a) as --- «a,] the representation of the vector x with respect to the basis

{qls q;’, LR | qll}‘
We will associate with every R the following orthonormal basis:

1 0 0 0
0 1 0 0
0 0 0 0
=1 4, b= |, s =)L = (3-8)
0 0 1 0
L O L0 L0 L1
With respect to this basis, we have
™ x| x17]
X X2
Xi= | =xii +xia+ -+ 0,0, =1,
Lx, Xy

N

where I, is the 7 x 17 unit matrix. In other words, the representation of any vector x with respect
to the orthonormal basis in (3.8) equals itself.

ExAMPLE 3.1 Consider the vector x = [1 3] in R? as shown in Fig. 3.1, The two vectors
q; = [3 11 and q» = [2 2]’ are clearly linearly independent and can be used as a basis. If we
draw from x two lines in parallel with q; and q,, they intersect at —q, and 2q» as shown. Thus
the representation of x with respect to {q;, q2} is [—1 2]’. This can also be verified from

=)= 3= 2T

To find the representation of x with respect to the basis {qs, i»}, we draw from x two lines
in parallel with i, and q,. They intersect at 0.5¢» and 2i,. Thus the representation of x with
respect to {qa, i2} is [0.5 2]’. (Verify.)

Norms of vectors The concept of norm is a generalization of length or magnitude. Any
real-valued function of x, denoted by ||x||, can be defined as a norm if it has the following
properties:

1. |Ix|| = O for every x and ||x}| = O if and only if x = 0.
2. [lax|| = |a|||x]||, for any real «.

3. |1x1 + X2|] < |]x1]] % |Ix2]] for every x; and x,.




3.7

ct to the basis

(3.8)

X with respect

e two vectors
a basis. If we
s shown. Thus
fied from

m X two lines
ion of x with

gnitude. Any
he following

AT A

3.2 Basis, Representation, and Orthonormalization 47

Figure 3.1 Different representations of
vector X.

The last inequality is called the triangular inequality.
Letx = [x; x» --- x,]’. Then the norm of x can be chosen as any one of the following:

n
(Xl o=l

=l

Il o= VA = (D

i=]

12

HXHQC = max; l,\‘i[

They are called, respectively, 1-norm, 2- or Euclidean norm, and infinite-norm. The 2-norm
is the length of the vector from the origin. We use exclusively, unless stated otherwise, the
Euclidean norm and the subscript 2 will be dropped.

In MATLAB, the norms just introduced can be obtained by using the functions
norm(x, 1), norm(x, 2)=norm(x), and norm(x, inf).

Orthonormalization A vectorx is said to be normalized if its Euclidean normis 1 orx’x = 1.
Note that x'x is scalar and xx’ is n x n. Two vectors x; and X, are said to be orthogonal if

X;X2 = X3X; = 0. Asetof vectors ;.7 = 1,2, ..., m, is said to be orthonormal if
xe 0 ifi#j
B 1 ifi=j
Given a set of linearly independent vectors e, e, ..., €,,we can obtain an orthonormal

set using the procedure that follows:
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ug /|
w/||uz|

]

u; ‘= q;
u =e; — (q)er)q; q::

il

—n—1
u, =€,; — Lzlzl (Q;\-Cm)Qk qm = um/Hum ”

The first equation normalizes the vector e; to have norm 1. The vector (q;e)q is the projection
of the vector e; along q; . Its subtraction from e, yields the vertical part u,. It is then normalized
t5 1 as shown in Fig. 3.2. Using this procedure, we can obtain an orthonormal szt. This is called
the Schmidt orthonormalization procedure.

Let A = {a; a; --- a,] be an n x m matrix with m < »n. If all columns of A or
{a;, i = 1,2,...,m} are orthonormal, then
aj i1 0 -+ 0
a, 01 --- 0 .
A,A = . [al a - am] = . . . . = Im
a 00 --- 1

n

where I,,, is the unit matrix of order m. Note that, in general, AA’ # I,,. See Problem 3.4.

3.3 Linear Algebraic Equations

Consider the set of linear algebraic equations
Ax =y 3.9

where A and y are, respectively, m x n and m x 1 real matrices and x is an n x 1 vector. The

matrices A and y are given and x is the unknown to be solved. Thus the set actually consists ot

m equations and » unknowns. The number of equations can be larger than, equal to, or smaller
than the number of unknowns.

We discuss the existence condition and general form of solutions of (3.9). The range
space of A is defined as all possible linear combinations of all columns of A. The rank of A is

_
o
[N}

Figure 3.2 Schmidt orthonormization procedure.
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defined as the dimension of the range space or, equivalently, the number of linearly independent
columns in A. A vector X is called a null vector of A if Ax = 0. The null space of A consists
of all its null vectors. The nullity is defined as the maximum number of linearly independent
null vectors of A and is related to the rank by

Nullity (A) = number of columns of A — rank (A) 3.10)

ExAMPLE 3.2 Consider the matrix

01 1 2
A=1|1 2 3 4| =:[a; a; a3 a4} (3.11)
2 020

where a; denotes the ith column of A. Clearly a; and a; are linearly independent. The third
column is the sum of the first two columns or a; + a; — a3 = 0. The last column is twice the
second column, or 2a; — a4 = 0. Thus A has two linearly independent columns and has rank
2. The set {a;, ay} can be used as a basis of the range space of A.

Equation (3.10) implies that the nullity of A is 2. It can readily be verified that the two
vectors

1 0
1 2
= = 3.12
n; _q n; 0 (3.12)
0 —1

meet the condition An; = 0. Because the two vectors are linearly independent, they form a
basis of the null space.

The rank of A is defined as the number of linearly independent columns. It also equals
the number of linearly independent rows. Because of this fact, if A ism x n, then

rank(A) < min(m, n)

InMATLAB, the range space. null space, and rank can be obtained by calling the functions
orth, null, and rank. For example, for the matrix in (3.11), we type

a=[0 1 12;12 3 4;202 071;
rank (a)

which yields 2. Noté that MATLAB computes ranks by using singular-value decomposition
(svd), which will be introduced later. The svd algorithm also yields the range and null spaces
of the matrix. The MATLAB function R=orth (a) yields!

Ans R=
0.3782 —-0.3084
0.8877 —0.1468 (3.13)
0.2627 0.9399

1. This is obtained using MATLAB Version 5. Earlier versions may yield different results.
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The two columns of R torm an orthonormal basis of the range space. To check the orthonor-
mality. we type R’ *R, which yields the unity matrix of order 2. The two columns in R are not
obtained from the basis {a;, a;} in (3.11) by using the Schmidt orthonormalization procedure;
they are a by-product of svd. However. the two bases should span the same range space. This
can be verified by typing

rank(flal a2 RJ])

which yields 2. This confirms that {a;, a»} span the same space as the two vectors of R. We
mention that the rank of a matrix can be very sensitive to roundoff errors and imprecise data.
For example, if we use the five-digit display of R in (3.13), the rank of {al a2 R] is 3. The
rank is 2 if we use the R stored in MATLAB, which uses 16 digits plus exponent.

The null space of (3.11) can be obtained by typing null (a), which yields

Ans N=

0.3434 —0.5802
0.8384  0.3395
—-0.3434  0.5802
—0.2475 —-0.4598
The two columns are an orthonormal basis of the null space spanned by the two vectors {n;, n»}
in (3.12). All discussion for the range space applies here. That is, rank ({nl nZ NJ})
yields 3 if we use the five-digit display in (3.14). The rank is 2 if we use the N stored in
MATLAB.
With this background, we are ready to discuss solutions of (3.9). We use o to denote the
rank of a matrix.

(3.14)

Theorem 3.1

1. Given anm X n matrix A and anm X 1 vector y, an n X 1 solution X exists in AX = y if and only
if y lies in the range space of A or, equivalently,

pA) =p (A yD

where [A y]isanm x (n + 1) matrix with y appended to A as an additional column.
2. Given A, a solution X exists in AX =y for every y, if and only if A has rank m (full row rank).

The first statement follows directly from the definition of the range space. If A has full
row rank. then the rank condition in (1) is always satisfied for every y. This establishes the
second statement.

Theorem 3.2 (Parameterization of all solutions)

Givenan m X n matrix A and an m X 1 vectory, let X, be a solution of AX = y and letk :=n — p(A)
be the nullity of A. If A has rank n (full column rank) or k = 0, then the solution X, is unique. Ifk > 0,
then foreveryreal ;, 1 = 1,2, ..., k, the vector :
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X =X, +oan + -+ oy (3.15)

is a solution of AX =y, where {n;, ..., g} is a basis of the null space of A.

Substituting (3.15) into Ax =y yields

k
AXP+ZOGAD(‘ =Ax, +0=y

i=1

Thus, for every «;, (3.15) is a solution. Let X be a solution or AX = y. Subtracting this from
Ax, =y yields

AR—x,) =0

which implies that X — x,, is in the null space. Thus X can be expressed as in (3.15). This
establishes Theorem 3.2.

ExAMPLE 3.3 Consider the equation

011 2 -4
Ax= |1 2 3 4 |x=:[a a; a3 a4]x=| -8 | =y (3.16)
2 0 2 0 0

This y clearly lies in the range space of A andx, = [t —4 0 0]’ is a solution. A basis of the
null space of A was shown in (3.12). Thus the general solution of (3.16) can be expressed as

0 1 0
—4 1 2
X=X, +oan +aonp = + o) + az (3.17)
g -1 0
0 0 -1

for any real «| and «;.

In application, we will also encounter xA-= y, where the m x n matrix A andthe 1 X n
vector y are given, and the 1 x m vector x is to be solved. Applying Theorems 3.1 and 3.2 to
the transpose of the equation, we can readily obtain the following result.

Corollary 3.2

1. Givenanm x n matrix A, a solution X exists in XA =y, for any y, if and only if A has full column
rank.

2. Givenanm x n matrix A andan 1 X n vectory, letX, be asolution of XA = y'andletk = m-—p(A).
If k = 0, the solution X, is unique. If k > 0, then for any «;, i = 1,2, ..., k, the vector

X=X, +toan+- -+ a;n

is a solution of XA =y, where n;A = 0 and the set {ny, ..., Nt} is linearly independent.

In MATLAB, the solution of Ax = y can be obtained by typing A\y. Note the use of
backslash, which denotes matrix left division. For example, for the equation in (3.16), typing
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a=[0112;1 2 3 4;2 0 2 0};y=[(-4;-8;0];
a\y

yields [0 -4 0 0] . The solution of XA =y can be obtained by typing y/A. Here we use
slash, which denotes matrix right division.

Determinant and inverse of square matrices The rank of a matrix is defined as the number
of linearly independent columns or rows. It can also be defined using the determinant. The
determinant of a 1 x 1 matrix is defined as itself. Forn = 2, 3, ..., the determinantof n x n
square matrix A = [a;;] is defined recursively as, for any chosen j,

n
det A=) ajcy (3.18)
i

where a;; denotes the entry at the ith row and jth column of A. Equation (3.18) is called
the Laplace expansion. The number ¢;; is the cofactor corresponding to a;; and equals
(—1)i*J det M;;, where M;; is the (1 — 1) x (n — 1) submatrix of A by deleting its ith row
and jth column. If A is diagonal or triangular, then det A equals the product of all diagonal
entries.

The determinant of any » x r submatrix of A is called a minor of order r. Then the rank
can be defined as the largest order of all nonzero minors of A. In other words, if A has rank r,
then there is at least one nonzero minor of order r, and every minor of order larger than r is
zero. A square matrix is said to be nonsingular if its determinant is nonzero. Thus a nonsingular
square matrix has full rank and all its columns (rows) are linearly independent.

The inverse of a nonsingular square matrix A = [a;;] is denoted by A~'. The inverse has
the property AA~" = A~!'A = I and can be computed as

AGA 1
Ar=29A Ly 3.19
detA  dera Ll .19

where ¢;; is the cofactor. If a matrix is singular, its inverse does not exist. If A is 2 x 2, then

we have
: -1
A= l:au alz:l _ 1 [ an _012:| (3.20)

a1 an andpz —apdy | —dx  dn
Thus the inverse of a 2 x 2 matrix is very simple: interchanging diagonal entries and changing
the sign of off-diagonal entries (without changing position) and dividing the resulting matrix
by the determinant of A. In general, using (3.19) to compute the inverse is complicated. If A is
triangular, it is simpler to compute its inverse by solving AA~! = L. Note that the inverse of a
triangular matrix is again triangular. The MATLAB function inv computes the inverse of A.

Theorem 3.3

Consider AX = y with A square.

1. If A is nonsingular, then the equation has a unique solution for every y and the solution equals A‘ly.
In particular, the only solution of AX = 0 is x = 0. ’
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2. The homogeneous equation AX = 0 has nonzero solutions if and only if A is singular. The number
of linearly independent solutions equals the nullity of A.

3.4 Similarity Transformation
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Consider an n X n matrix A. It maps R”" into itself. If we associate with R" the orthonormal
basis {i;, i, ..., 1,} in (3.8), then the ith column of A is the representation of Al; with re-
spect to the orthonormal basis. Now if we select a different set of basis {qi,_q2, ..., Qn}, then
the matrix A has a different representation A. It turns out that the ith column of A is the representation
of Aq; with respect to the basis {qy, q2, ..., Q). This is illustrated by the example that follows.

ExaMPLE 3.4 Consider the matrix

3 2 -1
A=|-21 0 (3.21)
4 3 1
Letb = [0 O 1]. Then we have
-1 -4 -5
Ab=] 0|, A%h=AAb)=| 2!, A’b=AA%) = 10
1 -3 -13
It can be verified that the following relation holds:
A’b = 17b — 15Ab + 5A%b (3.22)

Because the three vectors b, Ab, and Ab are linearly independent, they can be used as a basis.
We now compute the representation of A with respect to the basis. It is clear that

07
A(b) =[b Ab A’b]| 1
L0
r'o—
A(Ab) =[b Ab A%b]| O
L1
17
A(A%b) =[b Ab A%b]| —15
5

where the last equation is obtained from (3.22). Thus the representation of A with respect to
the basis {b, Ab, AZb} is

0 0 17

A={1 0 -I5

0 1 5

(3.23)
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q
L
:

The preceding discussion can be extended to the general case. Let A be an n x n matrix. If
there exists an n x 1 vector b such that the n vectors b, Ab, ..., A"~ 'b are linearly independent

and if
A" = Bib+ BAb + - + B,A" b

then the representation of A with respect to the basis {b, Ab, ..., A" b} is

0 0 -~ 0 B
10 -~ 0 B
; o1 - 0 B
A= .
00 -+ 0 Bua
L 00 -~ 1 B

This matrix is said to be in a companion form.

Consider the equation

Ax =y

The square matrix A 'maps x in R” into y in R". With respect to the basis {q;, qa, ...

the equation becomes

~

AX =7

where X and y are the representations of x and y with respect to the basis {q;, qa, -..

As discussed in (3.7), they are related by

with
Q=[q @ - @]
an n X n nonsingular matrix. Substituting these into (3.25) yields
AQx=Qy or Q'AQx=y
Comparing this with (3.26) yields
A=Q'AQ or A=0QAQ

(3.24)

(3.25)

’ Qn}:

(3.26)

, Qnl.

(3.27)

(3.28)

(3.29)

This is called the similarity transformation and A and A are said to be similar. We write

(3.29) as
AQ = QA

or

Alqy @@ -+ qu1=[Aq, Aq; - Aq,]=Iq @2 - Q.JA
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This shows that the ith column of A is indeed the representation of Aq; with respect to the
basis {qi, q2, --., Qu}.

3.5 Diagonal Form and Jordan Form

A square matrix A has different representations with respect to different sets of basis. In this
section, we introduce a set of basis so that the representation will be diagonal or block diagonal.

A real or complex number A is called an eigenvalue of the n x n real matrix A if there
exists a nonzero vector x such that Ax = AX. Any nonzero vector x satisfying Ax = Ax is
called a (right) eigenvector of A associated with eigenvalue . In order to find the eigenvalue
of A, we write AX = Ax = AIx as

(A—=ADx=0 (3.30)

where I is the unit matrix of order n. This is a homogeneous equation. If the matrix (A — AI) is
nonsingular, then the only solution of (3.30) is x = 0 (Theorem 3.3). Thus in order for (3.30)
to have a nonzero solution X, the matrix (A — AI) must be singular or have determinant 0.
We define

A(L) = det(AI — A)

It is a monic polynomial of degree n with real coefficients and is called the characteristic
polynomial of A. A polynomial is called monic if its leading coefficient is 1. If X is a root of
the characteristic polynomial, then the determinant of (A — AI) is 0 and (3.30) has at least one
nonzero solution. Thus every root of A(}) is an eigenvalue of A. Because A(X) has degree n,
the n x n matrix A has n eigenvalues (not necessarily all distinct).

