Chapter 3

Fundamental Properties

This chapter states some fundamental properties of the solutions of ordinary differ-
ential equations, like existence, uniqueness, continuous dependence on initial con-
ditions, and continuous dependence on parameters. These properties are essential
for the state equation £ = f(t,z) to be a useful mathematical model of a physical
system. In experimenting with a physical system such as the pendulum, we expect
that starting the experiment from a given initial state at time ¢y, the system will
move and its state will be defined in the (at least immediate) future time ¢ > tq.
Moreover, with a deterministic system, we expect that if we could repeat the ex-
periment exactly, we would get exactly the same motion and the same state at
t > tg. For the mathematical model to predict the future state of the system from
its current state at tg, the initial-value problem

= f(t,z), z(to) =20 (31)

must have a unique solution. This is the question of existence and uniqueness
that is addressed in Section 3.1. It is shown that existence and uniqueness can
be ensured by imposing some constraints on the right-hand side function f(t,z).

The key constraint used in Section 3.1 is the Lipschitz condition, whereby f(t,z)
satisfies the inequality!

If(tz) - f& 9l < Lilz -yl (3.2)

for all (¢,z) and (¢,y) in some neighborhood of (tq, zg).

An essential factor in the validity of any mathematical model is the continuous
dependence of its solutions on the data of the problem. The least we should expect
from a mathematical model is that arbitrarily small errors in the data will not result
in large errors in the solutions obtained by the model. The data of the initial-value
problem (3.1) are the initial state x¢, the initial time ty, and the right-hand side

|| - || denotes any p-norm, as defined in Appendix A.
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function f(t,z). Continuous dependence on the initial conditions (o, o) and on
the parameters of f are studied in Section 3.2. If f is differentiable with respect
to its parameters, then the solution will be differentiable with respect to these
parameters. This is shown in Section 3.3 and is used to derive sensitivity equations
that describe the effect of small parameter variations on the performance of the
system. The continuity and differentiability results of Sections 3.2 and 3.3 are valid
only on finite time intervals. Continuity results on the infinite time interval will be
given later, after stability concepts have been introduced.?

The chapter ends with a brief statement of a comparison principle that bounds
the solution of a scalar differential inequality © < f(t,v) by the solution of the
differential equation & = f(t,u).

3.1 Existence and Uniqueness

In this section, we derive sufficient conditions for the existence and uniqueness of
the solution of the initial-value problem (3.1). By a solution of (3.1) over an interval
[to,t1], we mean a continuous function z : [tg,t1] — R™ such that #(t) is defined
and &(t) = f(t,z(t)) for all t € [tg,t1]. If f(¢,z) is continuous in t and z, then
the solution z(t) will be continuously differentiable. We will assume that f(t, ) is
continuous in z, but only piecewise continuous in t, in which case, a solution z(t)
could only be piecewise continuously differentiable. The assumption that f(t,z) be
piecewise continuous in ¢t allows us to include the case when f(¢,z) depends on a
time-varying input that may experience step changes with time.

A differential equation with a given initial condition might have several solutions.
For example, the scalar equation

& =23, with z(0)=0 (3.3)

has a solution z(t) = (2t/3)3/2. This solution is not unique, since z(t) = 0 is another
solution. In noting that the right-hand side of (3.3) is continuous in z, it is clear
that continuity of f(¢,z) in its arguments is not sufficient to ensure uniqueness of
the solution. Extra conditions must be imposed on the function f. The question of
existence of a solution is less stringent. In fact, continuity of f(¢,z) in its arguments
ensures that there is at least one solution. We will not prove this fact here.3 Instead,

we prove an easier theorem that employs the Lipschitz condition to show existence
and uniqueness.

Theorem 3.1 (Local Existence and Uniqueness) Let f(t,z) be piecewise con-
tinuous in t and satisfy the Lipschitz condition

£t z) - F(t,y)ll < Lilz -yl

2See, in particular, Section 9.4.
3See (135, Theorem 2.3] for a proof.
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Vr,yec B={z€R"||z—zo| <7}, VtE€ [to,t1]. Then, there exists some 6 >0
such that the state equation & = f(t,x) with z(to) = xo has a unique solution over
[to, to + (S] &

Proof: See Appendix C.1.

The key assumption in Theorem 3.1 is the Lipschitz condition (3.2). A function
satisfying (3.2) is said to be Lipschitz in z, and the positive constant L is called a
Lipschitz constant. We also use the words locally Lipschitz and globally Lipschitz to
indicate the domain over which the Lipschitz condition holds. Let us introduce the
terminology first for the case when f depends only on z. A function f(z) is said
to be locally Lipschitz on a domain (open and connected set) D C R™ if each point
of D has a neighborhood Dy such that f satisfies the Lipschitz condition (3.2) for
all points in Dy with some Lipschitz constant Lo. We say that f is Lipschitz on a
set W if it satisfies (3.2) for all points in W, with the same Lipschitz constant L.
A locally Lipschitz function on a domain D is not necessarily Lipschitz on D, since
the Lipschitz condition may not hold uniformly (with the same constant L) for all
points in D. However. a locally Lipschitz function on a domain D is Lipschitz on
every compact (closed and bounded) subset of D (Exercise 3.19). A function f(z)
is said to be globally Lipschitz if it is Lipschitz on R". The same terminology is
extended to a function f(t,z), provided the Lipschitz condition holds uniformly in
t for all t in a given interval of time. For example, f(t,z) is locally Lipschitz in
on [a,b] x D C R x R" if each point € D has a neighborhood Dy such that f
satisfies (3.2) on [a,b] x Do with some Lipschitz constant Lo. We say that f(t,z)
is locally Lipschitz in x on [tg,00) x D if it is locally Lipschitz in z on [a,b] x D
for every compact interval [a,b] C [tg,00). A function f(t,z) is Lipschitz in = on
[a,b] x W if it satisfies (3.2) for all ¢ € [a,b] and all points in W, with the same
Lipschitz constant L.

