
Chapter 19

Ordinary Di erential
Equations

19.1 Classes of ODE

In this chapter we will deal with the class of functions satisfying the
following ordinary di erential equation

˙ ( ) = ( ( )) for almost all [ 0 0 + ]
( 0) = 0

: R×X X
(19.1)

where is a nonlinear function and X is a Banach space (any concrete
space of functions). The Cauchy’s problem for (19.1) consists in re-
solving of (19.1), or, in other words, in finding a function ( ) which
satisfies (19.1).
For the simplicity we also will use the following abbreviation:

- ODE meaning an ordinary di erential equation,

- DRHS meaning the discontinuous right-hand side.

Usually the following three classes of ODE (19.1) are considered:

1) Regular ODE :
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572 Chapter 19. Ordinary Di erential Equations

( ) is continuous in both variables. In this case ( ), satis-
fying (19.1), should be continuous di erentiable, i.e.,

( ) 1 [ 0 0 + ] (19.2)

2) ODE of the Caratheodory’s type:

( ) in (19.1) is measurable in and continuous in .

3) ODE with discontinuous right-hand side:

( ) in (19.1) is continuous in and discontinuous in . In
fact, this type of ODE equation is related to the di erential
inclusion:

˙ ( ) ( ( )) (19.3)

where ( ) is a set in R × X . If this set for some pair ( )
consists of one point, then ( ) = ( ).

19.2 Regular ODE

19.2.1 Theorems on existence

Theorem based on the contraction principle

Theorem 19.1 (on local existence and uniqueness) Let ( )
be a continuous in on [ 0 0 + ], ( 0) and for any [ 0 0 + ]
it satisfies the, so-called, local Lipschitz condition in , that is,
there exists constant 0 such that

k ( )k

k ( 1) ( 2)k k 1 2k
(19.4)

for all [ 0 0 + ] and all 1 2 ( 0) where

( 0) := { X | k 0k }
Then the Cauchy’s problem (19.1) has a unique solution on the time-
interval [ 0 0 + 1], where

1 min
©

1
ª

(19.5)
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Proof.
1) First, show that the Cauchy’s problem (19.1) is equivalent to

finding the continuos solution to the following integral equation

( ) = 0 +

Z
= 0

( ( )) (19.6)

Indeed, if ( ) is a solution of (19.1), then, obviously, it is a di eren-
tiable function on [ 0 0 + 1]. By integration of (19.1) on [ 0 0 + 1]
we obtain (19.6). Inverse, suppose ( ) is continuos function satisfying
(19.6). Then, by the assumption (19.4) of the theorem, it follows

k ( ( )) ( 0 ( 0))k =
k[ ( ( )) ( ( 0))] + [ ( ( 0)) ( 0 ( 0))]k
k ( ( )) ( ( 0))k+ k ( ( 0)) ( 0 ( 0))k

k ( ) ( 0)k+ k ( ( 0)) ( 0 ( 0))k

This implies that if 0 [ 0 0 + 1] and 0, then the right
hand-side of the last inequality tends to zero, and, hence, ( ( ))
is continuous at each point of the interval [ 0 0 + 1]. And, moreover,
we also obtain that ( ) is di erentiable on this interval, satisfies (19.1)
and ( 0) = 0.
2) Using this equivalence, let us introduce the Banach space
[ 0 0 + 1] of abstract continuous functions ( ) with values in X

and with the norm

k ( )k := max
[ 0 0+ 1]

k ( )kX (19.7)

Consider in [ 0 0 + 1] the ball ( 0) and notice that the nonlinear
operator : [ 0 0 + 1] [ 0 0 + 1] defined by

( ) = 0 +

Z
= 0

( ( )) (19.8)
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transforms ( 0) in to ( 0) since

k ( ) 0k = max
[ 0 0+ 1]

°°°°°°
Z
= 0

( ( ))

°°°°°°
max
[ 0 0+ 1]

Z
= 0

k ( ( ))k 1

Moreover, the operator is a contraction (see Definition 14.20) on
( 0). Indeed, by the local Lipschitz condition (19.4), it follows

k ( 1) ( 2)k = max
[ 0 0+ 1]

°°°°°°
Z
= 0

[ ( 1 ( )) ( 2 ( ))]

°°°°°°
max
[ 0 0+ 1]

Z
= 0

k ( 1 ( )) ( 2 ( ))k

1 k 1 2k = k 1 2k

where := 1 1 for small enough . Then, by Theorem (the
contraction principle) 14.17, we conclude that (19.6) has a unique
solution ( ) [ 0 0 + 1]. Theorem is proven.