We mention that the matrices

r0 0 0 —ay —a] —0r —Q3 —0y ]
1 0 0 —a3 i 0 0 0
0 1 0 —a 0 1 0 0
t0 0 1 —a 0 0 1 0 J
and their transposes
0 1 0 0 —a; 1 0 07
0 0 1 0 —a; 0 1 O
0 0 0 1 —a3 0 0 1
L—ay —a3 —ay —o —ay 0 0 04

all have the following characteristic polynomial:
AQ) =2+ o 2+ ol + a3k +ay

These matrices can easily be formed from the coefficients of A(A) and are called companion-
Sform matrices. The companion-form matrices will arise repeatedly later. The matrix in (3.24)
is in such a form.
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Eigenvalues of A are all distinct Let ;,,7 = 1, 2, ..., n, be the eigenvalues of A and
be all distinct. Let q; be an eigenvector of A associated with A;; that is, Aq; = A;q;. Then
the set of eigenvectors {qi, q2, ..., q»} is linearly independent and can be used as a basis.
Let A be the representation of A with respect to this basis. Then the first column of A is the
representation of Aq; = A;q; with respectto {qi, q2, ..., q,}. From

A

0

Aq=rqi=[q q - q,]| O

0

we conclude that the first column of A is [A1 O --- 0]. The second column of A is the
representation of Aq, = A,q, with respect to {qi, q2, ..., q.}, thatis, [0 A; O --- Q).
Proceeding forward, we can establish
A 00 0
0 x» O 0
A=[0 0 2 .- 0 (3.31)
0O 0 0 --- A,

This is a diagonal matrix. Thus we conclude that every matrix with distinct eigenvalues has
a diagonal matrix representation by using its eigenvectors as a basis. Different orderings of
eigenvectors will yield different diagonal matrices for the same A.

If we-define:

Q = [ql q - qn] (332)

then the matrix A equals
A=Q7'AQ (3.33)

as derived in (3.29). Computmc (3.33) by hand is not simple because of the need to compute
the inverse of Q. However, if we know A, then we can verify (3.33) by checking QA AQ.

ExAMPLE 3.5 Consider the matrix

0 00
A=|1 0 2
011
Its characteristic polynomial is
A 0 0
A =detQl —A) =det| -1 1 =2
) 0 -1 r-1

=AMAA =D -2]=A-2)(A+ DA
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Thus A has eigenvalues 2, —1, and 0. The eignevector associated with A = 2 is any nonzero
solution of

-2 0 0

A-2Dgqi=| ! -2 2 |q=0
0 1 -1

Thus q; = [0 1 1] is an eigenvector associated with A = 2. Note that the eigenvector is not
unique, [0 « o] for any nonzero real & can also be chosen as an eigenvector. The eigenvector
associated with A = —1 is any nonzero solution of

100
A-(=DDg=|1 1 2 |q=0
01 2

which yields q» = [0 — 2 1]. Similarly, the eigenvector associated with A = 0 can be
computed as g3 = [2 1 — 1]'. Thus the representation of A with respect to {q,, q2, 3} is

2 0 0
A=]0 -1 0 (3.34)
0 0 0

It is a diagonal matrix with eigenvalues on the diagonal. This matrix can also be obtained by
computing

A=0Q'AQ

with

Q=[qqq]l=|1 -2 (3.35)

_— D

However, it is simpler to verify QA = AQor

0 0 2 2 0 0 0 0 0770 0 2
1 =2 1 0 -1 0f=}1 0 2 1 -2 1
1 1 -1 0 0 0O 0 1 1411 1 -1

The result in this example can easily be obtained using MATLAB. Typing

a=(0 0 0;1 0 2;0 1 11; [q,dl=eig(a)

yields
0 0 0.8186 2 0 0
qg=107071 0.8944  0.4082 d=10 -1 0
0.7071 —0.4472 —0.4082 0 0 0

where d is the diagonal matrix in (3.34). The matrix q is different from the Q in (3.35); but their
corresponding columns differ only by a constant. This is due to nonuniqueness of eigenvectors
and every column of q is normalized to have norm 1 in MATLAB. If we type eig (a) without
the left-hand-side argument, then MATLAB generates only the three eigenvalues 2, -1, 0.
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We mention that eigenvalues in MATLAB are not computed from the characteristic polynomial.
Computing the characteristic polynomial using the Laplace expansion and then computing its
roots are not numerically reliable, especially when there are repeated roots. Eigenvalues are
computed in MATLAB directly from the matrix by using similarity transformations. Once
all eigenvalues are computed, the characteristic polynomial equals [J(A — A;). In MATLAB,
typing r=eig(a) ;poly (r) yields the characteristic polynomial.

ExAMPLE 3.6 Consider the matrix

-1 1 1
A=] 0 4 -13
0 1 O

: Its characteristic polynomial is (A + 1)(A2—4X1+13). Thus A has eigenvalues —1, 243j. Note
F+  that complex conjugate eigenvalues must appear in pairs because A has only real coefficients.
"> Theeigenvectors associated with —1 and 243 j are, respectively,[1 0 0)and[j —3+2j jT.
The cigenvectof associated with A =2 —3jis[—j —3—2j — jJ, the complex conjugate
of the eigenvector associated with A = 2 4 3 j. Thus we have

, 1 —j -1 0 0 %
¢ Q=|0 —342j -3-2j| and A=| 0 243; 0 (3.36) i
0o j .0 0 2-3j |
|- The MATLAB function [q, d]1-eig(a) yields
S 1 0.2582j ~0.2582; |
? g=1|0 —0.7746 +05164; —0.7746 — 0.5164; |
b 0 0.2582; —0.2582;
4 and
10 0
d=| 0 2+3j 0

: 0 0 2-3j

£: All discussion in the preceding example applies here. :

Complex eigenvalues Even though the data we encounter in practice are all real numbers,
complex numbers may arise when we compute eigenvalues and eigenvectors. To deal with this
problem, we must extend real linear spaces into complex linear spaces and permit all scalars
such as «; in (3.4) to assume complex numbers. To see the reason, we consider

Av=[ b 1+]]v=0 (3.37)
I —j 2

If we restrict v to real vectors, then (3.37) has no nonzero solution and the two columns of
A are linearly independent. However, if v is permitted to assume complex numbers, then
v = [-2 1 — jJ is a nonzero solution of (3.37). Thus the two columns of A are linearly
dependent and A has rank 1. This is the rank obtained in MATLAB. Therefore, whenever
complex eigenvalues arise, we consider complex linear spaces and complex scalars and
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transpose is replaced by complex-conjugate transpose. By so doing, all concepts and results
developed for real vectors and matrices can be applied to complex vectors and matrices.
Incidentally, the diagonal matrix with complex eigenvalues in (3.36) can be transformed into
a very useful real matrix as we will discuss in Section 4.3.1.

Eigenvalues of A are not all distinct An eigenvalue with multiplicity 2 or higher is called a
repeated eigenvalue. In contrast, an eigenvalue with multiplicity 1 is called a simple eigenvalue.
If A has only simple eigenvalues, italways has a diagonal-form representation. If A has repeated
eigenvalues, then it may not have a diagonal form representation. However, it has a block-
diagonal and triangular-form representation as we will discuss next.

Consider an n x n matrix A with eigenvalue A and multiplicity ». In other words, A has
only one distinct eigenvalue. To simplify the discussion, we assume n = 4. Suppose the matrix
(A — AI) has rank n — | = 3 or, equivalently, nullity 1; then the equation

(A—2Dg=0

has only one independent solution. Thus A has only one eigenvector associated with A. We
need n — 1 = 3 more linearly independent vectors to form a basis for R*. The three vectors
q2, q3, qs4 will be chosen to have the properties (A — AI)zqz =0, (A - XI)3q3 = 0, and
(A — AD%qq = 0.
A vector v is called a generalized eigenvector of grade n if
(A-AD"v=10
and

A-2D"'v£0

If n = 1, they reduce to (A — AI)v = 0 and v 3 0 and v is an ordinary eigenvector. Forn = 4,
we define

94 =V

vy = (A —ADvy = (A — ADv
vy := (A = ADv; = (A — AD%v
vy = (A — ADvs = (A — AD’v

They are called a chain of generalized eigenvectors of length n = 4 and have the properties
(A —=ADv; =0, (A — AI}?v, = 0, (A — AI)?v; = 0, and (A — A)*v4 = 0. These vectors,
as generated, are automatically linearly independent and can be used as a basis. From these
equations, we can readily obtain '

Av; = v,

Avy, = v 4+ Av,
Avy = v, + Avs
Avy = v3 + Avy
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Then the representation of A with respect to the basis {vq, v2, v3, vi}is

A1 0 O
0 x 10

7 0 0 x 1 ( )
00 0 2

We verify this for the first and last columns. The first column of J is the representation of
Av, = Av| with respect to {vy, v3, v3, V4}, which is [A O 0 0}'. The last column of J is the
representation of Avy = v3 + Av4 with respect to {vy, v2, V3, v4}, which is [0 O 1 A]'. This
verifies the representation in (3.38). The matrix J has eigenvalues on the diagonal and 1 on the
superdiagonal. If we reverse the order of the basis, then the 1’s will appear on the subdiagonal.
The matrix is called a Jordan block of order n = 4.

If (A — AI) has rank n — 2 or, equivalently, nullity 2, then the equation

(A—ADgq=0

has two linearly independent solutions. Thus A has two linearly independent eigenvectors and
we need (n — 2) generalized eigenvectors. In this case, there exist two chains of generalized
eigenvectors {v|, Va,...,Vi} and {u;, up, ..., w} with k +/ = n. If v; and u; are linearly
independent, then the set of n vectors {vy, ..., v, uy, ..., W} is linearly independent and can
be used as a basis. With respect to this basis, the representation of A is a block diagonal matrix
of form )

A = diag{J1, J2)
where J; and J; are, respectively, Jordan blocks of order & and /.
Now we discuss a specific example. Consider a 5 x 5 matrix A with repeated eigenvalue X,
with multiplicity 4 and simple eigenvalue A,. Then there exists a nonsingular matrix Q such that

A=Q'AQ
assumes one of the following forms
A 1 0 0 0 rAa 1 0 0 07
0 » 1 0 0 0 A 1 0 O
Ar=|l0 0 A 1 0 Ab=l0 0 2 0 0
0 0 0 A O 0 0 0 2 O
LO 0 0 0 A L0 0 0 0 il
~x 1 0 0 07 ~x 1 0 0 0-
0 A 0 0 O 0 » 0 0 O
Ay=]10 0 A 1 0 As={0 0 2 0 O
0 0 0 A O 0 0 0 A O
L0 0 0 0 A Lo 0 0 O AZJ
A 0 0 0 0-q
0 A, 0 0 O
As={0 0 x» 0 0 (3.39)
0 -0 0 X 0
L0 0 0 0 Ayl

3.6 Func
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The first matrix occurs when the nullity of (A — A1) is 1. If the nullity is 2, then A has two
Jordan blo«,ks associated with A,; it may assume the form in A7 orin A; If (A — A1) has nullity
3, then A has three Jordan blocks associated with A1 as shown in A4 Certainly, the positions
of the Jordan blocks can be changed by changing the order of the basis. If the nullity is 4, then
Aisa diagonal matrix as shown in As. All these matrices are triangular and block diagonal
with Jordan blocks on the diagonal; they are said to be in Jordan form. A diagonal matrix is a
degenerated Jordan form; its Jordan blocks all have order 1. If A can be diagonalized, we can
use [q,d]=eig(a) to generate Q and A as shown in Examples 3.5 and 3.6. If A cannot be
diagonized, A is said to be defective and [q, d] =eig (a) will yield an incorrect solution. In
this case, we may use the MATLAB function [q, d] =jordan (a). However, jordan will
yield a correct result only if A has integers or ratios of small integers as its entries.

Jordan-form matrices are triangular and block diagonal and can be used to establish
many general properties of matrices. For example, because det(CD) = detCdetD and
detQdet Q! = detI = 1, from A = QAQ™!, we have

detA = det Qdet A det Q7' = det A

The determinant of A is the product of all diagonal entries or, equivalently, all eigenvalues of
A. Thus we have

det A = product of all eigenvalues of A

which implies that A is nonsingular if and only if it has no zero eigenvalue.
We discuss a useful property of Jordan blocks to conclude this section. Consider the
Jordan block in (3.38) with order 4. Then we have

0 1 0 07 0010
001 0 , 0 0 0 1
_A.I: -—.I'z

U=M=15 5 o 1 (=41 000 0
LO. 0 0 0 00 0O
0 0 0 17
000 0

J -2 = 00 0 0 (3.40)
L0 0 0 0

and (J — AD¥ = 0 for k > 4. This is called nilpotent.

3.6 Functions of a Square Md’rrix

This section studies functions of a square matrix. We use Jordan form extensively because
many properties of functions can almost be visualized in terms of Jordan form. We study first
polynomials and then general functions of a square matrix.

Polynomials of a square matrix Let A be a square matrix. If £ is a positive integer, we
define

AF:=AA...A (k terms)
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and A% = I Let f (&) be a polynomial such as f()) = A +2A0% = 6or (A+2)(4A —3). Then
77A) is defined as

FA)=A>+2A%—6I or f(A)=(A+20)(4A -3

If A is block diagonal, such as

A= A 0
10 A,
where A; and Aj are square matrices of any order, then it is straightforward to verify
Ab 0 f@Ay 0 ] ;
k=1 d f(A)= (3.41) i
A [0 A’;] wd W [ 0 flA) |

Consider the similarity transformation A=Q'AQorA = QAQ'I. Because
A* = (QAQ)(QAQ™) - (QAQ™) = QA'Q™
we have
fA)=QfAQ™" o fA)=Q'f(AQ (3.42)

A monic polynomial is a polynomial with 1 as its leading coefficient. The minimal
polvnomial of A is defined as the monic polynomial ¥ (1) of least degree such that 17 (A) = 0.
Note that the 0 is a zero matrix of the same order as A. A direct consequence of (3.42) is
that f(A) = 0if and only if f(A) = 0. Thus A and A or, more general, all similar matrices
have the same minimal polynomial. Computing the minimal polynomial directly from A is not
simple (see Problem 3.25); however, if the Jordan-form representation of A is available, the ,
minimal polynomial can be read out by inspection. E

Let X; be an eigenvalue of A with multiplicity n;. That is, the characteristic polynomial
of Ais

AQ) = detGI - A) = [ [~ 2)"

Suppose the Jordan form of A is known. Associated with each eigenvalue, there may be one or
more Jordan blocks. The index of A;, denoted by 7;, is defined as the largest order of all Jordan

. blocks associated with A;. Clearly we have i1; < n;. For example, the multiplicities of A1 in all
five matrices in (3.39) are 4; their indices are, respectively, 4, 3, 2, 2, and 1. The multiplicities
and indices of 1, in all five matrices in (3.39) are all 1. Using the indices of all eigenvalues,
the minimal polynomial can be expressed as

Yoy =] [ =)

) .-

withdegreei = Y #; < 3 n; = n = dimension of A. For example, the minimal polynomials
of the five matrices in (3.39) are

Yi=A=2)'A=21)  Yo=G -t =1
Yi=Gh—A)>RA=-1)  Ya=G—=-2)'A—1)

~

Ys = (A =ADA = Ay)

[BUS I ’ i .
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Their characteristic polynomials, however, all equal
AR = (=2~ r2)

We see that the minimal polynomial is a factor of the characteristic polynomial and has a degree
less than or equal to the degree of the characteristic polynomial. Clearly, if all eigenvalues of
A are distinct, then the minimal polynomial equals the characteristic polynomial.
Using the nilpotent property in (3.40), we can show that
¥(A) =0

and that no polynomial of lesser degree meets the condition. Thus ¥ (X) as defined is the
minimal polynomial. :

Theorem 3.4 (Cayley-Hamilton theorem)
Let ‘

AQ) =detAl —A) = A" +a A"+ At a,
be the characteristic polynomial of A. Then

AA)=A"+a A"+ o At =0 (3:43)

In words, a matrix satisfies its own characteristic polynomial. Because n; > n;, the
characteristic polynomial contains the minimal polynomial as a factor or A(A) = ¥ (A)h(A)
for some polynomial 2(A). Because ¥ (A) = 0, we have A(A) = ¢ (A(A) =0-h(A) = 0.
This establishes the theorem. The Cayley—Hamilton theorem implies that A" can be written as
a linear combination of {I, A, ..., A""'}. Multiplying (3.43) by A yields

AT oAty A2+, A=0-A=0

which implies that A" can be written as a linear combination of {A. A?, ..., A"}, which,
in turn, can be written as a linear combination of {I. A, ..., A"}, Proceeding forward, we
conclude that, for any polynomial f(X), no matter how large its degree is, f(A) can always
be expressed as

FA) =Bl +BA+-+ B A" (3.44)

for some f;. In other words, every polynomial of an #» x n matrix A can be expressed as a linear
combination of {I, A, .".., A"~!}. If the minimal polynomial of A with degree 7 is available,
then every polynomial of A can be expressed as a linear combination of {I, A, ..., A" !}. This
is a better result. However, because 7 may not be available, we discuss in the following only
(3.44) with the understanding that all discussion applies to 7.