When f: R — R, the Lipschitz condition can be written as

lfw) - f@)I
ly—=z| ~

which implies that on a plot of f(z) versus z, a straight line joining any two points
of f(x) cannot have a slope whose absolute value is greater than L. Therefore. any
function f(zx) that has infinite slope at some point is not locally Lipschitz at that
point. For example, any discontinuous function is not locally Lipschitz at the point
of discontinuity. As another example, the function f(z) = /3, which was used in
(3.3), is not locally Lipschitz at = 0 since f'(z) = (1/3)z72/3 - coas z — 0. On
the other hand, if |f/(x)| is bounded by a constant k over the interval of interest,
then f(z) is Lipschitz on the same interval with Lipschitz constant L = k. This
observation extends to vector-valued functions, as demonstrated by Lemma 3.1.

Lemma 3.1 Let f : [a,b] x D — R™ be continuous for some domain D C R".
Suppose that [0f/0x] exists and is continuous on [a,b] x D. If, for a convex subset
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W C D, there is a constant L > 0 such that

of

on [a,b] x W, then
I£(t,z) = ft, )l < Liiz -yl
forallt € a,b],ze W, andy e W. <O

Proof: Let |||, be the underlying norm for any p € [1, 00|, and determine q € [1, 00
from the relationship 1/p+ 1/g = 1. Fix t € [a,b], z € W, and y € W. Define
v(s) = (1 — s)x + sy for all s € R such that vy(s) € D. Since W C D is convex,
v(s) € W for 0 < s < 1. Take z € R™ such that*

lzllg =1 and z7[f(t,y) - f(t,2)] = I F(t,y) - F(t,2)
Set g(s) = 2T f(t,~(s)). Since g(s) is a real-valued function, which is continuously

differentiable in an open interval that includes [0, 1], we conclude by the mean value
theorem that there is s; € (0,1) such that

9(1) — g(0) = ¢'(s1)

Evaluating g at s = 0, s = 1, and calculating ¢’(s) by using the chain rule, we
obtain

Tty - Fta)] = T (b (1) - 2)

Oz
of
15t y) = F@t 2l < lzllg || 5@ (s0))|| Ny =zl < Llly —zllp
P
where we used the Holder inequality |zTw| < ||z||q/|w|l,- o

The lemma shows how a Lipschitz constant can be calculated using knowledge
of [0f/0z].

The Lipschitz property of a function is stronger than continuity. It can be
easily seen that if f(x) is Lipschitz on W, then it is uniformly continuous on W
(Exercise 3.20). The converse is not true, as seen from the function f(x) = x'/3,
which is continuous, but not locally Lipschitz at x = 0. The Lipschitz property is
weaker than continuous differentiability, as stated in the next lemma.

Lemma 3.2 If f(t,z) and [0f/0z](t,z) are continuous on [a,b] X D, for some
domain D C R™, then f is locally Lipschitz in x on [a,b] X D. o

4Such z always exists. (See Exercise 3.21.)
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Proof: For zg € D, let r be so small that the ball Dy = {z € R | ||z — x| < 7}
is contained in D. The set Dy is convex and compact. By continuity, [0f/0z]
is bounded on [a,b] x Dg. Let Lo be a bound for ||0f/8z| on [a,b] x Do. By
Lemma 3.1. f is Lipschitz on [a, b] X Dy with Lipschitz constant Lg. O

It is left to the reader (Exercise 3.22) to extend the proof of Lemma 3.1 to prove
the next lemma.

Lemma 3.3 If f(t,z) and [0f/0z|(t,z) are continuous on [a,b] x R™, then f is

globally Lipschitz in x on [a,b] X R™ if and only if [0f/0z] is uniformly bounded on
[a,b] x R™. <o

Example 3.1 The function

fla) = [ —z1 + T122 ]

T2 — XT17T2

is continuously differentiable on R2. Hence, it is locally Lipschitz on R2. It is not
globally Lipschitz since [0f/dz] is not uniformly bounded on R?. On any compact
subset of R2. f is Lipschitz. Suppose that we are interested in calculating a Lipschitz
constant over the convex set W = {x € R? | |z1| < a1, |z2] < a2}. The Jacobian

matrix is given by
of] _ | -1+z2 =
or| —zz l-z

Using ||.||s for vectors in R? and the induced matrix norm for matrices, we have

of
oz

All points in W satisfy

= max{| — 1 + x| + |z1], 22| +]1 — =]}

¢

| = 14zo|+|z1|<14+az+a1 and |z2|+|1—2z1] <az+1+a;
Hence,
<1l+4+a;+as

3],

and a Lipschitz constant can be taken as L = 1+ a3 + as. A

Example 3.2 The function

— 2
fla) = [ —sat(r1 + z2) ]
is not continuously differentiable on R2. Let us check its Lipschitz property by
examining f(z)— f(y). Using |.||2 for vectors in R? and the fact that the saturation
function sat(-) satisfies

sat(n) —sat(§)| < |n — €|
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we obtain

I (z) — fF()lI3 (T2 —y2)? + (21 + 72 — 1 — ¥2)°

(z1 = 91)? + 2(z1 — y1) (@2 — ¥2) + 2(z2 — 12)?

IHESS{FRIS N

If(2) = f()ll2 < V2618 |l& —yll2, Vz,y € R?

IN

Using the inequality

a Tr 2
2 2
a+2ab+2b—[b} [1

(S~

1
2 2

we conclude that

Here we have used a property of positive semidefinite symmetric matrices; that is,
2T Pz < Amax(P) Tz, for all z € R™, where Ayax(+) is the maximum eigenvalue of
the matrix. A more conservative (larger) Lipschitz constant will be obtained if we
use the more conservative inequality

a® + 2ab + 2b? < 2a% + 3b% < 3(a® + b?)
resulting in a Lipschitz constant L = /3. A

In these two examples, we have used ||- || in one case and ||-||2 in the other. Due
to equivalence of norms, the choice of a norm on R™ does not affect the Lipschitz
property of a function. It only affects the value of the Lipschitz constant (Exer-
cise 3.5). Example 3.2 illustrates the fact that the Lipschitz condition (3.2) does
not uniquely define the Lipschitz constant L. If (3.2) is satisfied with some positive
constant L, it is satisfied with any constant larger than L. This nonuniqueness can
be removed by defining L to be the smallest constant for which (3.2) is satisfied,
but we seldom need to do that.