Corollary 19.1 If in the conditions of Theorem 19.1 the Lipschitz
condition (19.4) is fulfilled not locally, but globally, that is for all
1 2 X (that corresponds with the case = ), then the Cauchy’s
problem (19.1) has a unique solution for [ 0 0 + ] for any big
enough.

Proof. It directly follows from Theorem 19.1 if take . But
here we prefer to present also another proof based on another type of
norm di erent from (19.7). Again, let us use the integral equivalent
form (19.6). Introduce in the Banach space [ 0 0 + 1] the following
norm equivalent to (19.7):

k ( )kmax := max
[ 0 0+ ]

°° ( )
°°
X (19.9)
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Then

k ( 1) ( 2)k
Z
= 0

k 1 ( ) 2 ( )k =

Z
= 0

¡ k 1 ( ) 2 ( )k
¢

Z
= 0

k 1 ( ) 2 ( )kmax =

Z
= 0

k 1 ( ) 2 ( )kmax =
¡

1
¢ k 1 ( ) 2 ( )kmax

Multiplying this inequality by and taking max
[ 0 0+ ]

we get

k ( 1) ( 2)kmax
¡
1

¢ k 1 ( ) 2 ( )kmax
Since := 1 1 we conclude that is a contraction. Taking
then big enough we obtain the result. Corollary is proven.

Remark 19.1 Sure, the global Lipschitz condition (19.4) with =
holds for very narrow class of functions which is known as the

class of "quasi-linear" functions, that’s why Corollary 19.1 is too
conservative. On the other hand, the conditions of Theorem 19.1 for
finite (small enough) is not so restrictive valid for any function
satisfying somewhat mild smoothness conditions.

Remark 19.2 The main disadvantage of Theorem 19.1 is that the
solution of the Cauchy’s problem (19.1) exists only on the interval
[ 0 0 + 1] (where 1 satisfies (19.5)), but not at the complete interval
[ 0 0 + ], that is very restrictive. For example, the Cauchy problem

˙ ( ) = 2 ( ) (0) = 1

has the exact solution ( ) =
1

1
that exists only on [0 1) but not

for all [0 ).
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The theorem presented below gives a constructive (direct) method
of finding a unique solution of the problem (19.1). It has several
forms. Here we present the version of this result which does not use
any Lipschitz conditions: neither local, no global.

Theorem 19.2 (Picard-Lindelöf, 1890) Consider the Cauchy’s
problem (19.1) where the function ( ) is continuous on

:= {( ) R1+ | | 0| 0, k 0k } (19.10)

and the partial derivative : R is also continuous on .

Define the sets

M := max
( )

k ( )k, := max
( )

°°°° ( )

°°°° (19.11)

and choose the real number such that

0 , M , := 1 (19.12)

Then

1) the Cauchy’s problem (19.1) has unique solution on ;

2) the sequence { ( )} of functions generated iteratively by

+1 ( ) = 0 +

Z
= 0

( ( ))

0 ( ) = 0, = 0 1 ; 0 + 0

(19.13)

to ( ) in the Banach space X with the norm (19.7) converges
geometrically as

k +1 ( ) ( )k +1 k 0 ( )k (19.14)

Proof. Consider the integral equation (19.6) and the integral op-
erator (19.8) given on . So, (19.6) can be represented as

( ( )) = ( ) , ( ) ( 0)
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where : X . For all [ 0 0 + ] we have

k ( ( )) 0k = max
[ 0 0+ ]

°°°°°°
Z
= 0

( ( ))

°°°°°°
max
[ 0 0+ ]

( 0) max
( )

k ( )k M

i.e., ( ) . By the classical mean value theorem 16.5

k ( ) ( )k =
°°°° ( ) | [ ] ( )

°°°° k k

and, hence,

k ( ( )) ( ( ))k = max
[ 0 0+ ]

°°°°°°
Z
= 0

[ ( ( )) ( ( ))]

°°°°°°
max
[ 0 0+ ]

k ( ) ( )k = k ( ) ( )k

Applying now the contraction principle we obtain that (19.6) has a
unique solution ( 0). We also have

k +1 ( ) ( )k = max
[ 0 0+ ]

Z
= 0

[ ( ( )) ( ( ))]

k ( ) ( )k +1 k 0 ( )k
Theorem is proven.

Theorem based on the Schauder fixed-point theorem

The next theorem to be proved drops the assumption of Lipschitz
continuity but, also, the assertion of uniqueness.