One way to compute (3.44) is to use long division to express f(A) as

FR)=gMAQR) +h(R) (3.45)
where g (1) is the quotient and £ (A) is the remainder with degree less than n. Then we have

f(A) =q(A)AA) +h(A) = q(A)0 + h(A) = h(A)
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Long division is not convenient to carry out if the degree of f (1) is much larger than the degree
of A(A). In this case, we may solve 7 (X) directly from (3.45). Let

h(A) := Bo+ BiA + - + By A"

where the n unknowns g; are to be solved. If all n eigenvalues of A are distinct, these §; can
be solved from the n equations

fO) =qR)AR) +h(x) = h(xy)

fori =1, 2, ..., n.If A has repeated eigenvalues, then (3.45) must be differentiated to yield
additional equations. This is stated as a theorem.

k= Theorem 3.5

We are given f(A) and an 7 X n matrix A with characteristic polynomial

m

AG) =[] =2
=1

where n = Z:-":l n;. Define
h() == Bo+ Bid + -« + Bug A"

It is a polynomial of degree n — 1 with n unknown coefficients. These # unknowns are to be solved
from the following set of n equations: .

PN =nrP@) forl=0,1,...,n,—=1 and i=1,2, ..., m

where

and K (1)(/\,-) is similarly defined. Then we have
fA)=h(A)
. and /1(}) is said to equal f(A) on the spectrum of A.

A=[O 1}
-1 =2

In other words, given f(A) = A'®, compute f(A). The characteristic polynomial of A is
AQ) =22 +20+ 1= (A + D% Let h(L) = By + BiA. On the spectrum of A, we have

f(=D)=h(-1): (=D =g, - 8
f=l)y=H(=1): 100 (-1)* = p
Thus we have g; = —100, 8o = 1 + B; = —99, h(X) = —99 — 1004, and

=
1

ExaMpLE 3.7 Compute A'® with

I e —— T e ey e =
BAN L oA e s -
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A% = 81 + BA = —991 — 100A
10 0 1 —199  —100
:_99[0 1]'100[—1 —2}_[ 100 101}

Clearly A'% can also be obtained by multiplying A 100 times. However, it is simpler to use
Theorem 3.5. ;

Functions of a square matrix Let f (1) be any function, not necessarily a polynomial. One
way to define f(A) is to use Theorem 3.5. Let #(A) be a polynomial of degree n — 1, where n
is the order of A. We solve the coefficients of h(A) by equating f(A) = h()\) on the spectrum
of A. Then f(A) is defined as 1(A).

ExAMPLE 3.8 Let

00 —2
A=|01 0
1 0 3

Compute e*!. Or, equivalently, if f(L) = e, whatis f(A()?
The characteristic polynomial of A; is (A — 1)2(A — 2). Let k(L) = Bo + BiA + Bar’.
Then

Sy =h1): e =p+B+5

FO=n1): te=p+2p

f@=h@: & =po+26 +4p
Note that, in the second equation, the differentiation is with respect to A, not r. Solving these
equations yields By = —2te’ + ¢%, By = 3te’ +2¢' — 2¢%, and B, = ¥ — &' — te'. Thus we

have

eM = h(A)) = (=2te' + )+ (Gre' + 2¢" —2¢*)A,
2" — e 0
+ (e —e' —te")AT = 0 e’ 0

2
e’ —e 0 2e¥ —¢

ExXAMPLE 3.9 Let
0o 2 =2
Ay=10 1 0
I -1 3

Compute e*?'. The characteristic polynomial of A, is (A — 1)2(%. — 2), which is the same as
for A;. Hence we have the same #(1) as in Example 3.8. Consequently, we have

2e' — &2 e’ et —2e¥
A = h(A)) = 0 e 0
2t !

e —e'  —tef 2e¥ — ¢
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ExaMpLE 3.10 Consider the Jordan block of order 4:

o100

. lo o1 o0

A= 3.46
0 0 A I . (3:40)
0 0 0 X

Its characteristic polynomial is (A A Although we can select 1(X) as Bo+Bi A+ﬂzk+ﬁ3k3,
it is computationally simpler to select () as

h(A) = Bo+ Bi(h = A1) + B2k — Ap) + B3(A — 1y)°

This selection is permitted because ~(A) has degree (n — 1) = 3 and n = 4 independent
unknowns. The condition f(A) = h(A) on the spectrum of A yields immediately

e ©1%Y
Bo= f(A1), Bi1= f,()\l), B> = f ( l)‘ By = f 3(‘ 1)
Thus we have
A " 3

Using the special forms of (A — X;D¥ as discussed in (3.40), we can readily obtain

F) O/ Fra)/20 FO)/3!
0 fO)  FIOD/IT f(g)/2!

TW=1 0 FO0 Fon/m 34D
0 0 0 NACSY;
If f(A) =™, then
e rett M 21 33
A = 8 e;" t:;:I,, 1? f:k'l{Q! (3.48)
0 0 0 et

Because functions of A are defined through polynomials of A, Equations (3.41) and (3.42)
are applicable to functions.

ExampLE 3.11 Consider

A 10 0 0
0 » 1 0 0

A=|0 0 2 0 0

0 0 0 A |1

) 0 0 0 0 A

v




(3.46)

A Bod+B3A3,

4 independent
y
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It is block diagonal and contains two Jordan blocks. If f(A) = €7, then (3.41) and (3.48)
imply
Ayt te).;t tlel|1/2! 0

0
0 &M tettt 0 0
0

€

A= 0 0 M 0
0 0 0 ettt et
0 0 0 0 M
If f(A) = (s —A)~!, then (3.41) and (3.47) imply
F_ 1 ! ! 0 0o
(s—Xx) (=Xx)% (s—1)3
1 i
- 0 0
G—A1) (=X
1
sI-A)"'= 0 0 G5 0 0 (3.49)
e |
0 0 1 1
(s—X2) (s —A)?
1
0 0 0 0 —_—
L (s —Ap)

Using power series The function of A was defined using a polynomial of finite degree. We
now give an alternative definition by using an infinite power series. Suppose f(X) can be
expressed as the power series

IOEDIN-S
i=0

with the radius of convergence p. If all eigenvalues of A have magnitudes less than p, then
f(A) can be defined as

fA) =) BA (3.50)
i=0

Instead of proving the equivalence of this definition and the definition based on Theorem 3.5,
we use (3.50) to derive (3.47):

ExaMPLE 3.12 Consider the Jordan-form matrix A in (3.46). Let

" )\' ,
F0) = f00+ 7000 -+ L0 a4
then
FO700)

f(A) = f()\.])I-}- f’(A])(A '_)\II) + -4 (A _ )L]I)"_l 4o

(n—1)!
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Because (A — DY = 0 fork > n = 4 as discussed in (3.40). the infinite series reduces
immediately to (3.47). Thus the two definitions lead to the same function of a matrix.

The most important function of A is the exponential function e*’. Because the Taylor
series

N AZIZ A
e —-]4-AI+'i;r”+"'+'——r'+
converges for all finite A and 7, we have
A 2 Lotk
! - — 2 e e I _ X g
M =T+1A+ AT+ _LZ(;M{A 3.51)

This series involves only multiplications and additions and may converge rapidly; there-
fore it is suitable for computer computation. We list in the following the program in MATLAB
that computes (3.51) fort = 1:

Function E=expm?2 (A)
E=zeros(size(A));
F=eye(size(A));

k=1;

while norm(E+F-E,1)>0
E=zE+F;
F=2%F/k; N
k=k+1;

end

In the program, E denotes the partial sum and F is the next term to be added to E. The first line
defines the function. The next two lines initialize E and F. Let ¢; denote the kth term of (3.51)
with t = 1. Then we have c;o; = (A/k)cr fork =1,2,.... Thus we have F = A % F/k. The
computation stops if the 1-norm of E + F — E. denoted by norm(E 4+ F — E, 1), is rounded
to 0 in computers. Because the algorithm compares F and E, not F and 0, the algorithm uses
norm(E 4+ F — E, 1) instead of norm(F,1). Note that norm(a,l) is the I-norm discussed in
Section 3.2 and will be discussed again in Section 3.9. We see that the series can indeed be
programmed easily. To improve the computed result, the techniques of scaling and squaring can
be used. In MATLAB, the function expm?2 uses (3.51). The function expmor expm1, however,
uses the so-called Padé approximation. It yields comparable results as expm2 but requires only
about half the computing time. Thus expm is preferred to expm2. The function expm3 uses
Jordan form, but it will yield an incorrect solution if a matrix is not diagonalizable. If a closed-
form solution of e* is needed, we must use Theorem 3.5 or Jordan form to compute .

We derive some important properties of ¢’ to conclude this section. Using (3.51), we
can readily verify the next two equalities

eAUITR) AL LA (3.53)

(] = (3.54)




te series reduceg
a matrix.

-ause the Taylor

w14 gl

(3.51)

2 rapidly; there-
m in MATLAB

. The first line
term of (3.51)
A xF/k. The
1), is rounded
{gorithm uses !
discussed in 4
‘an indeed be
squaring can
ml,however,
requires only
expm3 uses
:. If a closed-
Jute A,
g (3.51), we

(3.52)
(3.53)
(3.54)

3.6 Functions of a Square Matrix 69

To show (3.54), we set t; = —t;. Then (3.53) and (3.52) imply

eAne—Ar. — eA-O — e() — I

which implies (3.54). Thus the inverse of A’ can be obtained by simply changing the sign of
t. Differentiating term by term of (3.51) yields

ieAl — i 1 tk-—lAk
dr oG-

Thus we have

d
—eA = AeM = ¢MA (3.55)
dt
This is an important equation. We mention that
e(A+B)I # eA[eBt (356)

The equality holds only if A and B commute or AB = BA. This can be verified by direct

substitution of (3.51).
The Laplace transform of a function f(r) is defined as

f&) = L] = ./; f®)e™dt

7 (k1
— o—(k+D)
£[k!J =5

Taking the Laplace transform of (3.51) yields

It can be shown that

>0 o0

LleM) = s ¢DAN =571 Y (sTIAY
k=0 k=0
Because the infinite series
o .
DTN =145 s = (=TT

k=0
converges for [s~!'A| < 1, we have

[e¢]
S—l Z (S—]A)k — S-‘I +S_2A +S_3A2 4.
k=0

=5 A=s7A) = [sA = s7'A)] ™ = (1 - A)! (3.57)

and
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LM = 51— A)™! (3.58)

Although in the derivation of (3.57) we require s to be sufficiently large so that all eigenvalues
of s~!'A have magnitudes less than 1, Equation (3.58) actually holds for all s except at the
eigenvalues of A. Equation (3.58) can also be established from (3.55). Because L{d f (z)/dt] =
sLLf ()] — f(0), applying the Laplace transform to (3.55) yields

sLer] - e = AL[eM)
or
(T—A) LM =€’ =1

which implies (3.58).

3.7 Lyapunov Equation

Consider the equation
AM+MB=C ° (3.59)

where A and B are, respectively, n x n and m x m constant matrices. In order for the equation

to be meaningful. the matrices M and C must be of order n x m. The equation is called the.

Lyapunov equation.
The equation can be written as a set of standard linear algebraic equations. To see this,
we assume 1 = 3 and m = 2 and write (3.59) explicitly as

an ayy  aps mu ny2 nty mia
by b
a dx» an My Moy | 4| My Mo
by by
aszp  asz  dasz ms; Mz msz  msp
i C12
= Co C22
C31 €32

Multiplying them out and then equating the corresponding entries on both sides of the equality,
we obtain

[an +bn an ars by 0 0 7
as) axn +bn ax 0 by 0
as as as + by 0 0 bay
b1a 0 0 a + by an a;
0 . b 0 a an + bxn an
L O 0 b2 as ax as + by |
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Cmy ] i
ma [&]]
ms) €3]
X = . (3.60)
mi2 (&
map €22
L 1mM32 | | €32

This is indeed a standard linear algebraic equation. The matrix on the preceding page is a
square matrix of ordern x m =3 x 2 = 6.

Let us define A(M) := AM + MB. Then the Lyapunov equation can be written as
AM) = C. It maps an nm-dimensional linear space into itself. A scalar 5 is called an
eigenvalue of A if there exists a nonzero M such that

AM) =M

Because A can be considered as a square matrix of order nm, it has nm eigenvalues 7, for
k=1,2, ..., nm. Itturns out

Me = Ai + fori=1,2,...,n;, j=1,2,...,m

where X;,i =1, 2, ..., n,and uj, j =1, 2, ..., m, are, respectively, the eigenvalues of
A and B. In other words, the eigenvalues of A are all possible sums of the eigenvalues of A
and B.

We show intuitively why this is the case. Let u be an » x 1 right eigenvector of A associated
with A;; that is, Au = X;u. Let vbe a 1 x m left eigenvector of B associated with 1;; that is,
vB = vu;. Applying A to the n X m matrix uv yields

A@v) = Auv +uvB = Luv 4+ uvy; = (A + gj)uv

Because both u and v are nonzero, so is the matrix uv. Thus (X; + x;) is an eigenvalue of A.

The determinant of a square matrix is the product of all its eigenvalues. Thus a matrix
is nonsingular if and only if it has no zero eigenvalue. If there are no i and j such that
A; + 1 = 0. then the square matrix in (3.60) is nonsingular and, for every C, there exists a
unique M satisfying the equation. In this case, the Lyapunov equation is said to be nonsingular.
If X; + p; = 0 for some i and j, then for a given C, solutions may or may not exist. If C lies
in the range space of 4, then solutions exist and are not unique. See Problem 3.32.

The MATLAB function m=1yvap (a,b, -c) computes the solution of the Lyapunov
equation in (3.59).

3.8 Some Useful Formulas

This section discusses some formulas that will be needed later. Let A and B be m x n and
n X p constant matrices. Then we have

p(AB) < min(p(A), p(B)) (3.61)

where p denotes the rank. This can be argued as follows. Let p(B) = «. Then B has «
linearly independent rows. In AB, A operates on the rows of B. Thus the rows of AB are
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linear combinations of the rows of B. Thus AB has at most « linearly independent rows. In
AB. B operates on the columns of A. Thus if A has g linearly independent columns, then
AB has at most 8 linearly independent columns. This establishes (3.61). Consequently, if
A = BB>B; - - -, then the rank of A is equal to or smaller than the smallest rank of B;.

Let A bem x n and let C and D be any n X n and m X m nonsingular matrices. Then we
have

p(AC) = p(A) = p(DA) (3.62)

In words, the rank of a matrix will not change after pre- or postmultiplying by a nonsingular
matrix. To show (3.62), we define

P:=AC (3.63)
Because p(A) < min(m, n) and p(C) = n, we have p(A) < p(C). Thus (3.61) implies

p(P) < min(p(A), p(C)) < p(A)

Next we write (3.63) as A = PC~!. Using the same argument, we have p(A) < p(P). Thus we
conclude p(P) = p(A). A consequence of (3.62) is that the rank of a matrix will not change
by elementary operations. Elementary operations are (1) multiplying a row or a column by a
nonzero number, (2) interchanging two rows or two columns, and (3) adding the product of
one row (column) and a number to another row (column). These operations are the same as
multiplying nonsingular matrices. See Reference [6, p. 542].

Let A be m x n and B be n x m. Then we have .

det,, + AB) = det(I, + BA) (3.64)

where L, is the unit matrix of order m. To show (3.64), let us define
Im A Im 0 Im —'A
N = = P =
[ 0 I” :I Q [:_B IH :| [ B Iu :|

I,+AB 0
B L,

We compute
NP = [

and

Im ~A
P=
Q [ 0 I+ BA]

Because N and Q are block triangular, their determinants equal the products of the determinant
of their block-diagonal matrices or

detN =detl,, -detl, =1 =detQ
Likewise, we have

det(NP) = det(1,, + AB) det(QP) = det(I, + BA)

Because
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det(NP) = det Ndct P = det P

and
det(QP) = det Qdet P = det P

we conclude det(I,, + AB) = det(I,, + BA).
InM, Q, and P, if L, 1, and B are replaced, respectively, by \/s1,, \/s1,,, and —B, then
we can readily obtain

s" det(sl,, — AB) = s det(sI,, — BA) (3.65)
which implies, for n = m or for n x n square matrices A and B,
det(sI,, — AB) = det(sI, — BA) (3.66)

They are useful formulas.

3.9 Quadratic Form and Positive Definiteness

An n x n real matrix M is said to be symmetric if its transpose equals itself. The scalar function
x'MXx, where x is an n x 1 real vector and M’ = M, is called a quadratic form. We show that
all eigenvalues of symmetric M are real.

The eigenvalues and eigenvectors of real matrices can be complex as shown in Example
3.6. Therefore we must allow x to assume complex numbers for the time being and consider the
scalar function x*Mx, where x* is the complex conjugate transpose of x. Taking the complex
conjugate transpose of x*Mx yields

(xX*Mx)* = x*M*x = x*M'x = x"Mx

where we have used the fact that the complex conjugate transpose of a real M reduces to
simply the transpose. Thus x*Mx is real for any complex x. This assertion is not true it M
is not symmetric. Let A be an eigenvalue of M and v be its eigenvector; that is, Mv = Av.
Because

VMv = v*Av = A(v*V)

and because both v*Myv and v*v are real, the eigenvalue A must be real. This shows that all
eigenvalues of symmetric‘M are real. After establishing this fact, we can return our study to
exclusively real vector x.