Theorem 3.1 is a local theorem since it guarantees existence and uniqueness only
over an interval [tg,to + 0], where 6 may be very small. In other words, we have
no control on ¢; hence, we cannot ensure existence and uniqueness over a given
time interval [to,¢1]. However, one may try to extend the interval of existence by
repeated applications of the local theorem. Starting at a time ¢y, with an initial
state z(to) = xo, Theorem 3.1 shows that there is a positive constant ¢ (dependent
on o) such that the state equation (3.1) has a unique solution over the time interval
[to, to + 6]. Now, taking tg + § as a new initial time and z(tc + &) as a new initial
state, one may try to apply Theorem 3.1 to establish existence of the solution beyond
to + 4. If the conditions of the theorem are satisfied at (tg + 8, z(to + 9)), then there
exists d2 > 0 such that the equation has a unique solution over [tg + &,t9 + & + 02]
that passes through the point (to+9, z(to+J)). We piece together the solutions over
[to, to+ 4] and [to + 9, o+ + &2] to establish the existence of a unique solution over
[to,to + 0 + &2]. This idea can be repeated to keep extending the solution. However,
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in general, the interval of existence of the solution cannot be extended indefinitely
because the conditions of Theorem 3.1 may cease to hold. There is a maximum
interval [to, T) where the unique solution starting at (to, o) exists.’ In general, T
may be less than ¢, in which case as ¢ — T, the solution leaves any compact set
over which f is locally Lipschitz in z (Exercise 3.26).

Example 3.3 Consider the scalar system
&= —z% with z(0)=-1

The function f(z) = —x? is locally Lipschitz for all z € R. Hence, it is Lipschitz
on any compact subset of R. The unique solution

exists over [0,1). Ast — 1, z(t) leaves any compact set. A

The phrase “finite escape time” is used to describe the phenomenon that a trajectory
escapes to infinity at a finite time. In Example 3.3, we say that the trajectory has
a finite escape time at t = 1.

In view of the discussion preceding Example 3.3, one may pose the following
question: When is it guaranteed that the solution can be extended indefinitely?
One way to answer the question is to require additional conditions which ensure
that the solution z(t) will always be in a set where f(t,x) is uniformly Lipschitz
in z. This is done in the next theorem by requiring f to satisfy a global Lipschitz
condition. The theorem establishes the existence of a unique solution over [to,1],
where t; may be arbitrarily large.

Theorem 3.2 (Global Existence and Uniqueness) Suppose that f(t,x) is piece-

wise continuous in t and satisfies

£t x) = f(t 9l < Lz -yl

V z,y € R, VYt € [to,t1]. Then, the state equation & = f(t,r), with z(to) = xo,
has a unique solution over [to,ti]. o

Proof: See Appendix C.1.
Example 3.4 Consider the linear system
&= A(t)z +g(t) = f(t,x)

where A(t) and g(t) are piecewise continuous functions of ¢t. Over any finite interval
of time [to, t1], the elements of A(t) are bounded. Hence, ||A(t)|| < a, where ||A|| is
any induced matrix norm. The conditions of Theorem 3.2 are satisfied since

1/t ) = FE )l = 1A@) @ — )l < A llz - yll < allz - yll

5For a proof of this statement, see [81, Section 8.5] or [135, Section 2.3].
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for all z,y € R™ and t € [to,t1]. Therefore, Theorem 3.2 shows that the linear
system has a unique solution over [tg,t1]. Since t; can be arbitrarily large, we can
also conclude that if A(t) and g(t) are piecewise continuous V ¢t > tg, then the system
has a unique solution V ¢ > t3. Hence, the system cannot have a finite escape time.

VAN

For the linear system of Example 3.4, the global Lipschitz condition of Theorem
3.2 is a reasonable requirement. This may not be the case for nonlinear systems, in
general. We should distinguish between the local Lipschitz requirement of Theorem
3.1 and the global Lipschitz requirement of Theorem 3.2. Local Lipschitz property
of a function is basically a smoothness requirement. It is implied by continuous
differentiability. Except for discontinuous nonlinearities, which are idealizations
of physical phenomena, it is reasonable to expect models of physical systems to
have locally Lipschitz right-hand side functions. Examples of continuous functions
that are not locally Lipschitz are quite exceptional and rarely arise in practice.
The global Lipschitz property, on the other hand, is restrictive. Models of many
physical systems fail to satisfy it. One can easily construct smooth meaningful
examples that do not have the global Lipschitz property, but do have unique global
solutions, which is an indication of the conservative nature of Theorem 3.2.

Example 3.5 Consider the scalar system

i= 2 = f(z)
The function f(x) does not satisfy a global Lipschitz condition since the Jacobian
0f/dx = —3z? is not globally bounded. Nevertheless, for any initial state z(tg) =

Zg, the equation has the unique solution

. z

which is well defined for all ¢ > ¢,. JAN

In view of the conservative nature of the global Lipschitz condition, it would be
useful to have a global existence and uniqueness theorem that requires the function
f to be only locally Lipschitz. The next theorem achieves that at the expense of
having to know more about the solution of the system.