Theorem 19.3 (Peano, 1890) Consider the Cauchy´s problem (19.1)
where the function ( ) is continuous on (19.10) where the real
parameter is selected in such a way that

0 , M (19.15)

Then the Cauchy’s problem (19.1) has at least one solution on .
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Proof.
a) The Schauder fixed-point theorem use (Zeidler 1995). By the

same arguments as in the proof of Theorem 19.2 it follows that the
operator : ( 0) ( 0) is compact (see Definition ). So, by
the Schauder fixed-point theorem 18.20 we conclude that the operator
equation ( ( )) = ( ), ( ) ( 0) has at least one solution.
This completes the proof.
b) Direct proof (Hartman 2002). Let 0 and 0( )

1 [ 0 0]
satisfy on [ 0 0] the following conditions: 0( ) = 0, k 0( ) 0k

and k 0
0( )k . For 0 define a function ( ) on

[ 0 0 + ] by putting ( 0) = 0 on [ 0 0] and

( ) = 0 +

Z
= 0

( ( )) (19.16)

on [ 0 0 + ]. Note that ( ) is 0-function on [ 0 0 + ] satis-
fying

k ( ) 0k and k ( ) ( )k | |

Thus, for the family of functions { ( )}, 0 whereas
it follows that the limit ( ) = lim ( ) exists uniformly on

[ 0 0 + ] that implies that

k ( ( )) ( ( ))k 0

uniformly as . So, term-by-term integration of (19.16) with
= , gives (19.6) and, hence, ( ) is a solution of (19.1).
The following corollary of the Peano’s existence theorem is often

used.

Corollary 19.2 ((Hartman 2002)) Let ( ) be a continuous on
an open ( ) - set of E R

1+ satisfying k ( )k M. Let also
E0 be a compact subset of E. Then there exists a 0, depending on
E, E0 andM, such that if ( 0 0) E0, then (19.6) has a solution on
| 0| .
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19.2.2 Di erential inequalities, extension and
uniqueness

The most important technique in ODE-theory involves the "integra-
tion" of the, so-called, di erential inequalities. In this subsection we
present results dealing with this integration process and extensively
used throughout, and, then there will be presented its immediate ap-
plication to the extension and uniqueness problems.

Bihari and Gronwall-Bellman inequalities

Lemma 19.1 ((Bihari 1956)) Let

1) ( ) and ( ) be nonnegative continuous functions on [ 0 ),
that is,

( ) 0 ( ) 0 [ 0 ) ( ) ( ) [ 0 )

(19.17)

2) for any [ 0 ) the following inequality holds

( ) +

Z
= 0

( ) ( ( )) (19.18)

where is a positive constant ( 0) and ( ) is a positive
non-decreasing continuous function, that is,

0 ( ) [ 0 ) (0 ¯) ¯ (19.19)

Denote

( ) :=

Z
=

( )
(0 ¯) (19.20)

If in addition

Z
= 0

( ) (¯ 0) [ 0 ) (19.21)
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then for any [ 0 )

( ) 1

Z
= 0

( ) (19.22)

where 1 ( ) is the function inverse to ( ), that is,

= ( ) = 1 ( ) (19.23)

In particular, if ¯ = and ( ) = , then the inequality (19.22)
is fulfilled without any constraints.

Proof. Since ( ) is a positive non decreasing continuous function
the inequality (19.18) implies that

( ( )) +

Z
= 0

( ) ( ( ))

and
( ) ( ( ))

+

Z
= 0

( ) ( ( ))

( )

Integrating the last inequality, we obtain

Z
= 0

( ) ( ( ))

+

Z
= 0

( ) ( ( ))

Z
= 0

( ) (19.24)

Denote

( ) := +

Z
= 0

( ) ( ( ))

Then evidently
˙ ( ) = ( ) ( ( ))
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Hence, in view of (19.20), the inequality (19.24) may be represented
as Z

= 0

˙ ( )

( ( ))
=

( )Z
= ( 0)

( )

= ( ( )) ( ( 0))

Z
= 0

( )

Taking into account that ( 0) = and ( ( 0)) = 0, from the last
inequality it follows

( ( ))

Z
= 0

( ) (19.25)

Since
´( ) =

1

( )
(0 ¯)

the function ( ) has the uniquely defined continuous monotonically
increasing inverse function 1 ( ) defined within the open interval
( (+0) (¯ 0)). Hence, (19.25) directly implies

( ) = +

Z
= 0

( ) ( ( )) 1

Z
= 0

( )

that, in view of (19.18), leads to (19.22). Indeed,

( ) +

Z
= 0

( ) ( ( )) 1

Z
= 0

( )

The case ¯ = and ( ) = is evident. Lemma is proven.