We claim that every symmetric matrix can be diagonalized using a similarity transfor-
mation even it has repeated eigenvalue A. To show this, we show that there is no generalized
eigenvector of grade 2 or higher. Suppose x is a generalized eigenvector of grade 2 or

M—-2AD*=0 (3.67)
(M= 2ADx #0 (3.68)

Consider
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[(M — ADX)'(M — ADx = x' (M’ — AT)(M — ADx = x'(M — AD)*x

which is nonzero according to (3.68) but is zero according to (3.67). This is a contradiction.
Therefore the Jordan form of M has no Jordan block of order 2. Similarly, we can show that
the Jordan form of M has no Jordan block of order 3 or higher. Thus we conclude that there
exists a nonsingular Q such that

M =QDQ™! (3.69)

where D is a diagonal matrix with real eigenvalues of M on the diagonal.
A square matrix A is called an orthogonal matrix if all columns of A are orthonormal.
Clearly A is nonsingular and we have

AA=1 and A l'=A’

which imply AA’ = AA~! = I = A’A. Thus the inverse of an orthogonal matrix equals its
transpose. Consider (3.69). Because D' = D and M’ = M, (3.69) equals its own transpose or

QDQ™' =[QDQ ™'Y =[Q™'1'DQ _

which implies Q7! = Q' and Q'Q = QQ’ = I. Thus Q is an orthogonal matrix; its columns
are orthonormalized eigenvectors of M. This is summarized as a theorem.

Theorem 3.6

~

For every real symmetric matrix M, there exists an orthogonal matrix Q such that
M=QDQ or D=QMQ

where D is a diagonal matrix with the eigenvalues of M, which are all real, on the diagonal.

A symmetric matrix M is said to be positive definite, denoted by M > 0, if x’'Mx > 0 for
every nonzero X. It is positive semidefinite, denoted by M > 0, if x’Mx > 0 for every nonzero
x. If M > 0, then x'Mx = 0 if and only if x = 0. If M is positive semidefinite, then there
exists a nonzero x such that x’Mx = 0. This property will be used repeatedly later.

Theorem 3.7

A symmetric n X 1 matrix M is positive definite (positive semidefinite) if and only if any one of the
following conditions holds.

1. Every eigenvalue of M is positive (zero or positive).

2. All the leading principal minors of M are positive (all the principal minors of M are zero or positive).

3. There exists an 1 X n nonsingular matrix N (ann X n sidgular matrix N or an m X n matrix N with
m < n) such that M = N'N. :

Condition (1) can readily be proved by using Theorem 3.6. Next we consider Conditon (3). If
M = N'N, then

X Mx = x'N'Nx = (Nx)'(Nx) = |INx||2 = 0

-
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for any x. If N is nonsingular, the only X to make Nx = 0 is x = (. Thus M is positive definite. If N
is singular, there exists a nonzero X to make Nx = 0. Thus M is positive semidefinite. For a proof of

Condition (2), see Reference [10]. .
We use an example to illustrate the principal minors and leading principal minors. Consider

mp mp2 M3
M= | my mpn my;

ms3; ms2 .Mm33

-Its principal minors are myy, Moy, M33,

m m mpy m ma2 mz3
det[ 1 '2}, det[ ! '3}, det[ ]
may mp m3;  ms3 m3z msz3
and det M. Thus the principal minors are the determinants of all submatrices of M whose diagonals
coincide with the diagonal of M. The leading principal minors of M are

ny M

my, det [ :] , and detM

mayp ma2

Thus the leading principal minors of M are the determinants of the submatrices of M obtained by deleting
the last k£ columns and last k& rows fork = 2, 1, 0.

Theorem 3.8

1. Anm X n matrix H, with m > n, has rank n, if and only if the n X n matrix H'H has rank n or

det(H'H) # 0.

2. Anm x n matrix H, with m < n, has rank m, if and only if the 7 x m matrix HH' has rank m or

det(HH') # 0.

The symmetric matrix H'H is always positive semidefinite. It becomes positive definite if H'H is
nonsingular. We give a proof of this theorem. The argument in the proof will be used to establish the
main results in Chapter 6; therefore the proof is spelled out in detail.

Proof: Necessity: The condition p(H'H) = »n implies p(H) = n. We show this by
contradiction. Suppose p(H'H) = n but p(H) < n. Then there exists a nonzero vector
v such that Hv = 0, which implies HHv = 0. This contradicts p(H'H) = n. Thus
p(H'H) = n implies p(H) = n.

Sufficiency. The condition p(H) = n implies p(HH) = n. Suppose not, or
p(H'H) < n; then there exists a nonzero vector v such that HHv = 0, which implies
vHHyv = 0 or

0 = vH'Hv = (Hv)'(Hv) = ||Hv|[3

Thus we have Hv = 0. This contradicts the hypotheses that v 3 0 and p(H) = n. Thus
p(H) = implies p (H'H) = n. This establishes the first part of Theorem 3.8. The second
part can be established similarly. Q.E.D.

We discuss the relationship between the eigenvalues of H'H and those of HH'. Because both H'H
and HH' are symmetric and positive semidefinite, their eigenvalues are real and nonnegative (zero or
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positive). If H is m x n, then H'H has n eigenvalues and HH' has m eigenvalues. Let A = H and
B = H'. Then (3.65) becomes

det(sI,, — HH = s" " det(sI, — HH) (3.70)

This implies that the characteristic polynomials of HH' and H'H differ only by s™~". Thus we
conclude that HH’ and H'H have the same nonzero cigenvalues but may have different numbers of
zero eigenvalues. Furthermore, they have at most 77 := min (i, 1) number of nonzero eigenvalues.

3.10 Singular-Value Decomposition

AT G S

AT T AT

it

Let Hbe an m x n real matrix. Define M := H'H. Clearly M is n x n, symmetric, and semidefinite.
Thus all eigenvalues of M are real and nonnegative (zero or positive). Let r be the number of its positive
eigenvalues. Then the eigenvalues of M = H'H can be arranged as

MRl > 0=hp == Ay
Let 1 := min(m, n). Then the set
}\,12)\.22"‘}\.,>0=}.r+1 =--~:}\,,—1

is called the singular values of H. The singular values are usually arranged in descending order in
magnitude.

ExaMPLE 3.13 Consider the 2 x 3 matrix

H— -4 -1 2
2 05 -1

We compute
20 5 —10
M=HH=| 5 1.25 =25
—-10 =25 5

and compute its characteristic polynomial as
det(\I — M) = A* — 26.2527 = A*(A — 26.25)

Thus the eigenvalues of H'H are 26.25, 0, and 0, and the singular values of H are +/26.25 =
5.1235 and 0. Note that the number of singular values equals min (i, m).

In view of (3.70), we can also compute the singular values of H from the eigenvalues of
HH'. Indeed, we have 4

_ 21 —10.
M:=HH = [ 5}

~105 5.5
and
det(AI — M) = A% — 26.251 = A(A — 26.25)

Thus the eigenvalues of HH' are 26.25 and 0 and the singular values of H' are 5.1235 and
0. We see that the eigenvalues of H'H differ from those of HH' only in the number of zero
eigenvalues and the singular values of H equal the singular values of H'.
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s.Let A = H and For M = H'H, there exists, following Theorem 3.6, an orthogonal matrix Q such that

QHHQ =D=:S'S (3.71)
(3.70)
en where D is an 1 x n diagonal matrix with A? on the diagonal. The matrix S is m x n with the
y s 7. Thus we singular values A; on the diagonal. Manipulation on (3.71) will lead eventially to the theorem
fferent numbers of
10 eigenvalues. that follows.

= Theorem 3.9 (Singular-value decomposition)
. and semidefinite. : Every m x n matrix H can be transformed into the form
nber of its positive . H = RSQ'

withRR =RR' =1, Q'Q = QQ’ =1, and S being 1 X n with the singular values of H on the
diagonal.

The columns of Q are orthonormalized eigenvectors of H'H and the columns of R
are orthonormalized eigenvectors of HH'. Once R, S, and Q are computed, the rank of H
scending order in equals the number of nonzero singular values. If the rank of H is r, the first r columns of
R are an orthonormal basis of the range space of H. The last (n — r) columns of Q are an
orthonormal basis of the null space of H. Although computing singular-value decomposition is
time consuming, it is very reliable and gives a quantitative measure of the rank. Thus itis used in
MATLAB to compute the rank, range space, and null space. In MATLAB, the singular values
of H can be obtained by typing s=svd (H). Typing [R,S,Q]=svd(H) yields the three
matrices in the theorem. Typing orth (H) and null (H) yields, respectively, orthonormal
bases of the range space and null space of K. The function null will be used repeatedly in
Chapter 7.

ExampLE 3.14 Consider the matrix in (3.11). We type

; A=10 1 12;1 23 4:202 0); BIBLIOTECA CENTRAL
jt 1 [r,s.,ql=svd(a) UNAM
ate V3835 — ; which yield
: ! 70.3782 —0.3084 0.8729 [ 6.1568 0 0 0
eigenvalues of , E r=1 08877 —-0.1468 —0.4364 s=] 0 24686 0 0
f | 02627 09399  0.2182 ) 0 00

!‘ r0.2295 0.7020  0.3434 —0.5802

: 103498 -0.2439  0.8384 0.3395
2 77105793 04581 -03434  0.5802
; . 0.6996 —0.4877 —0.2475 —0.4598
i Thus the singular values of the matrix A in (3.11) are 6.1568, 2.4686, and 0. The matrix has
re 5.1235 and ‘ two nonzero singular values, thus its rank is 2 and, consequently, its nullity is 4 — p(A) = 2.

umber of zero ' J The first two columns of r are the orthonormal basis in (3.13) and the last two columns of ¢
i1 are the orthonormal basis in (3.14).
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3.11 Norms of Matrices

| PROBLEMS ¢
¢ x I} G

The concept of norms for vectors can be extended to matrices. This concept is needed in

Chapter 5. Let A be an m x n matrix. The norm of A can be defined as
Ax|
[|A]] = sup HAx]] = sup ||Ax|| (3.72)
=0 XD =t

where sup stands for supremum or the least upper bound. This norm is defined through the
norm of x and is therefore called an indiced norm. For different ||x]||, we have different ||A]].
For example, if the 1-norm ||x}]; is used, then

m
[|A]]} = max <Z ]a,-,-{) = largest column absolute sum
j

i=1
where a;; is the ijth element of A. If the Euclidean norm {[x||> is used, then
[IAfl> = largest singular value of A
= (largest eigenvalue of A’A)!/%
If the infinite-norm ||x|| is used, then

n
l1Alloo = max Z laij| | = largest row absolute sum
j=1

These norms are all different for the same A. For example, if

3 21
A=
o)

then J|Ajl; = 3+ | — 1] = 4, ||All = 3.7, and ||A}|lec = 3 + 2 = 5, as shown in Fig.

" 337 The MATLAB functions norm(a, 1), norm(a,2)=norm(a),andnorm(a, inf)
* compute the three norms.

The norm of matrices has the following properties:

[Ax{] < [JAHIx]].
1A + Bj| < [A]l + |[BI|
HABJ| < [|A]}lB]|

The reader should try first to solve all problems involving numerical numbers by hand and
then verify the results using MATLAB or any software.

3.1 Consider Fig. 3.1. What is the representation of the vector x with respect to the basis
{q1, i2}? What is the representation of q, with respect to {i,, q2}?

3.2 What are the 1-norm, 2-norm, and infinite-norm of the vectors

BE

Figure 3.3 Di"




ept is needed in -

(3.72)

ined through the

e different [|A]|.

shown in Fig.
yrm(a, inf)

by hand and

to the basis

Problems

| X2 X2
2 Ikl =1 2+
1 X
So-- > (T T T
%\{ 2 3 4 N -3d_. 2 3 4
=——t— X = ~t=—t+—+ > X
Axi 7~ )Ax

Figure 3.3

The sum of these two
magnitudes gives the
norm of A.

=1 -2+

(@) (b)
=2
2L
| __}(le =1
m—————— - X
LT~ ik | | !
T T T~ d < \l i L
4 -3 -2 T-49 11 2 3~4_35
_______ ™ Ax
—24
!
This magnitude gives
the norm of A.
()
Different norms of A.
2
X =| =3 X5
1

33
3.2.

34

A’A =1,,. What can you say about AA’?

3.5

This magnitude gives
the norm of A.
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491921
BIBLIOTECA CENTRAL
UNAM
1
=11
1

Find the ranks and nullities of the following matrices:

Find two orthonormal vectors that span the same space as the two vectors in Problem

Consider an n x m matrix A with n > m. If all columns of A are orthonormal, then
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010 4 1 -1 1 2 3 4
Ay=]0 0 0 Ay=13 2 0 Ay=10 -1 =2 2
0 01 1 1 O 0 0 0 1

3.6 Find bases of the range spaces and null spaces of the matrices in Problem 3.5.

3.7 Consider the linear algebraic equation
2 -1 1
-3 3 (x=|0]|=y
-1 2 1
It has three equations and two unknowns. Does a solution x exist in the equation? Is the
solution unique? Does a solution exist if y = [1 1 1}'?

3.8 Find the general solution of

1 2 3 4 3
0 -1 =2 2(x=]2
0 0 0 1 1

How many parameters do you have?
3.9 Find the solution in Example 3.3 that has the smallest Euclidean norm.
3.10 Find the solution in Problem 3.8 that has the smallest Euclidean norm.
3.11 Consider the equation
x[n] = A"x[0] + A" 'bu[0] + A" *bu[1) + - - - + Abu[n — 2} + bu[n — 1]

where A is an n x n matrix and b is an 7 x 1 column vector. Under what conditions on
A and b will there exist u[0], u[1], ..., u[n — 1] to meet the equation for any x[n] and
x[0]? [Hint: Write the equation in the form

uln — 1]
uln = 2]
. x[n] — A"x[0] = [b Ab --- A""'b] . ]
u[0]
3.12 Given
2100 0 1
0210 0 - |2
A= b: =
0020 1 b=13
0001 L1 1

what are thf, repr_esent_ations of A with respect to the basis {b, Ab, A%b, A3b} and the
basis {b, Ab, A%b, A3b}, respectively? (Note that the representations are the same!)

3.13 Find Jordan-form representations of the following matrices:




3 4
-2 2
0

m 3.5.

=quation? Is the

n—1}

:conditions on
r any x[n] and

A%b} and the
1€ same!)

e

- e

3.14

3.15

3.16

3.17

Problems 81
1 4 10 0 1 0
Aj=10 2 0 A; = 0 O 1
LO 0 3 | -2 —4 =3
. rt 0 -1 - TO0 4 3
As;=1]0 1 0 Ay=1]0 20 16
LO 0 2 L0 =25 -20

Note that all except A4 can be diagonalized.

Consider the companion-form matrix
-] —0y —Q3  —04
1 0 0 0
0 1 0 0
0 0 1 0

Show that its characteristic polynomial is given by

A=

AR =2+ a A3+ adt + a3k + oy

Show also that if X; is an eigenvalue of A or a solution of A(A) = 0, then [)»,-3 Aiz A 1Y
is an eigenvector of A associated with A;.

Show that the Vandermonde determinant
3 33 43 43
MoOA A A

A2oa2 a2 A2
MoA A3 Ag

1t 1 1

equals H1<.'<j<4()\j — X;). Thus we conclude that the matrix 1s nonsingular or, equiva-
lently, the eigenvectors are linearly independent if all eigenvalues are distinct.

Show that the companion-form matrix in Problem 3.14 is nonsingular if and only if
ay 7 0. Under this assumption, show that its inverse equals
0 1 0 0
0 0 1 0
0 0 0 1

—1/ay .—al/a4 —ag/os —aszfoy

A7l =

Consider
A AT AT?)2
A=1]0 AT
0 o A

with A # O and T > 0. Show that [0 0 1]’ is a generalized eigenvector of grade 3 and
the three columns of
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AT AT? 0
Q= 0 AT 0
0 0 !
constitute a chain of generalized eigenvectors of length 3. Verify
A 10
Q'AQ=1|0 x 1
0 0 A

3.18 Find the characteristic polynomials and the minimal polynomials of the following

matrices:

A 1 0 017 rh 1 0 07
0 A 1 0 0 » 1 0
0 0 2 O 0 0 A O

Lo 0 0 2 L0 0 0 A

A 1 0 01 A 0 0 07
0 » 0 0| |0 A& 0 O
0 0 A O 0 0 2 O

Lo 0 0 A Lo 0 0 A

3.19 Show that if A is an eigenvalue of A with eigenvecfor x, then f (1) is an eigenvalue of
f(A) with the same eigenvector Xx.

3.20 Show that an n x n matrix has the property A¥ = 0 for k¥ > m if and only if A has
eigenvalues 0 with multiplicity n and index m or less. Such a matrix is called a nilpotent
matrix.

3.21 Given

find A0, A103 and eA’,
3.22 Use two different methods to compute e for A, and A4 in Problem 3.13.

3.23 Show that functions of the same matrix commute; that is,

F(A)g(A) = g(A) f(A)

Consequently we have Ael = eMA.