Theorem 3.3 Let f(t,z) be piecewise continuous in t and locally Lipschitz in T
for allt > tg and all x in a domain D C R™. Let W be a compact subset of D,
x9 € W, and suppose it is known that every solution of

T = f(t,z), =z(to) =xo

lies entirely in W. Then, there is a unique solution that is defined for all t > ty5. <
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Proof: Recall the discussion on extending solutions, preceding Example 3.3. By
Theorem 3.1, there is a unique local solution over [to, tg + 8]. Let [tg, T') be its max-
imal interval of existence. We want to show that T' = co. Recall (Exercise 3.26)
the fact that if T is finite, then the solution must leave any compact subset of D.
Since the solution never leaves the compact set W, we conclude that T' = oco. O

The trick in applying Theorem 3.3 is in checking the assumption that every
solution lies in a compact set without actually solving the differential equation. We
will see in Chapter 4 that Lyapunov’s method for studying stability is very valuable
in that regard. For now, let us illustrate the application of the theorem by a simple
example.

Example 3.6 Consider again the system
&= -2 = f(z)

of Example 3.5. The function f(z) is locally Lipschitz on R. If, at any instant
of time, z(t) is positive, the derivative z(t) will be negative. Similarly, if z(t) is
negative, the derivative z(t) will be positive. Therefore, starting from any initial
condition z(0) = a, the solution cannot leave the compact set {z € R | |z| <
lal}. Thus, without calculating the solution, we conclude by Theorem 3.3 that the
equation has a unique solution for all ¢t > 0. A

3.2 Continuous Dependence on Initial Conditions
and Parameters

For the solution of the state equation (3.1) to be of any interest, it must depend
continuously on the initial state g, the initial time ¢y, and the right-hand side

function f(t,z). Continuous dependence on the initial time tq is obvious from the
integral expression

z(t) = xo + tf(s,:c(s)) ds

Therefore, we leave it as an exercise (Exercise 3.28) and concentrate our attention
on continuous dependence on the initial state z¢ and the function f. Let y(t) be
a solution of (3.1) that starts at y(tg) = yo and is defined on the compact time
interval [to,¢1]. The solution depends continuously on yo if solutions starting at
nearby points are defined on the same time interval and remain close to each other
in that interval. This statement can be made precise with the e-§ argument: Given
€ > 0, there is § > 0 such that for all zy in the ball {x € R" | ||z — yo| <
0}, the equation # = f(¢,z) has a unique solution z(t) defined on [to,t;], with
2(to) = zo, and satisfies ||z(t) — y(t)|| < € for all t € [to, t;]. Continuous dependence
on the right-hand side function f is defined similarly, but to state the definition
precisely, we need a mathematical representation of the perturbation of f. One
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possible representation is to replace f by a sequence of functions f,,, which converge
uniformly to f as m — oo. For each function f,, the solution of & = f,(¢,z) with
z(to) = xo is denoted by z.,(t). The solution is said to depend continuously on
the right-hand side function if z,,(t!) — z(t) as m — oo. This approach is a
little bit involved, and will not be pursued here.® A more restrictive, but simpler,
mathematical representation is to assume that f depends continuously on a set of
constant parameters; that is, f = f(¢,z, A), where A € RP. The constant parameters
could represent physical parameters of the system, and the study of perturbation of
these parameters accounts for modeling errors or changes in the parameter values
due to aging. Let z(¢, \o) be a solution of £ = f(t,z, Ag) defined on [tg,t1], with
z(to, o) = To. The solution is said to depend continuously on A if for any € > 0,
there is 6 > 0 such that for all X in the ball {\ € RP | ||\ — \o|| < 8}, the equation
i = f(t,x,\) has a unique solution z(t,\) defined on [tg,t1], with z(to,A) = =0,
and satisfies ||z(t, A) — (¢, Ao)|| < € for all ¢ € [to, t1].

Continuous dependence on initial states and continuous dependence on parame-
ters can be studied simultaneously. We start with a simple result that bypasses the
issue of existence and uniqueness and concentrates on the closeness of solutions.

Theorem 3.4 Let f(t,x) be piecewise continuous in t and Lipschitz in x on [to, t1] ¥
W with a Lipschitz constant L, where W C R™ is an open connected set. Let y(t)
and z(t) be solutions of

y = f(tv y)7 y(tO) =%
and
2= f(t,2) +9(t,2), z(to) =20
such that y(t), z(t) € W for all t € [to,t1]. Suppose that
lgt,x)l| <, V (t,2) € [to, 1] x W

for some p > 0. Then,
lly(t) — 2()Il < llvo — 2oll exp[L(t — to)] + % {exp[L(t — to)] — 1}
Vte [to,tl]. O

Proof: The solutions y(t) and z(t) are given by

t

y(t) = wo+ t f(s,y(s)) ds
() = 2+ / (5, 2(5)) + (s, 2(5))] ds

BSee [43, Section 1.3], [75, Section 1.3], or [135, Section 2.5} for results on continuous dependence
on parameters using this approach.
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Subtracting the two equations and taking norms yield
ly(t) — =D < llyo — 2ol + /t: 1£(s,u(s)) — £(s,2(s))]| ds
[ .l s

<y tult—to)+ / Liiy(s) - 2(s)]| ds

to

where y = ||yo — 20|/ Application of the Gronwall-Bellman inequality (Lemma A.1)
to the function ||y(t) — z(t)|| results in

t

lly(t) = z(t)il < v+ p(t —to) + /t L[y + p(s — to)] exp[L(t — s)] ds

Integrating the right-hand side by parts, we obtain
ly(®) — 2Ol < v+ ult —to) = 7 — p(t —to) + v expL(t — to)]

+/ pexp[L(t — s)] ds

to
= yexplL(t — to)) + £ {expL(t — to)] — 1}
which completes the proof of the theorem. O
With Theorem 3.4 in hand, we can prove the next theorem on the continuity of
solutions in terms of initial states and parameters.

Theorem 3.5 Let f(t,z,)\) be continuous in (t,x,)\) and locally Lipschitz in
(uniformly in t and X) on [to,t1] x D X {JIx = Xoll < ¢}, where D C R" is an open
connected set. Let y(t, \o) be a solution of & = f(t,z, Ao) with y(to, M) = yo € D.
Suppose y(t, \o) is defined and belongs to D for all t € [to,t1]. Then, given € >0,
there is 8 > 0 such that if

llzo —woll <6 and |IA—= ol <6

then there is a unique solution z(t,\) of & = f(t,xz,)) defined on [to, t1], with
z(to, \) = zo, and =(t, \) satisfies

"Z(t, ’\) - y(tv AO)” <g, Vte [tO’tl]
<o

Proof: By continuity of y(t, Ao) in t and the compactness of [to,t1], we know that
y(t, \o) is bounded on [tg,t1]. Define a “tube” U around the solution y(t, Ao) (see
Figure 3.1) by
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Figure 3.1: A tube constructed around the solution y(t, Ao).