Corollary 19.3 Taking in (19.22)

( ) = ( 0 6= 1)
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it follows

( ) 1 + (1 )

Z
= 0

( )

1

1
for 0 1 (19.26)

and

( ) 1 (1 ) 1

Z
= 0

( )

1

1

for

1 and
Z
= 0

( )
1

( 1) 1

Corollary 19.4 ((Gronwall 1919) ) If ( ) and ( ) are nonnega-
tive continuous functions on [ 0 ) verifying

( ) +

Z
= 0

( ) ( ) (19.27)

then for any [ 0 ) the following inequality holds:

( ) exp

Z
= 0

( ) (19.28)

This results remains true if = 0.

Proof. Taking in (19.18) and (19.20)

( ) =

we obtain (19.193) and, hence, for the case 0

( ) :=

Z
=

= ln
³ ´
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and
1 ( ) = · exp ( )

that implies (19.28). The case = 0 follows from (19.28) applying
0.

Di erential inequalities

Here we completely follow (Hartman 2002).

Definition 19.1 Let ( ) be a continuous function on a plane ( )-
set E. By a maximal solution 0( ) of the Cauchy’s problem

˙ ( ) = ( ), ( 0) = 0 R (19.29)

is meant a solution of (19.29) on a maximal interval of existence such
that if ( ) is any solution of (19.29) then

( ) 0( ) (19.30)

holds (by component-wise) on the common interval of existence of ( )
and 0( ). The minimal solution is similarly defined.

Lemma 19.2 Let ( ) be a continuous function on a rectangle

+ :=
©
( ) R

2 | 0 0 + 0, k 0k
ª

(19.31)

and on +

k ( )k M and := min { ; M}
Then the Cauchy’s problem (19.29) has a solution on [ 0 0 + ) such
that every solution = ( ) of ˙ ( ) = ( ), ( 0) 0 satisfies
(19.30) on [ 0 0 + ).

Proof. Let 0 0 . Then, by the Peano’s existence theorem
19.3, the Cauchy problem

˙ ( ) = ( ) +
1

( 0) = 0 (19.32)

has a solution = ( ) on [ 0 0 +
0] if is su ciently large. Then

there exists a subsequence { } =1 2 such that the limit 0 ( ) =
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lim ( ) exists uniformly on [ 0 0 +
0] and 0 ( ) is a solution of

(19.29). To prove that (19.30) holds on [ 0 0 +
0] it is su cient to

verify
( ) ( ) on [ 0 0 +

0] (19.33)

for large enough . If this is not true, then there exists a = 1

( 0 0 +
0) such that ( 1) ( 1). Hence there exists a largest 2

on [ 0 1) such that ( 2) = ( 2) and ( ) ( ). But by (19.32)
0 ( 2) = 0 ( 2) +

1
, so that ( ) ( ) for 2 near 2. This

contradiction proves (19.33). Since 0 is arbitrary, the lemma
follows.

Corollary 19.5 Let ( ) be a continuous function on an open set E
and ( 0 0) E R

2. Then the Cauchy’s problem (19.29) a maximal
and minimal solution near ( 0 0).

Right derivatives

Lemma 19.3

1. If = 1 and 1 [ ] then | ( )| has a right derivative

| ( )| := lim
0 0

1
[| ( + )| | ( )|] (19.34)

such that

| ( )| =
½ 0 ( ) sign ( ( )) if ( ) 6= 0

| 0 ( )| if ( ) = 0
(19.35)

and
| | ( )|| = | 0 ( )| (19.36)

2. If 1 and 1 [ ] then k ( )k has a right derivative

k ( )k := lim
0 0

1
[k ( + )k k ( )k] (19.37)

such that on [ )

k k ( )kk = max
=1

| ( )|
k 0 ( )k := max {| 0

1 ( )| | 0 ( )|} (19.38)
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Proof. The assertion 1) is clear when ( ) 6= 0 and the case
( ) = 0 follows from the identity

( + ) = ( ) + 0 ( ) + ( ) = [ 0 ( ) + (1)]

so that, in general, when 0

| ( + )| = | ( )|+ [| 0 ( )|+ (1)]

The multidimensional case 2) follows from 1) if take into account that

| ( + )| = | ( )|+ [| 0 ( )|+ (1)]

Taking the max
=1

of these identities, we obtain

k ( + )k = k ( )k+ max
=1

| 0 ( )|+ (1)

¸

whereas 0. This proves (19.38).