3.24 Let
Mo 00

. C=[0 x 0

0 0 )\3
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3.25

3.26

3.27
3.28

Problems 83

Find a matrix B such that ¢ = C. Show that if A; = O for some i, then B does not exist.
Let

A 10
C=10 A2 0
0 0 A

Find a B such that ¢® = C. Is it true that, for any nonsingular C, there exists a matrix B
such that ¢® = C?

Let

1
p— _l —_— 1 —
GI-A)" = AG) Adj (sT—A)

and let m(s) be the monic greatest common divisor of all entries of Adj (sI — A). Verify
for the matrix Aj in Problem 3.13 that the minimal polynominal of A equals A(s)/m(s).

Define

1
(1= 47" 1= s [Ros™™ 4 Ris" 2 -+ Ry + R

where
Als) :=det(sI —A) :i=s" + 18" +as" P+ -+ ay

and R, are constant matrices. This definition is valid because the degree in s of the adjoint
of (sI — A) is at most n — 1. Verify

tr(AR
alz——r(lO) ROZI
tr(AR
a2=-—-r(2 D) Ri=ARy+ oI =A+ ol
tr(AR; 2
a3:—r(3 ~) Rz:ARl—f-dzI:A"—f—alA—f—azl
tr(AR, -
Gn-1= _i_nI—Z) R,-1 = AR, 2+, = A + alAn_2
n—
+ ooy A+ an 1
tr(AR, - '
oy = —TARD R e,
n

where tr stands for the frace of a matrix and is defined as the sum of all its diagonal
entries. This process of computing «¢; and R; is called the Leverrier algorithm.

Use Problem 3.26 to prove the Cayley—Hamilton theorem.
Use Problem 3.26 to show

1
GI-A)" = 0 [A" 4+ (s + DA 2 4 (52 + ays + a)A" 3
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3.29

3.30

3.31

3.32

4 3.33

3.34

3.35

4.4 (s"*l +a,s"_2 + - +an—l)I]

Let all eigenvalues of A be distinct and let q; be a right eigenvector of A associated with
A;; thatis, Aq; = 2;q;. Define Q =[q; q2 --- q,]and define

P
P2
P:=Q'=

Pn
where p; is the ith row of P. Show that p; is a left eigenvector of A associated with A;;
that is, p,A = A;pi-

Show that if all eigenvalues of A are distinct, then (sI — A)~! can be expressed as
1
I-A)"'=) ——qp;
GI-A)" =) — P
where q; and p; are right and left eigenvectors of A associated with A;.
Find the M to meet the Lyapunov equation in (3.59) with

' 0 1 . I3
[0 ] mes =[]

What are the eigenvalues of the Lyapunov equation? Is the Lyapunov equation singular?
Is the solution unique?

Repeat Problem 3.31 for

[84] e anf] e[

with two different C.

Check to see if the following matrices are positive definite or semidefinite:

2 3 2 0 0 -1 aa; aiaz  aias
310 0 0 0 aa, aa, a)as
2 0 2 -1 0 2 asay) dsay asas

Compute the singular values of the following matrices:
-1 0 1 -1 2
2 -1 0 2 4

If A is symmetric, what is the relationship between its eigenvalues and singular values?




riated with

:d with A;;

sed as

1singular?

lar values?
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3.36 Show

ajp

det In + .~ [bl b2 ot bn] =1+ Zambm

m=1

an

3.37 Show (3.65).

3.38 Consider Ax =y, where A is m x n and has rank m. Is (A’A)~!A’y a solution? If not,
under what condition will it be a solution? Is A’(AA’)"y a solution?




Chapter

State-Space Solutions
and Realizations

4.1 Introduction .

86

We showed in Chapter 2 that linear systems can be described by convolutions and, if Jumped,
by state-space equations. This chapter discusses how to find their solutions. First we discuss
briefly how to compute solutions of the input-output description. There is no simple analytical
way of computing the convolution

1
Yo = [ gtoueds
7=l
The easiest way is to compute it numerically on a digital computer. Befere doing so, the
equation must be discretized. One way is to discretize it as
k
ykA) =" g(kA, mAu(mA)A 4.1

m=kq

where A is called the integration step size. This is basically the discrete convolution discussed
in (2.34). This discretization is the easiest but yields the least accurate result for the same
integration step size. For other integration methods, see, for example, Reference [17].

For the linear time-invariant (LTI) case, we can also use y(s) = £(s)4(s) to compute
the solution. If a system is distributed, g(s) will not be a rational function of s. Except for
some special cases, it is simpler to compute the solution directly in the time domain as in
(4.1). If the system is lumped, g(s) will be a rational functicn of £ Tn this case. if the Lanlace
transform of u(¢) is also a rational function of s, then the solution can be obtained by taking the
inverse Laplace transform of g(s)#(s). This method requires computing poles, carrying out

4.2 Solutic
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partial fraction expansion, and then using a Laplace transform table. These can be carried out
using the MATLAB functions roots and residue. However, when there are repeated poles,
the computation may become very sensitive to small changes in the data, including roundoff
errors; therefore computing solutions using the Laplace transform is not a viable method on
digital computers. A better method is to transform transfer functions into state-space equations
and then compute the solutions. This chapter discusses solutions of state equations, how to
transform transfer functions into state equations, and other related topic_s. We discuss first the
time-invariant case and then the time-varying case.

4.2 Solution of LTI State Equations

Consider the linear time-invariant (LTI) state-space equation
x(t) = Ax(t) + Bu(s) (4.2)
y(#) = Cx(1) + Du(r) (4.3)

where A, B, C, and D are, respectively, n X n, n X p, g x n, and g x p constant matrices.
The problem is to find the solution excited by the initial state x(0) and the input u(¢). The
solution hinges on the exponential function of A studied in Section 3.6. In particular, we need
the property in (3.55) or

ieAr — AeAr — eArA
dt

to develop the solution. Premultiplying e~ on both sides of (4.2) yields
e"A%(1) — e MAX() = e M Bu(r)
which implies
d
- (e7¥x(1)) = e~ *Bu(t)
Its integration from 0 to ¢ yields
!
e x|, = f e A"Bu(r) dt
0
Thus we have
.
e A'x(1) — % (0) = / e A Bu(r) dr 4.4)
0
Because the inverse of e™' is A" and €® = I as discussed in (3.54) and (3.52), (4.4) implies

t
x(1) = eAx(0) + f eA"IBu(r) dt 4.5)
0
This is the solution of (4.2).
It is instructive to verify that (4.5) is the solution of (4.2). To verify this, we must show
that (4.5) satisfies (4.2) and the initial condition x(¢) = x(0) at t = 0. Indeed, at ¢ = 0, (4.5)
reduces to
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x(0) = e*%%(0) = *x(0) = Ix(0) = x(0)

Thus (4.5) satisfies the initial condition. We need the equation

a [ t/a
_a—t\/t; f(t,T)(]TZ—/’U <5;f(t,f)> dt + f([’ T)Ir:{ (4.6)

to show that (4.5) satisfies (4.2). Differentiating (4.5) and using (4.6), we obtain

X(t) = % [eA’x(O) + / eA('"')Bu(r)dr]

0

t
= AeA'x(0) +/ AAIBu(r) dr + BA('ﬂr)BU(T)lrz,
0

t
=A (eA’x(O) +f eA"DBu(r) dr) + 2 OBu(r)
0

which becomes, after substituting (4.5),
- Xx(t) = Ax(z) + Bu(r)
Thus (4.5) meets (4.2) and the initial condition x(0) and is the solution of (4.2).
Substituting (4.5) into (4.3) yields the solution of (4.3) as
t
y(r) = Ce*'x(0) + C / e*"Bu(r)dt + Du(r) 4.7
0

This solution and (4.5) are computed directly in the time domain. We can also compute the
solutions by using the Laplace transform. Applying the Laplace transform to (4.2) and (4.3)
yields, as derived in (2.14) and (2.15),

£(s) = (sI — A)7[x(0) + Bi(s)]

$(s) = C(sI — A)7'[x(0) + Bi(s)] + Di(s)
Once X(s) and y(s) are computed algebraically, their inverse Laplace transforms yield the
time-domain solutions.

. We now give some remarks concerning the computation of e*’. We discussed in Section
3.6 three methods of computing functions of a matrix. They can all be used to compute e’

1. Using Theorem 3.5: First, compute the eigenvalues of A; next, find a polynomial /(1) of
degree n — 1 that equals ¢ on the spectrum of A; then e’ = h(A).

2. Using Jordan form of A: Let A = QAQ“; then €A = QeAiQ‘l, where A is in Jordan
form and e’ can readily be obtained by using (3.48).

3. Using the infinite power series in (3.51): Although the series will not, in general, yield a
closed-form solution, it is suitable for computer computation, as discussed following (3.51).

In addition, we can use (3.58) to compute eA’, that is,

i A = L71(sT = A)~! (4.8)
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The inverse of (sI — A) is a function of A; therefore, again, we have many methods to compute
it:

. Taking the inverse of (sI — A).

. Using‘Theorem 35.

. Using (sT —A)~' = Q(sI — A)~'Q~" and (3.49).

. Using the infinite power series in (3.57).

. Using the Leverrier algorithm discussed in Problem 3.26.

n B W N

ExAMPLE 4.1 We use Methods | and 2 to compute (sI — A)~!, where

A 0 -1
L =2
Method 1: We use (3.20) to compute

1 7 1 2 -1
(SI—A)-‘IZ s =55 S+
-1 s+2 s2+25s +1 1 K}

_ [(s +2)/G+1D* —1/(s+ 1)2]
- 1/(s +1)2 s/(s+)?

Method 2: The eigenvalues of A are —1, —1. Let h(X) = Bp + Bi1A. If (L) equals f(X) :=
(s — A)~" on the spectrum of A, then

F=D =h(=1):
F=D)=r(=1):

+1D7"=p— B
s+1)7 =48
Thus we have

RO =[+D7"+ 6+ D21+ 6+ D72
and

GI—A)"'=hA) =[c+D'+G+DH+6+ DA
_[(s+2)/(s+1)2 —1/(_s+1)2]
- 1/(s + 1)> 5/(s+)>

ExaMPpLE 4.2 Consider the equation

X(t) = [(1) :;]x(z‘) + [?] u(t)

t
x(1) = eA'x(0) + / ACOBu(T) dt
0

Its solution is

The matrix function e’ is the inverse Laplace transform of (sI — A)~!, which was computed
in the preceding example. Thus we have
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;{: s+2 -1
i A | GEDE GEDE | [0 —re
F. B 1 s Tl ottt d=ne

s+D?2  (4)?
and

x(t) = [(HT—[ _whr,,]x(o>+[ ~ ot =@ de ]
te (1—10e Joll = (¢ = D)le " Pu(r)dr

We discuss a general property of the zero-input response e*/x(0). Consider the second
matrix in (3.39). Then we have ‘
tett 1M /2 0
0 e).]f ,ekli O
AM=Q| 0 0 et 0
0 0 0 M
0 0 0 0 e

el|l

Q—l

O O O O

>
0

t

Every entry of eA’ and, consequently, of the zero-input response is a linear combination of terms
{e*, teM, t2eM!, e*2'}), These terms are dictated by the eigenvalues and their indices. In
general, if A has eigenvalue A, with index 7, then every entry of e*’ is a linear combination of

ST ST tﬁl—leklr\
Every such term is analytic in the sense that it is infinitely differentiable and can be expanded
in a Taylor series at every ¢. This is a nice property and will be used in Chapter 6.
If every eigenvalue, simple or repeated, of A has-a negative real part, then every zero-
input response will approach zero as + — oo. If A has an eigenvalue, simple or repeated, with
a positive real part, then most zero-input responses will grow unbounded as t — oo. If A has
some eigenvalues with zero real part and all with index 1 and the remaining eigenvalues all
have negative real parts, then no zero-input response will grow unbounded. However, if the
index is 2 or higher, then some zero-input response may become unbounded. For example, if
A has eigenvalue 0 with index 2, then eA’ contains the terms {1, r}. If a zero-input response
. contains the term ¢, then it will grow unbounded.

4.2.1 Discrefization

Consider the continuous-time state equation
x(t) = Ax(1) + Bu(s) 4.9)
y(t) = Cx(t) + Du(t) _ (4.10)
If the set of equations is to be computed on a digital computer, it must be discretized. Because

x(t+T)—x(t)

(1) = Ii
X(@) TIB}) T
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we can approximate (4.9) as
x(t +T) =x() + Ax(®)T + Bu(t)T (4.11)

If we compute x(t) and y(¢) only att = kT fork =0, 1, ..., then (4.11) and (4.10) become

x((k + DT) = A+ TA)X(kT) + TBu(kT)
y(T) = Cx(kT) + Du(kT)

This is a discrete-time state-space equation and can easily be computed on a digital computer.
This discretization is the easiest to carry out but yields the least accurate results for the same
T. We discuss next a different discretization.

If an input u(¢) is generated by a digital computer followed by a digital-to-analog
converter, then u(z) will be piecewise constant. This situation often arises in computer control
of control systems. Let

u(t) = ukT) =: u[k] forkT <t < (k+ 1T (4.12)
fork =0, 1, 2, .... This input changes values only at discrete-time instants. For this input,
the solution of (4.9) still equals (4.5). Computing (4.5) att = kT and t = (k + 1)7T yields

kT
x[k] := x(kT) = **Tx(0) + / eACT-IBu(r) dt (4.13)
0

and
*k+1D)T
x[k + 1] := x((k + DT) = A*TDTx(0) + / AEENT-DRy (1) dr  (4.14)
0
Equation (4.14) can be written as

kT
X[k + 1] =7 [eA“ x(0) + f AT By(r) dr}
0

*k+1)T
+ / eA(kT+T_t)Bu(t)dt
kT

which becomes, after substituting (4.12) and (4.13) and introducing the new variable o :=
kT +T —1,

T
x[k + 1] = eATx[k] + ( / e"“da) Bu[k]
0

Thus, if an input changes value only at discrete-time instants k7" and if we compute only the
responses at t = k7, then (4.9) and (4.10) become

x[k + 1] = Agx[k] + Byu(k] (4.15)
y[k] = Cyx[k] + Dgu[k] (4.16)
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with
T
Ay = AT B, = (/ e"“dr)B C,=C D;=D 4.17)
0

This is a discrete-time state-space equation. Note that there is no approximation involved in
this derivation and (4.15) yields the exact solution of (4.9) at ¢+ = kT if the input is piecewise
constant.

We discuss the computation of B;. Using (3.51), we have

T 1.2
/ <I+At+A2——+~->a’r
0 2!

T? r® , T
This power series can be computed recursively as in computing (3.51). If A is nonsingular,
then the series can be written as, using (3.51),

Al 4 ...

-1 T? 2 T 3 —1(AT
AT (TA+ 7 A+ A+ 11 = AT - D)

Thus we have ’
B;=A"'(A; —DB  (if A is nonsingular) (4.18)

Using this formula, we can avoid computing an infinite sertes.
The MATLAB function {ad, bd]=c2d(a,b, T) transforms the continuous-time state
equation in (4.9) into the discrete-time state equation in (4.15).

4.2.2 Solution of Discrete-Time Equations

Consider the discrete-time state-space equation

x[k + 1] = Ax[k] + Bu[k]
(4.19)
y[k] = Cx[k] + Du[k]

where the subscript d has been dropped. It is understood that if the equation is obtained from
a continuous-time equation, then the four matrices must be computed from (4.17). The two
equations in (4.19) are algebraic equations. Once x[0] and u[k], £ =0, 1, ..., are given, the
response can be computed recursively from the equations. .

The MATLAB function ds t ep computes unit-step responses of discrete-time, state-space
equations. It also computes unit-step responses of discrete transfer functions; internally, it first
transforms the transfer function into a discrete-time state-space equation by calling tf2ss,
which will be discussed later, and then uses dstep. The function dlsim, an acronym for
discrete linear simulation, computes responses excited by any input. The function step
computes unit-step responses of continuous-time state-space equations. Internally, it first uses
the function c2d to transform a continuous-time state equation into a discrete-time equation
and then carries out the computation. If the function step is applied to a continuous-time
transfer function, then it first uses t £2ss to transform the transfer function into a continuous-
time state equation and then discretizes it by using c2d and then uses dstep to compute the

r
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response. Similar remarks apply to 1 sim, which computes responses of continuous-time state

equations or transfer functions excited by any input.
In order to discuss the general behavior of discrete-time state equations, we will develop

a general form of solutions. We compute

x[1] = Ax[0] + Bu[0]
x[2] = Ax[1] + Bu[1] = A%x[0] + ABu[0] + Bu[1]

Proceeding forward, we can readily obtain, for k > 0,
k-1
x[k] = A*x[0] + Y~ A*~'""Bulm] (4.20)
m=0
k-1
y[k] = CA*x[0] + Z CA*~1="Bu[m] + Du[k] 4.21)
m=0
They are the discrete counterparts of (4.5) and (4.7). Their derivations are considerably simpler

than the continuous-time case.

We discuss a general property of the zero-input response A*x[0]. Suppose A has eigen-
value X, with multiplicity 4 and eigenvalue A, with multiplicity 1 and suppose its Jordan form
is as shown in the second matrix in (3.39). In other words, A; has index 3 and A, has index 1.

Then we have

A ke-DA22 000

0o M krkt 0 0
Ak=Q| o0 o0 Ak 0 0 |Q!