U ={(t,z) € [to,t1] x R" | [lz — y(t, Mo)|| < &}

Suppose that U C [to,t1] X D; if not, replace ¢ by €3 < € that is small enough
to ensure that U C [to,t1] X D and continue the proof with ;. The set U is
compact; hence, f(¢,x, ) is Lipschitz in  on U with a Lipschitz constant, say, L.
By continuity of f in A, for any a > 0, there is 8 > 0 (with 8 < ¢) such that

”f(t,l‘,/\) - f(t,l,/\o)u <aq v (t,(l)) € U7 v ”A - )‘0“ < /6

Take a < € and ||z0 — yol| < @. By the local existence and uniqueness theorem,
there is a unique solution z(t,A) on some time interval [to,to + A]. The solution
starts inside the tube U, and as long as it remains in the tube, it can be extended.
We will show that, by choosing a small enough «, the solution remains in U for
all t € [to,t1]. In particular, we let T be the first time the solution leaves the tube
and show that we can make 7 > t;. On the time interval [to, 7], the conditions of
Theorem 3.4 are satisfied with 4 = a. Hence,

lz(t, A) —y(t, Do)l < aexp[L(t—to)] + %{exp[L(t —to)] — 1}

< «@ <1 + —i—) exp[L(t — to)]

Choosing o < eLexp[—L(t1 — t9)]/(1 + L) ensures that the solution z(¢, ) cannot
leave the tube during the interval [to, ¢;]. Therefore, z(t, \) is defined on [to, t1] and

satisfies ||z(t, \) — y(t, do)|| < €. Taking § = min{e, 3} completes the proof of the
theorem. O
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3.3 Differentiability of Solutions and Sensitivity
Equations

Suppose that f(t.z,)) is continuous in (t,z,\) and has continuous first partial
derivatives with respect to z and X for all (t,z,\) € [to,t1] X R™ x RP. Let A\ be a
nominal value of A, and suppose that the nominal state equation

= f(t,x, o), with z(tg) =0

has a unique solution z(t. Ag) over [to,t1]. From Theorem 3.5, we know that for all
A sufficiently close to Ag. that is, ||A — Ao|| sufficiently small, the state equation

T = f(t,z,\), with z(tg) = o

has a unique solution z(t, \) over [to, t1] that is close to the nominal solution z(t, Ag).
The continuous differentiability of f with respect to z and A implies the additional

property that the solution z(t, \) is differentiable with respect to A near Ag. To see
this, write

x(t,A) = xo + tf(s,a:(s, A), A) ds

to

Taking partial derivatives with respect to A yields

3.0 = [ [ 30,000,003 2205, + G205, ]

where z,(t,\) = [0z(t,\)/0)] and [Ozo/ON] = 0, since z¢ is independent of A.
Differentiating with respect to t, it can be seen that (¢, A) satisfies the differential
equation

-g—ta:,\(t, A) = A(t, \za(t, ) + B(t,A),  zato, ) =0 (3.4)
where 81 (t.z, ) 97 (t,, \)
t.x t,x
At ) = =222 , B(t,n) = LY
Oz r=z(t,\) ) oA z=z(t,\)

For )\ sufficiently close to \g, the matrices A(t, \) and B(t, \) are defined on [to, t1].
Hence, z,(t,\) is defined on the same interval. At A = )¢, the right-hand side of
(3.4) depends only on the nominal solution z(¢, Ag). Let S(t) = zx (¢, Ao); then S(t)
is the unique solution of the equation

S(t) = A(t, Mo)S(t) + B(t, M), S(to) =0 (3.5)

The function S(t) is called the sensitivity function, and (3.5) is called the sensitivity
equation. Sensitivity functions provide first-order estimates of the effect of param-
eter variations on solutions. They can also be used to approximate the solution
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when A is sufficiently close to its nominal value Ag. For small | A — Ag||, z(t, ) can
be expanded in a Taylor series about the nominal solution z(t, \g) to obtain

z(t, ) = z(t, Ao) + S(t)(A — Xo) + higher-order terms
Neglecting the higher-order terms, the solution z(¢, \) can be approximated by
z(t, A) = z(t, Ao) + S(t)(A = Xo) (3.6)

We will not justify this approximation here. It will be justified in Chapter 10 when
we study the perturbation theory. The significance of (3.6) is in the fact that knowl-
edge of the nominal solution and the sensitivity function suffices to approximate the
solution for all values of A in a (small) ball centered at \q.

The procedure for calculating the sensitivity function S(t) is summarized by the
following steps:

* Solve the nominal state equation for the nominal solution z(t, Ag).

e Evaluate the Jacobian matrices

Alt,no) = LGN By < )

Oz z=z(t,A0),A=Ao oA z=2(t,h0),A=Xo

e Solve the sensitivity equation (3.5) for S(t).

In this procedure, we need to solve the nonlinear nominal state equation and the
linear time-varying sensitivity equation. Except for some trivial cases, we will be
forced to solve these equations numerically. An alternative approach for calculating
S(t) is to solve for the nominal solution and the sensitivity function simultaneously.
This can be done by appending the variational equation (3.4) with the original state
equation, then setting A = g to obtain the (n + np) augmented equation

T = f(t, Z, /\0), Il'(to) = o
: 8f(t,z,\) Bf(t,x,\) ' (3.7)
§ = [ oz ]A.—.Ao S+ [ ox :I,\=>\0 » St) =0

which is solved numerically. Notice that if the original state equation is autonomous,
that is, f(¢,z,)) = f(z, \), then the augmented equation (3.7) will be autonomous
as well. We illustrate the latter procedure by the next example.