0 0 0 A0

0 0 0 0 A

which implies that every entry of the zero-input response is a linear combination of {1%, kk’l"l ,
kzz\'l“z, }x’z‘}. These terms are dictated by the eigenvalues and their indices.

If every eigenvalue, simple or repeated, of A has magnitude less than 1, then every zero-
input response will approach zero as k — co. If A has an eigenvalue, simple or repeated, with
magnitude larger than 1, then most zero-input responses will grow unbounded as k — oo. If A
has some eigenvalues with magnitude 1 and all with index 1 and the remaining eigenvalues all
have magnitudes less than 1, then no zero-input response will grow unbounded. However, if
the index is 2 or higher, then some zero-state response may become unbounded. For example,
if A has eigenvalue 1 with index 2, then A* contains the terms {1, k). If a zero-input response
contains the term k, then it will grow unbounded as k — oc.

4.3 Equivalent State Equations

The example that follows provides a motivation for studying equivalent state equations.

ExamMpPLE 4.3 Consider the network shown in Fig. 4.1. It consists of one capacitor, one
inductor, one resistor, and one voltage source. First we select the inductor current x; and
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3
'

capacitor voltage x, as state variables as shown. The voltage across the inductor is x; and
the current through the capacitor is X,. The voltage across the resistor is x; thus its current is
Xx3/1 = x5. Clearly we have x; = x + i> and x; + x; — u = 0. Thus the network is described
by the following state equation:

X} __rO -1 X1 1
=l 5L Lol
y=1[0 1]x 4.22)

If, instead, the loop currents x; and X, are chosen as state variables as shown, then the voltage
across the inductor is x| and the voltage across the resistor is (¥; — x») - 1. From the left-hand-
side loop, we have
u =i’1 + X —x, or /é] =—X1+X+tu
The voltage across the capacitor is the same as the one across the resistor, which is x; — X».
Thus the current through the capacitor is X; — X, which equals ¥, or
.i’z ——‘;1 —Xy=-X14+u

Thus the network is also described by the state équation

R ERINEN
] -1 0]|lx 1 (4.23)
y=[1 —1]x .

The state equations in (4.22) and (4.23) describe the same network; therefore they must be
closely related. In fact, they are equivalent as will be established shortly.

Consider the n-dimensional state equation

x(t) = Ax(t) + Bu(r)
(4.24)
y(t) = Cx(t) + Du(z)

where A is an n X n constant matrix mapping an n-dimensional real space R" into itself. The
state x is a vector in R” for all #; thus the real space is also called the state space. The state

equation in (4.24) can be considered to be associated with the orthonormal basis in (3.8). Now
we study the effect on the equation by choosing a different basis.

F"____x, _____,{ Figure 4.1 Network with two different

sets of state variables.

e
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Definition 4.1 Let P be an n x n real nonsingular matrix and let X = Px. Then the state
equation,

X(1) = Ax(t) + Bu(r)
_ . (4.25)
y(#) = Cx(¢) + Du(s)
where

A=PAP”' B=PB C=CP”' D=D (4.26)

is said to be (algebraically) equivalent to (4.24) and X = Px is called an equivalence

transformation.

Equation (4.26) is obtained from (4.24) by substituting x(t) = P~'x(¢) and x(t) =
P~'X(¢). In this substitution; we have changed, as in Equation (3.7), the basis vectors of the
state space from the orthonormal basis to the columns of P~! =: Q. Clearly A and A are similar
and A is simply a different representation of A. To be precise, let Q = Pl=[q q - q.l
Then the ith column of A is, as discussed in Section 3.4, the representation of Aq; with respect

to the basis {qi, q2, ---, q,}. From the equation B=PBorB=P 'B=[q q --- q.]B,
we see that the ith column of B is the representation of the i/th column of B with respect to the
basis {q;, q2, - -, q,}. The matrix C is to be computed from CP~!. The matrix D, called the

direct transmission part between the input and output, has nothing to do with the state space
and is not affected by the equivalence transformation.
We show that (4.24) and (4.25) have the same set of eigenvalues and the same transfer
matrix. Indeed, we have, using det(P) det(P~') =1,
A(\) = det(A] — A) = det(APP~! — PAP™!) = det[P(AI — A)P™1]
= det(P) det(Al — A) det(P™') = det(AI — A) = A(X)
and
G(s) =CsI—A) "B+ D=CP ![PGI— AP 'I"'PB+D
=CP'P(sI1—A)'P7'PB+ D = C(sI - A)'B+D = G(s)
Thus equivalent state equations have the same characteristic polynomial and, consequently, the
same set of eigenvalues and same transfer matrix. In fact, all properties of (4.24) are preserved
or invariant under any equivalence transformation. =~ |
Consider again the network shown in Fig. 4.1, which can be described by (4.22) and (4.23).

We show that the two equations are equivalent. From Fig. 4.1, we have x; = X;. Because the
voltage across the resistor is x», its current is xp/1 and equals x| — Xx». Thus we have

MEHIE
D]=“ —01]—1 [i]]z[i —01”2] 4-27)

or
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R

Note that, for this P, its inverse happens to equal itself. It is straightforward to verify that (4.22)
and (4.23) are related by the equivalence transformation in (4.26).

The MATLAB function [ab,bb, cb,db]l=ss2ss(a,b,c,d, p) carries out equiv-
alence transformations.

Two state equations are said to be zero-state equivalent if they have the same transfer
matrix or

D+ CGI—A) "B=D+CGsI-A)"'B
This becomes, after substituting (3.57),
D+ CBs™ ! + CABs 2+ CA’Bs 3 +...=D+CBs~' + CABs—> + CA

Thus we have the theorem that follows.

Theorem 4.1

Two linear time-invariant state equations {A, B, C, D} and {A, B, C, D} are zero-state equivalent
or have the same transfer matrix if and only if D = D and

CA"B=CA"B m=0,1,2, ...

It is clear that (algebraic) equivalence implies zero-state equivalence. In order for two
state equations to be equivalent, they must have the same dimension. This is, however, not the
case for zero-state equivalence, as the next example shows.

~

ExaMpLE 4.4 Consider the two networks shown in Fig. 4.2. The capacitor is assumed to have
capacitance — 1 F. Such a negative capacitance can be realized using an op-amp circuit. For the
circuit in Fig. 4.2(a), we have y(t) = 0.5- u(t) or ¥(s) = 0.54(s). Thus its transfer function-is
0.5. To compute the transfer function of the network in Fig. 4.2(b), we may assume the initial
voltage across the capacitor to be zero. Because of the symmetry of the four resistors, half of
the current will go through each resistor or i (r) = 0.5u(t), where i (r) denotes the right upper
resistor’s current. Consequently, y(f) = i (1) -1 = 0.5u(¢) and the transfer function also equals
0.5. Thus the two networks, or more precisely their state equations, are zero-state equivalent.
This fact can also be verified by using Theorem 4.1. The network in Fig. 4.2(a) is described
by the zero-dimensional state equation v(t) = 0.52(t) or A =B = C = 0and D = 0.5. To

Figure 4.2 Two zero-state
+ equivalent networks.
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develop a state equation for the network in Fig. 4.2(b), we assign the capacitor voltage as state
variable x with polarity shown. Its current is x flowing from the negative to positive polarity
because of the negative capacitance. If we assign the right upper resistor’s current as i (¢), then
the right lower resistor’s current is i — x, the left upper resistor’s current is « — i, and the left
lower resistor’s current is # — i 4+ x. The total voltage around the upper right-hand loop is 0:

i—x—w—-i)=0 or i=0.5x+4u)

which implies
y=1-i=i=05x+u)
The total voltage around the lower right-hand loop is O:
x+(@—-x)—(w—i+x)=0

which implies

2 =2i+x—u=x+u+x—u=24
Thus the network in Fig. 4.2(b) is described by the one-dimensional state equation

x(t) = x(t)
y(t) = 0.5x(t) + 0.5u(r)

withA =1, B=0, C =05 andD = 0.5. We see that D = D = 0.5 and CA"B =
B 1, .... Thus the two equations are zero-state equivalent.

4.3.1 Canonical Forms

MATLAB contains the function {ab, bb,cb,db,P]l=canon{a,b,c,d, "type’).If
type=companion, the function will generate an equivalent state equation with A in the
companion form in (3.24). This function works only if Q = [b; Ab, --- A" by is
nonsingular, where b is the first colnmn of B. This condition is the same as {A, b;}controllable,
as we will discuss in Chapter 6. The P that the function canon generates equals Q. See the
discussion in Section 3.4.

We discuss a different canonical form. Suppose A has two real eigenvalues and two
complex eigenvalues. Because A has only real coefficients, the two complex eigenvalues must
be complex conjugate. Let Ay, A2, o + jB, and o — jB be the eigenvalues and q;, g2, q3, and
g4 be the corresponding eigenvectors, where Ay, Az, a, B, q1,and q are all real and q4 equals
the complex conjugate of q3. Define Q = [q; q> q3 q4]. Then we have

A O 0 0 _
Jom 0 A O‘ 0 ~Q-'AQ
0 0 a+jB 0
0 O 0 a—jB
Note that Q and J can be obtained from [g, j]=eig(a) in MATLAB as shown in Examples
3.5 and 3.6. This form is useless in practice but can be transformed into a real matrix by the
following similarity transformation
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1 0 0 0 Ao 0 0 0
030 = 01 0 0 [ 0 A 0 ‘ 0
0 0 1 1 0 0 «a+jB 0
00 j —j 0 0 0 a—JjB
1 0 O 0 Ar 0 0O
01 0 0 {0 A& 0 O} i
0 0 05 -0.55 0 0 ao B8
0 0 05 055 0 0 -8 «

We see that this transformation transforms the complex eigenvalues on the diagonal into
a block with the real part of the eigenvalues on the diagonal and the imaginary part on
the off-diagonal. This new A-matrix is said to be in modal form. The MATLAB function
{ab,bb,cb,db, P]=canon(a,b,c,d, 'modal’) or cancn(a,b,c,d) with no
type specified will yield an equivalent state equation with A in modal form. Note that there is
no need to transform A into a diagonal form and then to a modal form. The two transformations
can be combined into one as

1 0 0 0
- 01 o0 0
P-]: = e
Q=ln @ & @l , o5 0.5
0 0 05 0.5j
= [q; q2 Re(q3) Im(q3)] .

where Re and Im stand, respectively, for the real part and imaginary part and we have used in

the last equality the fact that q4 is the complex conjugate of q3. We give one more example. The

modal formr of a matrix with real eigenvalue X, and two pairs of distinct complex conjugate
eigenvalues a; £ jB;, fori = 1,2, is

A O 0 0 0

0 (03] /3] 0 0

A=|0 -8 « 0 O

0 0 0 24, ﬂz

0 0 0 —B o

It is block diagonal and can be obtained by the similarity transformation

P~ =[q; Re(qz) Im(q2) Re(qs) Im(qs)]

where q, 42, and qq are, respectively, eigenvectors associated with Ay, &y 4 j81, and a; + j 3.
This form is useful in state-space design.

(4.28)

4.3.2 Magnitude Scaling in Op-Amp Circuits

As discussed in Section 2.3.1, every LTI state equation can be implemented using an op-amp
circuit.! In actual op-amp circuits, all signals are limited by power supplies. If we use 415-volt

~

1. This subsection may be skipped without loss of continuity.
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power supplies, then all signals are roughly limited to £13 volts. If any signal goes outside
the range, the circuit will saturate and will not behave as the state equation dictates. Therefore
saturation is an important issue in actual op-amp circuit implementation.

Consider an LTI state equation and suppose all signals must be limited to =M. For linear
systems, if the input magnitude increases by «, so do the magnitudes of all state variables
and the output. Thus there must be a limit on input magnitude. Clearly it is desirable to have
the admissible input magnitude as large as possible. One way to achieve this is to use an
equivalence transformation so that

@Ol <yl =M

for all i and for all ¢. The equivalence transformation, however, will not alter the relationship
between the input and output; therefore we can use the original state equation to find the input
range to achieve |y(¢)| < M. In addition, we can use the same transformation to amplify some
state variables to increase visibility or accuracy. This is illustrated in the next example.

ExaMpLE 4.5 Consider the state equation

_[-01 2], .10
— X

X 0 -1 01"
y=[0.1 —I1x

Suppose the input is a step function of various magnitude and the equation is to be implemented
using an op-amp circuit in which all signals must be limited to 3-10. First we use MATLAB
to find its unit-step response. We type

a=[-0.1 2;0 -11;b=[10;0.1];c=[0.2 -11;d=0;
ly.x,t]l=step(a,b,c,d);
plot(t,y,t,x)

which yields the plot in Fig. 4.3(a). We see that |x||yey = 100 > [|¥|lmexr = 20 and
Jx2] << |¥|mar- The state variable x, is hardly visible and its largest magnitude is found
to be 0.1 by plotting it separately (not shown). From the plot, we see that if |u(t)| < 0.5, then
the output will not saturate but x;(t) will.

Let us introduce new state variables as

20 20

X = mxl =0.2x, X7 :-O._lxz = 200x;

With this transformation, the maximum magnitudes of x; (¢) and %, (t.) will equal | y|,qx. Thus
if y(r) does not saturate, neither will all the state variables ;. The transformation can be
expressed as X = Px with

p_[02 0 pi_[5 0
0 200 0 0.005

Then its equivalent state equation can readily be computed from (4.26) as

s _[-01 0o002] T2
Tl o -1 |*2]"

y=[1 —0.005]%
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Figure 4.3 Time responses.

Its step responses due to u(r) = 0.5 are plotted in Fig. 4.3(b). We see that all signals lie inside
the range £10 and occupy the full scale. Thus the equivalence state equation is better for
op-amp circuit implementation or simulation.

The magnitude scaling is important in using op-amp circuits to implement or simulate
continuous-time systems. Although we discuss only step inputs, the idea is applicable to any
input. We mention that analog computers are essentially op-amp circuits. Before the advent of
digital computers, magnitude scaling in analog computer simulation was carried out by trial
and error. With the help of digital computer simulation, the magnitude scaling can now be
carried out easily.

4.4 Redlizations

Every linear time-invariant (LTI) system can be described by the input—output description
. £ /
¥(s) = G(s)u(s)

. and, if the system is lumped as well, by the state-space equation description

x(1) = Ax(t) + Bu(r)
4.29)
y(t) = Cx(t) + Du(1)

If the state equation is known, the transfer matrix can be computed as G(s) = C(sI-A)"'B+D.
The computed transfer matrix is unique. Now we study the converse problem, that is, to find a
state-space equation from a given transfer matrix. This is called the realization problem. This
terminology is justified by the fact that, by using the state equatlon we can build an op-amp
circuit for the transfer matrix.

A transfer matrix G(s) is said to be realizable if there exists a finite-dimensional state
equation (4.29) or, simply, {A, B, C, D} such that

~

Gs)=CGI-A)'B+D
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and {A, B, C, D} is called a realization of f}(s). An LTI distributed system can be described
by a transfer matrix, but not by a finite-dimensional state equation. Thus not every f}(s) is
realizable. If é(s) is realizable, then it has infinitely many realizations, not necessarily of
the same dimension. Thus the realization problem is fairly complex. We study here only the
realizability condition. The other issues will be studied in later chapters.

Theorem 4.2

A transfer matrix é(s) is realizable if and only if é(s) is a proper rational matrix.

We use (3.19) to write -

6. () = CsI—A)"'B = — 1 C[Adj (s —
Gip(s) 1= C6X = A)7'B = o CIA (61— AYJB (4.30)

If Ais n x n, then det (sI — A) has degree n. Every entry of Adj (sI — A) is the determinant
of an (n — 1) x (n — 1) submatrix of (sI — A); thus it has at most degree (n — 1). Their linear
combinations again have at most degree (n — 1). Thus we conclude that C(s1 — A)"'Bis a
strictly proper rational matrix. If D is a nonzero matrix, then C(sI — A)~!B + D is proper. This
shows that if G(s) is realizable, then it is a proper rational matrix. Note that we have

G(co) =D

Next we show the converse; that is, if (A}(s) is a g x p proper rational matrix, then there
exists a realization. First we decompose G(s) as

G(s) = G(co) + G, p(s) (4.31)

where (A;_W, is the strictly proper part of é(s). Let
dis) =s"+a s '+ a5 +a, (4.32)
be the least common denominator of all entries of f}s,, (s). Here we require d(s) to be monic;

that is, its leading coefficient is 1. Then Gsl, (s) can be expressed as

A 1 1 ,
Gp(s) = @[N(s)] =5 [Nis" ™'+ Nos™ 2 +--- + N,ys + N, | (4.33)

where N; are g X p constant matrices. Now we claim that the set of equations

—al, —el, - —a,l, -, I,
I, 0 0 0 0
X = 0 L, e 0 0 x+| 0 ju
(4.34)
0 0 I, 0 0

y=[Ni N2 ---N,; N]x+ G(oo)u
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is a realization of G(s). The matrix I, is the p x p unit matrix and every 0 is a p X p zero matrix.
The A-matrix is said to be in block companion form; it consists of r rows and r columns of
p X p matrices; thus the A-matrix has order rp x rp. The B-matrix has order rp x p. Because
the C-matrix consists of r number of N;, each of order ¢ x p, the C-matrix has order ¢ x rp.
The realization has dimension rp and is said to be in controllable canonical form.
We show that (4.34) is a realization of é(s) in (4.31) and (4.33). Let us define
Z,

Z,
Z:=| |:=6I-A7"'B (4.35)

Z,
where Z; is p x p and Z is rp x p. Then the transfer matrix of (4.34) equals
C(sI — A)7'B + G(00) = NyZ; + NoZy + - - + N, Z, + G(0c0) (4.36)
We write (4.35)as (s —A)Z =Bor
sZ=AZ+B 4.37)

Using the shifting property of the companion form of A, from the second to the last block of
equations in (4.37), we can readily obtain

sLy =2, sZy=12Z,, ---, sZi=1Z,,

which implies

I ] 1
Zo=-Z,, Zi=—=Z, -, Z =—12
A N

st

Substituting these into the first block of equations in (4.37) yields
sty = -2y —axly — - —a,Z, —|—I[,
)Zi+1,

oy

sl‘—l

a
:—(a1+—s—+---+

or, using (4.32),

(s+a1+gs-2-+...+ or )Zl___d(S)

sr—l

Z, =1,

Sr—l
Thus we have
sr—l Sr—2 1
=—1, Zy=—I1, ..., Z,=—I
)7 T dE ” dis) ?

Substituting these into (4.36) yields

Z,

N 1 N
CGI—-A)"'B+ G(0) = d—(s~)[N1s"] +Nos" 24+ + N, 1+ G(o0)

<

This equals G(s) in (4.31) and (4.33). This shows that (4.34) is a realization of G(s).

S—
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ExaMPLE 4.6 Consider the proper rational matrix

r 4s — 10 3
2 2s + 1 2
Gl = 1+ iil
L2s+1)(s+2) (s+2)?
12 3 (4.38)
20 25 + 1 s+2
oo 1 s+ 1

Qs+ D(s+2) (s+2)?

where we have decomposed é(s) into the sum of a constant matrix and a strictly proper rational
matrix Gy, (s). The monic least common denominator of Gy, (s) is d(s) = (s +0.5)(s + 2)? =
$3 4 4.55% 4 65 + 2. Thus we have

1 —6(s +2)% 3(s+2)(s +0.5)
s34+4552465+2] 05(64+2) (s+1D(s+0.5

1 ([-6 3 2,[—24 7.5] +[—24 3])
_d(s)([O 11 "los 15]° 105

and a realization of (4.38) is

ésp (S) =

(45 0o ¢ -6 0 1 -2 o0
. . ! 0 "
0 —45 ° 0 —6 : 0 -2 0 1
0 0
‘o 1 0 0 0 0 0 S [u.]
0 1 0 0 0 0 U2
) i 0 0
0 0 1 0 Y0 0 Lo oL
L o o ‘0o 1 o0 o]
r B .
— Lo—- . =2 3 2 0
y = 6 3 | 24 15 . 4 }XJ’{O OMIH] 4.39)
Lo 1 : 05 15 : 1 05 2

This is a six-dimensional realization.

We discuss a special case of (4.31) and (4.34) in which p = 1. To save space, we assume
r = 4 and g = 2. However, the discussion applies to any positive integers r and g. Consider
the 2 x 1 proper rational matrix

A 1
Go)=|"|+
® [dz] st asd Fars? +azs +ay

.[ﬂ1152+ﬂ1252+ﬁ135+ﬁ14] (4.40)
Bais® + Baas® + Bas + P
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écl ()

Then its realization can be obtained directly from (4.34) as

X + 7]

] 0 (4.41)

(B Biz Bz Pu [ d,
LBt B2 B /324]}”—_6/2}”

This controllable-canonical-form realization can be read out from the coefficients of f}(s) in
(4.40).

There are many ways to realize a proper transfer matrix. For example, Problem 4.9
gives a different realization of (4.33) with dimension rg. Let GL, (s) be the ith column of
G(s) and let u; be the ith component of the input vector u. Then y(s) = G(s)u(s) can be
expressed as

y:

§().= G (91 () + Ga()ia(s) + - =1 §er () + Feals) + - -+

as shown in Fig. 4. 4(a) Thus we can realize each column of C(v) and then combine them to
yield a realization of G(v) Let G,, (s) be the ith row of G(s) and let y; be the ith component
of the output vector y. Then y(s) = G(?)u(s) can be expressed as

51(5) = G, (5)i(s)

as shown in Fig. 4.4(b). Thus we can realize each row of G(s) and then combine them to obtain
arealization.of G(s) Clcarly we can also realize each entry of G(s) and then combine them
to obtain a realization of G(s) See Reference [6, pp. 158-160].

The MATLAB function [a,b, c,d) =tf2gss (num, den) generates the controllable-
canonical-form realization shown in (4.41) for any single-input multiple-output transfer matrix
G(v) In its employment, there is no need to decompose (1(9) asin (4.31). But we must compute
its least common denominator, not necessarily monic. The next example will app]y tf2ssto
each column of G(s) in (4.38) and then combine them to form a realization of G(s)

Figure 4.4 Realizations of G(s) by

écz U)

G.(s) ———  columns and by rows.

[0 J) S——

(a)

(b)
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ExampLE 4.7 Consider the proper rational matrix in (4.38). Its first column is

45 — 10 (45 — 10)(s + 2) 452 = 25 — 20
A 2. 1 2s + D(: 2 g2
Gui(s) = sii— | @s+ 1)(?+ ) || 2s +153+2
2s+ D +2) 252+ 55 +2 252+ 55 +2
Typing

nl=(4 -2 -20;0 0 11;d1=(2 5 21; [a,b,c,d]l=tf2ss(nl,dl)

yields the following realization for the first column of Gs):

) =25 -1 1
X; = Aix; +bu = 1 0 X| + 0 i)

-6 -12 2
yc1=C1X1+d1HI=[ 0 0.5]X1+|:0]H|

Similarly, the function tf2ss can generate the following realization for the second column

(4.42)

of G(s):
X2 = AxXa + baus = 4 X2 + :
X2 = A2X2 2ty = 1 0 2 0 iz
(4.43)
3 6 0
Y<:2=C2X2+dzllz‘—‘[l I}Xz-klio:lllz
These two realizations can be combined as
)'(1 _ A[ 0 X, + bl 0 L]
f(z - 0 Ag X> 0 bz 1]
Yy=Ya+Yyo2=[C Cix+[d diJu
or
r—-25 -1 0 0 1 0
= 1 0 0 0 X+ 0 0 u
I ) 0 —4 —4 0 1
Lo 0 1 0. 00 (4.44)
_ -6 —12 3 6 X+ 20
Y=lo o5 1 1/ o o"

This is a different realization of the é(s) in (4.38). This realization has dimension 4, two less
than the one in (4.39).

The two state equations in (4.39) and (4.44) are zero-state equivalent because they have
the same transfer matrix. They are, however, not algebraically equivalent. More will be said
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in Chapter 7 regarding realizations. We mention that all discussion in this section, including
t £2ss, applies without any modification to the discrete-time case

4.5 Solution of Linear Time-Varying (LTV) Equations

Consider the linear time-varying (LTV) state equation
x(1) = A@)x() + B@)u(r) (4.45)
y(t) = C(H)x(¢) + D(H)u(®) (4.46)

It is assumed that, for every initial state x(#) and any input u(z), the state equation has a
unique solution. A sufficient condition for such an assumption is that every entry of A(¢) is a
continuous function of ¢. Before considering the general case, we first discuss the solutions of
x(t) = A(#)x(¢) and the reasons why the approach taken in the time-invariant case cannot be
used here.

The solution of the time-invariant equation X = Ax can be extended from the scalar
equation x = ax. The solution of X = ax is x(¢) = " x(0) with d(e*)/dt = ae” = e™a.
Similarly, the solution of X = Ax is x(t) = eA'x(0) with

ie:\! — AeAt — eAtA
dt

where the commutative property is crucial. Note that, in general, we have AB # BA and ' ’

eATBY £ AL B
The solution of the scalar time-varying equation X = a(t)x due to x(0) is
"a()d
(1) = o " 0)
with

d 1 t \ '
;e/; a(r)dr — a(t)efo a(t)dr — 6‘/;’ n(r)dra(t)
¢

Extending this to the matrix case becomes

I

x(1) = efo A@dTy 0) (4.47)
with, using (3.51),

ej;A(r)df =1 +f A(r)dt + _1_ (/ A(r)dr) (/ A(S)dS) +---
0 2 0 0

This extensijon, however, is not valid because

iefoIA(”dr =A(t) + lA(t) (/ A(S)ds) + ! (/ A(f)dl’) Ay +---
dt 2 0 2 \Jo

A(r)dr

#\ A(t)efo' (4.48)

Thus, in general, (4.47) is not a solution of x = A(t)x. In conclusion, we cannot extend the
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solution of scalar time-varying equations to the matrix case and must use a ditferent approach
to develop the solution.
Consider

% = A()x (4.49)

where A is n x n with continuous functions of ¢ as its entries. Then for every initial state x; (z;),
there exists a unique solution x; (¢), fori = 1, 2, ..., n. We can arrange these n solutions as
X =[x, x --- X,], asquare matrix of order n. Because every x; satisfies (4.49), we have

X(1) = AOX(1) (4.50)

If X(#) is nonsingular or the n initial states are linearly independent, then X(#) is called a
Sfundamental matrix of (4.49). Because the initial states can arbitrarily be chosen, as long as
they are linearly independent, the fundamental matrix is not unique.

ExampLE 4.8 Consider the homogeneous equation

0 0
X(1) = t 4.51
x(1) [z 0] x(1) (4.51)
or
x()=0 Xa(t) =txi (1)
The solution of x,(¢t) = 0 for t5 = 0 is x;(t) = x,(0); the solution of x5 (¢) = tx;(¢) = tx;(0)
is

x2(t) = f 7x1(0)dT + x2(0) = 0.5¢%x,(0) + x2(0)
0

[nO@7] 1 T
0= [xz(O)] B [O] = *() = [0.5[2]

=@ _ 1 _ 1
x(0) = [xg(())] = [2] = x(1) = [0.5:%2}

The two initial states are linearly independent; thus

1 1 '
X = [o.sﬂ 0.5:2 + 2] (4.52)

Thus we have

and

is a fundamental matrix.

A very important property of the fundamental matrix is that X(¢) is nonsingular for all z.
For example, X(¢) in (4.52) has determinant 0.5¢2 4 2 — 0.5¢% = 2; thus it is nonsingular for
all . We argue intuitively why this is the case. If X(¢) is singular at some ¢y, then there exists
a nonzero vector v such that x(¢;) := X(#;)v = 0, which, in turn, implies x(¢) := X({)v = 0
for all ¢, in particular, at = #y. This is a contradiction. Thus X(¢) is nonsingular for all ¢.
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Definition 4.2 Let X (1) be any fundamental matrix of x = A(1)x. Then
(1, 1) == X ()X (t0)

is called the slate transition matrix of X = A(t)x. The state transition matrix is also the
unique solution of

%q)(r, 10) = AN, 10) (4.53)

with the initial condition ®(tg, ty) = L

Because X(t) is nonsingular for all ¢, its inverse is well defined. Equation (4.53) follows
directly from (4.50). From the definition, we have the following important properties of the
state transition matrix:

o(r,1) =1 4.54)
O (1, 10) = [XOX (1)1 = X(t0)X ™1 (1) = ®(10, 1) (4.55)
O(t,tg) = @, 1)) P(11, 19) (4.56)

for every ¢, ty, and ;.

t ExAmpLE 4.9 Consider the homogeneous equation in Example 4.8. Its fundamental matrix
¥ was computed as 3

1 I
X0 = [0.5;2 0.51 + 2}

Its inverse is, using (3.20),
0.25: + 1 —0.5]

X! =
® [—0.25r2 0.5

» Thus the state transition matrix is given by

1 1 025t +1 —05

: O(1, 1) = 0

: ’ (7. 70) [0.512 0.512 +2} [ ~0.2512 05 }
0

_‘ 1

¥ TLoser-1d)

i It is straightforward to verify that this transition matrix satisfies (4.53) and has the three
properties listed in (4.54) through (4.56).

V.

Now we claim that the solution of (4.45) excited by the initial state x(#y) = X and the
input u(t) is given by

x(1) = P2, ty)xo +f o (¢, T)B(t)u(r) dr 4.57) -
t
S =9, 1) [xo +/ P (ty, T)B(T)u(r) dr] (4.58)
fo




itrix is also the

(4.53)

ion (4.53) follows
- properties of the

(4.54)

455
@56)

1damental matrix

1d has the three

0) = Xp and the

(4.57)

458
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where @ (¢, 7) is the state transition matrix of x = A(#)x. Equation (4.58) follows from (4.57)
by using ®(t, t) = ®(¢, to) P(tp, ). We show that (4.57) satisfies the initial condition and the
state equaion. Att = ty, we have

x(tg) = ® (2, tg)xo + / ’ O, )B()u(t)dr =Ixg+ 0 = xp

fo

Thus (4.57) satisfies the initial condition. Using (4.53) and (4.6), we have

d d a [
Zx(r) = Efb(z‘, to)Xo + 51—/:0 o1, T)B(t)u(r)dr

t

=A@)P(t, t)xo + f (%‘b([, 'L’)B(l')) dt + ®(t, 1)B(t)u(r)

=A)P(1, t9)Xo +/ AP, T)B(t)u(r)dr + B(H)u(?)
to
t
=AQ) [(D(t, to)Xo +/ ®(t, ‘L’)B(‘L’)U(T)dl’] + B(tH)u(t)
=A@)x(@) + B()u(r)
Thus (4.57) is the solution. Substituting (4.57) into (4.46) yields

y() = C(1)®(t, to)xo + C(t)/ ®(r, T)B(r)u(r) dv + D(t)u(r) (4.59)

If the input is identically zero, then Equation (4.57) reduces to
X(1) = ®(1, 10)Xo

This is the zero-input response. Thus the state transition matrix governs the unforced propa-
gation of the state vector. If the initial state is zero, then (4.59) reduces to

t
y(t) =C() ]f @(r, H)Br)ulr)dr +D)u(r)
0

t
= / [CHY®(, T)B(t) + D5t ~ ©)]u(r) dt (4.60)
fo
Thisis the zero-state response. As discussed in (2.5), the zero-state response can be described by

y() =[ G(t, Hu(r) dt 4.61)
o

where G(¢, ) is the impulse response matrix and is the output at time ¢ excited by an impulse
input applied at time 7. Comparing (4.60) and (4.61) yields

G(t, 1) =C@®)®@, t)B(r) + D@t — 1)
= COX®OX 1 (1)B(r) + D)8t — 1) (4.62)

This relates the input—output and state-space descriptions.
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The solutions in (4.57) and (4.59) hinge on solving (4.49) or (4.53). If A(r) is triangular

such as
x| _tau@® 0 xi (1)
X2 (1) axn(t) axn(r) ][ x()
we can solve the scalar equation X (1) = ¢y, (¢)x; () and then substitute it into

X2(t) = an(n)x2(t) + aa (Hx(2)

Because x;(r) has been solved, the preceding scalar equation can be solved for x(¢). This is
what we did in Example 4.8. If A(r), such as A(r) diagonal or constant, has the commutative

property
A(r) (/ A(7) dr) = (/ A(T) dr) A(t)

for all 1y and r, then the solution of (4.53) can be shown to be

t . o t k
O, 1) = ef’o A(r)dr _ Z% (f A('L’)dl’) (4.63)
k=0~ Ml

For A(r) constant, (4.63) reduces to
O, 7)== @@ — 1)

and X(¢) = e*'. Other than the preceding special cases, computing state transition matrices is
generally difficult.

4.5.1 Discrete-Time Case

Consider the discrete-time state equation
x[k + 1] = A[k]x[k] + B[k]u[k] (4.64)
y[k] = C[k]x[k] + D[k]u[k] (4.65)

The set consists of algebraic equations and their solutions can be computed recursively once
the initial state x[ko] and the input u[k], for k > ko, are given. The situation here is much
simpler than the continuous-time case.

As in the continuous-time case, we can define the discrete state transition matrix as the
solution of

D[k + 1, ko]l = A[Kk]P[k, ko) with ®[ko, ko] =1

for k = ko, ko + 1, ... . This is the discrete counterpart of (4.53) and its solution can be
obtained directly as .