Example 3.7 Consider the phase-locked-loop model

i1 = z9 = filzy,z2)
Tz = —csinzy —(a+bcoszy)zy = fa(x1,T2)
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and suppose the parameters a, b, and ¢ have the nominal values ag = 1, bp = 0, and
¢o = 1. The nominal system is given by

jfl = T2
Ip = —sinx; — T2

The Jacobian matrices [0f/8z] and [0f/0)] are given by

of _ 0 1
9z | —ccoszi +brasinz; —(a+bcoszy)

8f_[

of afafg]_[o 0 0]
o B

—Iy —IgcO8T; —SinTg

Oa Ob Oc

Evaluate these Jacobian matrices at the nominal parameters a = 1, b = 0, and
¢ =1 to obtain

of _ [ 0 1 ]
81‘ nominal —cosTy -1
of _ [ 0 0 0 ]
o\ nominal —Ty2 —X2C08T; —SINT
Let
9z Bz 9Oz
T3 ITs I7 da 9b oc
S = =
8zz Bzy Oz
Ty To T8 da ob dc nominal
Then (3.7) is given by
1 = o, z1(0) = 10
iy = —sinxz — o, z2(0) = =m0
Tz = g, z3(0) = 0
£y = —X3COST] — T4 — T2, z4(0) = 0
s = Zg, z5(0) = 0
f¢ = —xscosxT; —Te— T2c08Z1, Z(0) = O
I; = s, 1!7(0) = 0
g = —IT7COST) — Tg — Sinxy, zg(0) = 0

The solution of this equation was computed for the initial state 10 = T20 = 1.
Figure 3.2(a) shows z3, =5, and x7, which are the sensitivities of 1 with respect to
a, b, and ¢, respectively. Figure 3.2(b) shows the corresponding quantities for 2.
Inspection of these figures shows that the solution is more sensitive to variations
in the parameter ¢ than to variations in the parameters a and b. This pattern is
consistent when we solve for other initial states. A

-
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0.6
0.4 Xg
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-0.4 x
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0 5 10 0 5 10
(@) (b)

Figure 3.2: Sensitivity function for Example 3.7.

3.4 Comparison Principle

Quite often when we study the state equation £ = f(¢,z) we need to compute
bounds on the solution z(t) without computing the solution itself. The Gronwall-
Bellman inequality (Lemma A.1) is one tool that can be used toward that goal. An-
other tool is the comparison lemma. It applies to a situation where the derivative of
a scalar differentiable function v(t) satisfies inequality of the form ©(t) < f(¢,v(t))
for all ¢ in a certain time interval. Such inequality is called a differential inequality
and a function v(t) satisfying the inequality is called a solution of the differential
inequality. The comparison lemma compares the solution of the differential inequal-
ity v(t) < f(t,v(t)) with the solution of the differential equation & = f(¢,u). The
lemma applies even when v(t) is not differentiable, but has an upper right-hand
derivative D*v(t), which satisfies a differential inequality. The upper right-hand
derivative D*v(t) is defined in Appendix C.2. For our purposes, it is enough to
know two facts:

e If v(t) is differentiable at ¢, then D¥v(t) = v(t).
o If

% lo(t + k) = v(t)] < g(t, k), ¥ h € (0,]

and
lim t,h) = t
h10+ g( ) ) gO( )

then Dt o(t) < go(t).
The limit A — 0% means that h approaches zero from above.

Lemma 3.4 (Comparison Lemma) Consider the scalar differential equation

U= f(t, u), U(to) = Ug

—
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where f(t,u) is continuous in t and locally Lipschitz in u, for all t > 0 and all
uwe JCR. Let[to,T) (T could be infinity) be the mazimal interval of existence
of the solution u(t), and suppose u(t) € J for all t € [to,T). Let v(t) be a con-
tinuous function whose upper right-hand derivative DY v(t) satisfies the differential
inequality

D¥u(t) < f(t,v(t), v(to) <uo
with v(t) € J for all t € [to, T). Then, v(t) < u(t) for allt € [to,T). <o

Proof: See Appendix C.2.

Example 3.8 The scalar differential equation
i=f(z)=-1+2%)z, z(0)=a

has a unique solution on [0,t;), for some t; > 0, because f(z) is locally Lipschitz.
Let v(t) = 22(t). The function v(t) is differentiable and its derivative is given by

b(t) = 2a(t)&(t) = —222(t) — 2z*(t) < —22%(t)
Hence, v(t) satisfies the differential inequality
b(t) < —2v(t), v(0) =a®
Let u(t) be the solution of the differential equation
=-2u, u(0)=a® = u(t)=ade?
Then, by the comparison lemma, the solution z(t) is defined for all ¢ > 0 and

satisfies
lz(t)] = Vo) <etlal, Vt>0

Example 3.9 The scalar differential equation
i=ft,x)=—-1+z)z+e', z(0)=a

has a unique solution on [0,%;) for some t; > 0, because f(t, ) is locally Lipschitz
in z. We want to find an upper bound on |z(t)| similar to the one we obtained
in the previous example. Let us start with v(t) = z2(t) as in Example 3.8. The
derivative of v is given by

b(t) = 2z()i(t) = —22(t) — 2z%(t) + 2z(t)e! < —2v(t) + 2/v(t)e’

We can apply the comparison lemma to this differential inequality, but the resulting
differential equation will not be easy to solve. Instead, we consider a different choice
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of v(t). Let v(t) = |z(t)]. For z(t) # 0, the function v(t) is differentiable and its
derivative is given by

o(0) = T /7(0) = 2O _ o + 220 + 2t

EG] EClE

Since 1+ z%(t) > 1, we have —|z(t)|[1 + 22(t)] < —|z(t)| and 0(t) < —v(t) +€t. On
the other hand, when z(t) = 0, we have

P th) —o@ e L[t

h h " h

t

1 t+h
£60)+ 5 [ 1fma(m) - ftae)] ar

1 t+h
< O+ [ 1) - ft.a)] dr

Since f(t,z(t)) is a continuous function of ¢, given any ¢ > 0 there is § > 0 such
that for all |7 —t| < 4, |f(r,z(7)) — f(t,z(t))] < €. Hence, for all h < 4,

t+h
7 [ et - feaw)] dr<e

which shows that

t+h
tim 7 [ 17(ralr) - ft2(@)] dr =0

R0+
Thus, D*wv(t) < |f(t,0)| = e! whenever z(t) = 0. Hence, for all t € [0,t;), we have
Dt u(t) < —v(t) +et, v(0) = |a| '
Letting u(t) be the solution of the linear differential equation
u=-u+e', u(0)=]a|
we conclude by the comparison lemma that
v(t) Su(t) =efla|+ 3 [ef —e7t], Vie[0,t)

The upper bound on v(t) is finite for every finite t; and approaches infinity only as
t1 — oo. Therefore, the solution z(t) is defined for all ¢t > 0 and satisfies

lz(t)| < e fla]+ 3 [ef —e7f], Vt>0
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3.5 Exercises

3.1 For each of the functions f(z) given next, find whether f is (a) continuously
differentiable; (b) locally Lipschitz; (c¢) continuous; (d) globally Lipschitz.

(1) f(z) = 2% + |a|. (2) f(z) = + sgn(z).
(8) f(z) = sin(x) sgn(x). (4) f(z) = —z + asin(z).
(5) f(z) = —z +2|z|. _ (6) f(x) = tan(z).

_ | azq +tanh(bz,) — tanh(bzs)
(7) f(z) = [ ax; + tanh(bii) + tanh(bxz) ] '

® 10 = | o o ] |

a+b)xy + bx? — 1172

3.2 Let D, = {x € R" | ||z|| < r}. For each of the following systems, represented
as £ = f(t,z), find whether (a) f is locally Lipschitz in = on D,, for sufficiently

small r; (b) f is locally Lipschitz in z on D,., for any finite » > 0; (c) f is globally
Lipschitz in z:

(1) The pendulum equation with friction and constant input torque (Section 1.2.1).
(2) The tunnel-diode circuit (Example 2.1).

(3) The mass-spring equation with linear spring, linear viscous damping, Coulomb
friction, and zero external force (Section 1.2.3).

(4) The Van der Pol oscillator (Example 2.6).

(5) The closed-loop equation of a third-order adaptive control system (Section 1.2.5).

(6) The system & = Az — By(Cx), where A, B,and C arenxn,nx1,and 1 xn
matrices, respectively, and () is the dead-zone nonlinearity of Figure 1.10(c).

3.3 Show that if f; : R — R and f2 : R — R are locally Lipschitz, then f; + fa,
f1f2 and fs o f are locally Lipschitz.

3.4 Let f: R™ — R™ be defined by

mm, if g(z)||Kz|| >u>0
f(z) =
42 g, if g(z)|| Kl < p

where g : R® — R is locally Lipschitz and nonnegative, and K is a constant matrix.
Show that f(x) is Lipschitz on any compact subset of R™.

3.5 Let || - ||« and || - || 3 be two different p-norms on R"™. Show that f : R® — R™
is Lipschitz in || - || if and only if it is Lipschitz in || - || 5.
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3.6 Let f(t,z) be piecewise continuous in t, locally Lipschitz in z, and
£t )| < kv + kzllzll, V (t,2) € [to,00) x R™

(a) Show that the solution of (3.1) satisfies

IOl < llzollexpla(t — t0)] + 2 fexplhate — to)] - 1)

for all t > tg for which the solution exists.

(b) Can the solution have a finite escape time?

3.7 Let g : R™ — R™ be continuously differentiable for all z € R™ and define f(x)
by
1(@) = T ()
1+ g7 (x)g(z)
Show that = f(x), with 2(0) = z¢, has a unique solution defined for all ¢ > 0.

3.8 Show that the state equation

21‘2
I = - —_—, 0 =
2 m1+1+x% 71(0) =a
. 2$1
2 x2+1+xf’ 22(0)

has a unique solution defined for all ¢ > 0.
3.9 Suppose that the second-order system & = f(z), with a locally Lipschitz f(z),
has a limit cycle. Show that any solution that starts in the region enclosed by the

limit cycle cannot have a finite escape time.

3.10 Derive the sensitivity equations for the tunnel-diode circuit of Example 2.1
as L and C vary from their nominal values.

3.11 Derive the sensitivity equations for the Van der Pol oscillator of Example 2.6
as € varies from its nominal value. Use the state equation in the z-coordinates.

3.12 Repeat the previous exercise by using the state equation in the z-coordinates.
3.13 Derive the sensitivity equations for the system
I = tan‘l(axl) — I1T9, Ty = bxf —cxy

as the parameters a, b, ¢ vary from their nominal values ag = 1, by = 0, and co=1.
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3.14 Consider the system

T - %xl + tanh(\z;) — tanh(Az2)

By = — -17:3:2 + tanh(\z;) + tanh(Az2)

where ) and T are positive constants.

(a) Derive the sensitivity equations as X and 7 vary from their nominal values Ao
and 7.