D[k, kol = Alk — 1JA[k — 2] - -- ATko] (4.66)

fork > ko and ®[ko, ko] = 1. We discuss a significant difference between the continuous- and
discrete-time cases. Because the fundamental matrix in the continuous-time case is nonsingular

14

———n
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for all ¢, the state transition matrix ®(z, 1) is defined for ¢t > 1y and t < fy and can govern the
propagation of the state vector in the positive-time and negative-time directions. In the discrete-
time case, the A-matrix can be singular; thus the inverse of ®[k, ko] may not be defined. Thus
®[k, ko] is defined only for k > k¢ and governs the propagation of the state vector in only the
positive-time direction. Therefore the discrete counterpart of (4.56) or

Pk, ko]l = @[k, ki ]®[k1, ko]

holds only for k > k| > ko.
Using the discrete state transition matrix, we can express the solutions of (4.64) and (4.65)
as, for k > ko,

k—1
x[k] = @[k, kolxo + Z Ok, m + 1]B[m]u[m]
m=ki
’ 4.67)
k=1
y[k] = Clk]®[k, kolxo + C[k] Z Ok, m + 11B[m]ulm] + D[k]u[k]
m:k()
Their derivations are similar to those of (4.20) and (4.21) and will not be repeated.
If the initial state is zero, Equation (4.67) reduces to
k-1
ylk} = C[k] Z Ok, m + 11B[m]u[m] + D[k]u[k] (4.68)
m=ky

for k > k. This describes the zero-state response of (4.65). If we define ®[k, m] = 0 for
k < m, then (4.68) can be written as
k
ylk] = Z (Clk]®[k, m + 1]B[m] + D[m]s[k — m])u[m]

m=ky

where the impulse sequence §[k —m] equals 1 if k = m and O if & % m. Comparing this with
the multivariable version ot (2.34), we have

Gk, m] = Clk]®[k, m + 1]B[m] + D[m]8[k — m]

for k > m. This relates the impulse response sequence and the state equation and is the discrete
counterpart of (4.62).

4.6 Equivalent Time-Varying Equations

This section extends the equivalent state equations discussed in Section 4.3 to the time-varying
case. Consider the n-dimensional linear time-varying state equation
x = A(@)x + B(H)u

(4.69)
y=C@)x+D()u
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Let P(¢) be an n x n matrix. It is assumed that P(r) is nonsingular and both P(r) and P(t) are
continuous for all ¢. Let X = P(r)x. Then the state equation

X=A(NX+B(u
) ) (4.70)
y = C(0)x + D(H)Hu

where
A() = [P(A@) +POIPT' (1)
B(1) = P()B(t)
C@) = CHP'(D)
D(r) = D)

is said to be (algebraically) equivalent to (4.69) and P(¢) is called an (algebraic) equivalence
transformation.

Equation (4.70) is obtained from (4.69) by substituting X = P(7)x and X = P()x+P(1)%.
Let X be a fundamental matrix of (4.69). Then we claim that

X(1) = P(1)X(®) 4.71)

is a fundamental matrix of (4.70). By definition, X(t) = A(#)X(¢) and X(¢) is nonsingular for
all 1. Because the rank of a matrix will not change by multiplying a nonsingular matrix, the
matrix P(r)X(?) is also nonsingular for all 7. Now we show that P(+)X(¢) satisfies the equation
X = A(£)x. Indeed, we have

~

d . R .
—[POX(N] = POX®) + POX(O) = POX() + POAMNX()
=[P(r) + POYADIP™ (OP(D)IX (@) = A [PHX(D)]

Thus P(#)X(¢) is a fundamental matrix of §:(r): A(r)i(r).

Theorem 4.3

Let A, be an arbitrary constant matrix. Then there exists an equivalence transformation that transforms
(4.69) into (4.70) with A(r) = A,.

Proof: Let X(r) be a fundamental matrix of X = A(z)x. The differentiation of X~(r)
X(r) = Iyields
XX + XX (@) =0
which implies
X7 = =X OAMXOXT' (0 = =X (DA®) 4.72)

E}ecagse !_\(t) = A, is a constant matrix, X(t) = %’ is a fundamental matrix of
X = A(1)X = A Xx. Following (4.71), we define

. PO =XOX'@) =AX ) (4.73)
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and compute
A@®) = [POAQ) +POIP' (1)
= [A'X AR 4+ A X1(1) + M X (1)]X(1)e A"
which becomés, after substituting (4.72),
A@) = A, X1 (O)X()e ™™ = A,
This establishes the theorem. Q.E.D.

If A, is chosen as a zero matrix, then P(#) = X~!(¢) and (4.70) reduces to
A)=0 B@O=X"'0)B¢t) C@)=CHX¢t) D@)=D¢) “4.74)

The block diagrams of (4.69) with A(z) # 0 and A(¢) = 0 are plotted in Fig. 4.5. The block
diagram with A(¢) = 0 has no feedback and is considerably simpler. Every time-varying state
equation can be transformed into such a block diagram. However, in order to do so, we must
know its fundamental matrix.

The impulse response matrix of (4.69) is given in (4.62). The impulse response matrix of
(4.70) is, using (4.71) and (4.72),

G, 1) = COHXOX ™ (0)B() + D)8t - 7)

Ny
o

U
=]
N
+
—
F
\\//
@]
>

A KA
Ay
(@)
N =
N D
= 7
u NG = *) x\_. +y
N B )f N C
7 7 7
+

(®)

Figure 4.5 Block daigrams with feedback and without feedback.
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= COP ' OPOXOX ()P ' (D)P(1)B(1) + D)8t — 1)
= CHXMOX '()B() + D)5t — 1) = G(t, 1) !

Thus the impulse response matrix is invariant under any equivalence transformation. The
property of the A-matrix, however, may not be preserved in equivalence transformations. For
example, every A-matrix can be transformed, as shown in Theorem 4.3, into a constant or a
zero matrix. Clearly the zero matrix does not have any property of A(z). In the time-invariant
case, equivalence transformations will preserve all properties of the original state equation.
Thus the equivalence transformation in the time-invariant case is not a special case of the
time-varying case.

Definition 4.3 A matrix P(t) is called a Lyapunov transformation if P(t) is nonsingular,
P(t) and P(¢) are continuous, andP(t) and P~ (t) are bounded for allt. Equations (4.69)
and (4.70) are said to be Lyapunov equivalent if P(t) is a Lyapunov transformation.

It is clear that if P(¢) = P is a constant matrix, then it is a Lyapunov transformation. Thus
the (algebraic) transformation in the time-invariant case is a special case of the Lyapunov
transformation. If P(¢) is required to be a Lyapunov transformation, then Theorem 4.3 does 4.7 Time-\:
not hold in general. In other words, not every time-varying state equation can be Lyapunov
equivalent to a state equation with a constant A-matrix. However, this is true if A (f) is periodic.

Periodic state equations Consider the linear time-varying state equation in (4.69). It is
assumed that .

At +T)=A@)

for all ¢ and for some positive constant T'. Thatis, A(r) is periodic with period T'. et X () be
a fundamental matrix of X = A(¢)x or X(t) = A(#)X(¢) with X(0) nonsingular. Then we have

Xt+T)=A¢+DXE+T)=AOX¢t+T)
Thus X(¢ 4+ T) is also a fundamental matrix. Furthermore, it can be expressed as
Xt +T)=X0)X(0)X(T) (4.75)

This can be verified by direct substitution. Let us define Q = X‘I(O)X(T_). It is a constant

nonsingular matrix. For this Q there exists a constant matrix A such that eA7 = Q (Problem
3.24). Thus (4.75) can be written as

X(t + T) = X(1)eAT (4.76)
Define ‘ a—en
P(t) 1= eMX1 (1) 4.77)

We show that P(¢) is periodic with period T':

Pt+T)= eA(l+T)X—l(t +7)= eA'eAT[e_ATX_](t)]
< =MXTN) = P@)
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Theorem 4.4

Consider (4.69) with A(t) = A({t + T)forall t and some T > 0. Let X(¢) be a fundamental matrix
of X = A(¢)X. Let A be the constant matrix computed from AT = X~ Y0YX(T). Then (4.69) is
Lyapunov equivalent to

X(t) = Ax(t) + P()B(H)u(r)
y(t) = C(OP™ ()X (1) + D(H)u(r)

where P(1) = eA'X-1(2).

The matrix P(¢) in (4.77) satisfies all conditions in Definition 4.3; thus it is a Lyapunov
transformation. The rest of the theorem follows directly from Theorem 4.3. The homogeneous
part of Theorem 4.4 is the theory of Floquet. It states thatif X = A(t)x and if A(r +T) = A(r)
for all ¢, then its fundamental matrix is of the form P~!(¢)e!, where P~!(¢) is a periodic
function. Furthermore, X = A (¢)x is Lyapunov equivalent to X = AX.

4.7 Time-Varying Realizations

We studied in Section 4.4 the realization problem for linear time-invariant systems. In this

section, we study the corresponding problem for linear time-varying systems. The Laplace

transform cannot be used here; therefore we study the problem directly in the time domain.
Every linear time-varying system can be described by the input—output description

¥ = / G(t. Dyu(z) dr

and, if the system is lumped as well, by the state equation

X(1) = A()X(2) + B(O)u()

(4.78)
y(@) =CT@E)x{t) + D{t)ulr)
If the state equation is available, the impulse response matrix can be computed from
G, 1) = COX(O)X Y(1)B(1) + D)8t — 1) fort >t 4.79)

where X(¢) is a fundamental matrix of x = A(f)x. The converse problem is to find a state

equation from a given impulse response matrix. An impulse response matrix G(z, ) is said to
be realizable if there exists {A(t), B(z), C(¢), D(¢)} to meet (4.79).

Theorem 4.5
A g X p impulse response matrix G(, T) is realizable if and only if G(¢, T) can be decomposed as
G(t, ) =M(@)N(z) + D)3t — 1) (4.80)

for all t > 7, where M, N, and D are, respectively, ¢ X n,n X p, and ¢ X p matrices for some

integer n.
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;9 Proof: If G(t, 7) is realizable, there exists a realization that meets (4.79). Identifying
\ M(t) = C(#)X(¢t) and N(7) = X !()B(z) establishes the necessary part of the theorem.
If G(r, 7) can be decomposed as in (4.80), then the n-dimensional state equation

X(t) = N(@)u(@r)

(4.81)
y(& = M@®)x(@) + D(Hu(r)

is a realization. Indeed, a fundamental matrix of x = 0 - x is X(¢) = I. Thus the impulse
response matrix of (4.81) is

MONOI-T'N@) + D)8 — 1)
which equals G(z, 7). This shows the sufficiency of the theorem. Q.E.D.

Although Theorem 4.5 can also be applied to time-invariant systems, the result is not
useful in practical implementation, as the next example illustrates.

A

ExaMpLE 4.10 Consider g(t) = te* or

g(t’ T) = g(t - I').= (t — r)el(f—r)

¢ Itis straightforward to verify

—&T l .
A arpf TTE€ ;
gU—rﬁﬂe’teﬂ[ 4,} |

e

Thus the two-dimensional time-varying state equation

00 —te™™
ﬂn:[ ]x+[ _,}wo
00 e (4.82)

y(1) = [e* te™Ix(1)

is a realization of the impulse response g(t) = teM. ;
The Laplace transform of the impulse response is f

1 1
o :LI‘ At = =
§) [re”] (s =22  s2—2xs+ A2

Ve rmr g o pary e s e ey ey 1 o gy ——

~

i

Using (4.41), we can readily obtain

2% —A? 1
x(1) =[ ]x(t)+[ ]u(t) —~
1 0 0 (4.83)
y(®) =[0 1]x(2)

This LTI state equation is a different realization of the same impulse response.This realization
is clearly more desirable because it can readily be implemented using an op-amp circuit. The
implementation of (4.82) is much more difficult in practice.

T e g — g
<Rk Tie, X

T

|- B Ao s et Al
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== o[ the theorem,
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. Ze rasult is not
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(4.83)

Tais realization
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4.5
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An oscillation can be generated by
X = 0 1 X
-1 0

cost sint

Show that its solution is

—sint cost

X(0) = [ ]x(O)

Use two different methods to find the unit-step response of
X = [ 0 ! :l X+ [ ! ] u
-2 =2 1
y=1[2 3x

Discretize the state equation in Problem 4.2 for 7 = 1 and T = .

Find the companion-form and modal-form equivalent equations of

-2 0 0 1
x={1 0 1 [x+[0]u

0 -2 -2 1
y=[1 —10]x

Find an equivalent state equation of the equation in Problem 4.4 so that all state variables
have their largest magnitudes roughly equal to the largest magnitude of the output. If
all signals are required to lie inside +10 volts and if the input is a step function with
magnitude a, what is the permissible largest a?

X = * O‘IX+|Vbl y=[c; ¢lx
=lo 11¥F15 u y=1[c; ¢l

where the overbar denotes complex conjugate. Verify that the equation can be trans-
formed into

Consider

X=Ax+bu y=¢ex

with

A:I: 0_ 1_]
—AA A4 A

by using the transformation x = QX with
—Ab; by
@ = [—)J;l 51]

Verify that the Jordan-form equation

o

=[?] ¢, = [-2Re(Abjc1) 2Re(bicy)]
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A 1 0 0 0 07 by ]
0~ 1000 b,

. 00 A 000 b3

=10 0031 0|5 "
000 0 A 1 b,
0 00 0 0 A | b5 ]

y=[c1 2 3 ¢4 &2 G3)X

can be transformed into

AL 0 b
x=|0 A L |x+|blu y=[& & &k
0 0 A b

where A, b, and ¢; are defined in Problem 4.6 and I, is the unit matrix of order 2. [Hint:
Change the order of the state variables from [x; x» x3 x5 xs xg]’ to [x] x5 X2 Xs
x3 xg)’ and then apply the equivalence transformation.x = QX with Q = diag(Qy,

Q2,Q3).]
4.8 Are the two sets of state equations
2.1 2 1
x=10 2 2|x|1|u y=[1-10
0 01 0
and

2 1 17 1
x=]0 2 le 1 |u y=[1-10]x
0 0 -1 0

equivalent? Are they zero-state equivalent?

4.9 Verify that the transfer matrix in (4.33) has the following realization:

. -, I, 0 -.- O N;
-l 0O I, --- 0 N,
X = : : : R + 1 u
-, 0 0 ... I, N,_;
-, l; 0 0 0 N,

y=[I, 00 ... 0]x

This is called the observable canonical form realization and has dimension rq. It is dual
to (4.34).
4.10 Consider the 1 x 2 proper rational matrix
1
s+ o153 4 ars? +a3s +ay

G(s) =[di o] +




f order 2. [Hint;
0 [x; x4 x5 x5

Q = diag(Q,

onrgq.Itis dual

L L e e
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4.12

4.13

4.14

4.15

4.16
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x [Bus® + Bas® + Byis + Bar Bias® + Brs® + Pras + Bazl

Show that its observable canonical form realization can be reduced from Problem 4.9 as

-a; 1 0 0 Bu Bz
— 0 0
ao | T 1 X+ B Bn u
—a3; 0 0 1 B B
—a4 0 0 O Bar Ba
y=[100 0x+I[d du
Find a realization for the proper rational matrix
2 2s — 3
A s+l s+ D(s+2)
G(s) = s—2 s
s+1 s+2

Find a realization for each column of é(s) in Problem 4.11 and then connect them,
as shown in Fig. 4.4(a), to obtain a realization of G(s). What is the dimension of this
realization? Compare this dimension with the one in Problem 4.11.

Find a realization for each row of é(s) iq Problem 4.11 and then connect them, as shown
in Fig. 4.4(b), to obtain a realization of G(s). What is the dimension of this realization?
Compare this dimension with the ones in Problems 4.11 and 4.12.

Find a realization for

A —(125 +6) 225+ 23
G(s) =

3s+34  3s+34
Consider the n-dimensional state equation

X = Ax + bu y =¢X

Let g(s) be its transfer function. Show that g(s) has m zeros or, equivalently, the
numerator of g(s) has degree m if and only if

cA'lb=0 fori=0,1,2,...,n—-m—2

and cA"~™~!b # 0. Or, equivalently, the difference between the degrees of the denom-
inator and numerator of g(s) is @ = n — m if and only if

cA b £0 and cA'b=0
fori =0,1,2,...,a —2.

Find fundamental matrices and state transition matrices for

1&-—01x
10 ¢
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and

4.17 Show 3® (1o, 1)/t = —® (19, NA(F).

4.18 Given
ap(t) ap(@)
A =
® [021(1‘) azz(f):l
show
t
det (¢, 1p) = exp l:/ (an(v) + 022(7))(17]

fo

4.19 Let

.12, 10) ‘I’lz(f,lo)]

®(t, 1) = [¢2[(tv10) Dy, (1, 1p)

be the state transition matrix of

0 An(t)

Show that ®,(t, tg) = 0 for all ¢ and 1y and that (3/31)®;; (¢, to) = A;; ®;; (¢, tp), for
i=1,2.

() = [Au(f) AIZ(’)]X(r)

4.20 Find the state transition matrix of

= —sint 0 X
- 0 —cost

4.21 Verify that X(¢) = e* Ce? is the solution of
X = AX 4 XB X(0) =C

4.22 Show that if A(f) = A;A(r) — A(1)A;, then
A@t) =M A0)e ™™

Show also that the eigenvalues of A(¢) are independent of ¢.

4.23 Find an equivalent time-invariant state equation of the equation in Problem 4.20.

4.24 Transform a time-invariant (A, B, C) into (0, B(1), (_Z(I)) by a time-varying equivalence
transformation.

4.25 Find a time-varying realization and a time-invariant realization of the impulse response

gt) = 12eM.

4.26 Find a realization of g(f, T) = sint(e~ ™) cos 7. Is it possible to find a time-invariant
state equation realization?

5.1 Inir