(b) Show that r = /27 + 23 satisfies the differential inequality
r < — —1T—r +2v2

(c) Using the comparison lemma, show that the solution of the state equation
satisfies the inequality

lz(t)]l2 < e ||2(0)]l2 + 2v2r(1 —e™*/T)

3.15 Using the comparison lemma, show that the solution of the state equation

1= 1 1+Z’%’ 2= 2 1+.’17%

satisfies the inequality
le®ll2 < e la(@)ll2 + V2 (1 - ™)

3.16 Using the comparison lemma, find an upper bound on the solution of the
scalar equation

. sint

.’E=-—£E+m, z(0) =2

3.17 Consider the initial-value problem (3.1) and let D C R™ be a domain that
contains ¢ = 0. Suppose z(t), the solution of (3.1), belongs to D for all t > %o and
£ (t,)|l2 < L||z||2 on [to,00) x D. Show that

()

%wmwﬂsuww%

(b)

lzoll2 exp[—L(t — to)] < llz(t)ll2 < llzollz2 exp[L(t — to)]
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3.18 Let y(t) be a nonnegative scalar function that satisfies the inequality

t
y(t) < kpe=a(tt) +/ e (kyy (1) + ks dr

to

where k;, k2, and ks are nonnegative constants and « is a positive constant that
satisfies @ > ky. Using the Gronwall-Bellman inequality, show that

k
< kb o—(a—k2)(t—to) 3 [1 _ —(a—kg)(t—tg)]
y(t) < ke + o e

Hint: Take 2(t) = y(t)e®(t=%) and find the inequality satisfied by z.

3.19 Let f: R™ — R"™ be locally Lipschitz in a domain D C R™. Let S C D be a
compact set. Show that there is a positive constant L such that for all z,y € S,

I£(2) = @)l < Lijz - yll
Hint: The set S can be covered by a finite number of neighborhoods; that is,
S C N(ai,r1)UN(az,r2)U---U N(ak, %)
Consider the following two cases separately:
e z,y € SN N(a;,r;) for some i.
e z,y ¢ SN N(a;,r;) for any ¢; in this case, ||z — y|| > min; ;.
In the second case, use the fact that f(z) is uniformly bounded on S.

3.20 Show that if f : R™ — R™ is Lipschitz on W C R™, then f(z) is uniformly
continuous on W.

3.21 For any x € R™ — {0} and any p € [1,00), define y € R" by
p—1

Vi = —J—_l sign(a:f)
||5””p

Show that y"« = ||z||, and ||y|l; = 1, where ¢ € (1,00] is determined from 1/p +
1/q = 1. For p = oo, find a vector y such that y7x = ||z||eo and ||y|; =1.

3.22 Prove Lemma 3.3.

3.23 Let f(x) be a continuously differentiable function that maps a convex domain
D C R™ into R™. Suppose D contains the origin z = 0 and f(0) = 0. Show that

f(x)=/01%(ox) dox, Vze€D

Hint: Set g(0) = f(ox) for 0 < ¢ < 1 and use the fact that g(1)—g(0) = 01 g'(0) do.
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3.24 Let V : Rx R" — R be continuously differentiable. Suppose that V(¢,0) =0
for all £ > 0 and

Vt2) > ezl ”%—Z(m) <eallell, V¥ (t,2) € [0,00) x D

where c; and c4 are positive constants and D C R™ is a convex domain that contains
the origin z = 0.

(a) Show that V(t,z) < 1callz||? for all z € D.
Hint: Use the representation V(t,z) = fol %‘zi(t, ox) do x.

(b) Show that the constants ¢; and c4 must satisfy 2¢; < c4.

(c) Show that W (t,z) = \/V (¢, z) satisfies the Lipschitz condition

C
W(ta2) = Witan)| < gozlles —mll, V20, Vay,z €D

3.25 Let f(t,z) be piecewise continuous in ¢ and locally Lipschitz in  on [to, t1] X
D, for some domain D C R™. Let W be a compact subset of D. Let z(t) be the

solution of & = f(t,x) starting at z(top) = zo € W. Suppose that z(t) is defined
and z(t) € W for all t € [to,T), T < t;.

(a) Show that z(t) is uniformly continuous on [to, T').
(b) Show that z(T') is defined and belongs to W and z(t) is a solution on [to, T].

(c) Show that there is § > 0 such that the solution can be extended to [to, T + 9].

3.26 Let f(t,z) be piecewise continuous in ¢ and locally Lipschitz in « on [to, t1] x
D, for some domain D C R™. Let y(t) be a solution of (3.1) on a maximal open
interval [to, T') C [to,t1] with T < co. Let W be any compact subset of D. Show
that there is some ¢ € [to, T) with y(t) € W.

Hint: Use the previous exercise.

3.27 ([43]) Let z; : R — R™ and z3 : R — R" be differentiable functions such
that

lz1(a) —z2(a)ll < v, Nl&:(t) — F((¢, 2@ < ps, fori=1,2
for a <t < b. If f satisfies the Lipschitz condition (3.2), show that

eL(t—a) -1

lz1(t) = z2(t)]] < et + (ug + p2)
L

], fora<t<bd

3.28 Show, under the assumptions of Theorem 3.5, that the solution of (3.1) de-
pends continuously on the initial time tg.
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3.29 Let f(t,x) and its partial derivatives with respect to = be continuous in
(t,z) for all (t,x) € [to,t1] x R™. Let z(¢,n) be the solution of (3.1) that starts at
z(to) = 1 and suppose z(t,7) is defined on [tg, t1]. Show that x(t,7) is continuously
differentiable with respect to 7 and find the variational equation satisfied by [8z/8n).
Hint: Put y = = — 9 to transform (3.1) into

y=Fty+n), ylto)=0
with n as a parameter.

3.30 Let f(t,z) and its partial derivative with respect to = be continuous in (t, )
for all (t,z) € R x R™. Let z(t,a,n) be the solution of (3.1) that starts at z(a) =7
and suppose that z(t,a,n) is defined on [a,¢;]. Show that z(t,a,n) is continuously
differentiable with respect to a and 7 and let z,(t) and z,(t) denote [0z/8a] and
[0 /0], respectively. Show that z,(t) and z,(t) satisfy the identity

To(t) + zp(t) f(a,n) =0, VtE[a,ty]

3.31 ([43]) Let f : R x R — R be a continuous function. Suppose that f(t,z)
is locally Lipschitz and nondecreasing in z for each fixed value of t. Let z(t) be a
solution of & = f(t,x) on an interval [a,b]. If a continuous function y(t) satisfies
the integral inequality

u(t) < z(a) + / f(s,u(s)) ds

for a <t < b, show that y(¢) < z(t) throughout this interval.