Example 19.1 Let ( ) := ( 0)
2. Then 0 ( ) := 2 ( 0) is con-

tinuous and, hence, ( ) 1. By Lemma 19.3 it follows | ( )| =
2 | 0|.

Di erential inequalities

The next theorem deals with the integration of di erential inequalities
and is most used in the ODE-theory.

Theorem 19.4 ((Hartman 2002)) Let ( ) be continuous on an
open ( )-set E R and 0( ) be the maximal solution of (19.6). Let
( ) be a continuous on [ 0 0 + ] function such that

( 0) 0 ( ) E

( ) ( ( ))

¾
(19.39)

Then, on the common interval of existence of 0( ) and ( )

( ) 0( ) (19.40)
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Remark 19.3 If the inequalities (19.39) are reversed with the left-
derivative ( ) instead of ( ), then the conclusion (19.40)
must be replaced by ( ) 0( ) where 0( ) is theminimal solution
of (19.6).

Proof. It is su cient to show that there exists a 0 such that
(19.40) holds for [ 0 0 + ]. Indeed, if this is the case and if ( ) and
0( ) are defined on [ 0 0 + ], then it follows that the set of -values,
where (19.40) holds, can not have an upper bound di erent from .
Let in Lemma 19.2 0 be large enough and be chosen independent
of such that (19.32) has a solution = ( ) on [ 0 0 + ]. In view
of Lemma 19.2 it is su cient to verify that ( ) ( ) on [ 0 0 + ].
But the proof of this fact is absolutely identical to the proof of (19.33).
Theorem is proven.
In fact, the following several consequences of this theorem are

widely used in the ODE-theory.

Corollary 19.6 If ( ) is continuous on [ 0 ] and ( ) 0 when
[ 0 ], then

( ) ( 0) for any [ 0 ] (19.41)

Corollary 19.7 (Lemma on di erential inequalities) Let ( ),
0( ) be as in Theorem 19.4 and ( ) be continuous on an open
( )-set E R

2 satisfying

( ) ( ) (19.42)

Let also ( ) be a solution of the following ODE:

˙ ( ) = ( ( )), ( 0) := 0 0 (19.43)

on [ 0 0 + ]. Then

( ) 0( ) (19.44)

holds on any common interval of existence of ( ) and 0( ) to the
right of 0.
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Corollary 19.8 Let 0( ) be the maximal solution of

˙ ( ) = ( ( )) ( 0) :=
0

R

and 0( ) be the minimal solution of

˙ ( ) = ( ( )) ( 0) := 0 0

Let also = ( ) be a 1 vector valued function on [ 0 0 + ] such
that

0 k ( 0)k 0

( ) E R
2

(k ( )k) ( k ( )k)
(19.45)

Then the first (second) of two inequalities

0 ( ) k ( )k 0 ( ) (19.46)

holds on any common interval of existence of 0 ( ) and ( ) (or 0 ( )
and ( )).

Corollary 19.9 Let ( ) be continuous and non-decreasing on
when [ 0 0 + ]. Let 0 ( ) be a maximal solution of (19.6) which
exists on [ 0 0 + ]. Let another continuous function ( ) satisfies on
[ 0 0 + ] the integral inequality

( ) 0 +

Z
= 0

( ( )) (19.47)

where 0 0. Then
( ) 0 ( ) (19.48)

holds on [ 0 0 + ]. This results is false if we omit: ( ) is non-
decreasing on .

Proof. Denote by ( ) the right-hand side of (19.47), so that
( ) ( ), and, by the monotonicity property with respect the
second argument, we have

˙ ( ) = ( ( )) ( ( ))

By Theorem 19.4 we have ( ) 0 ( ) on [ 0 0 + ]. Thus ( )
0 ( ) that completes the proof.
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Existence of solutions on the complete axis [ 0 )

Here we show that the condition k ( )k k k guaranties the
existence of the solutions of ODE ˙ ( ) = ( ( )), ( 0) = 0

for any 0. In fact, the following more general result holds.

Theorem 19.5 ((Wintner 1945)) Let for any 0 and R

( ( ))
¡k k2¢ (19.49)

where the function satisfies the condition

Z
= 0

( )
= , ( ) 0 as 0 0 (19.50)

Then the Cauchy’s problem

˙ ( ) = ( ( )) ( 0) = 0

has a solution on the complete semi-axis [ 0 ) for any 0 R .

Proof. Notice that for the function ( ) := k ( )k2 in view of
(19.49) we have

( ) = 2 ( ( ) ˙ ( )) = 2 ( ( ) ( ( )))

2
¡k ( )k2¢ = 2 ( ( ))

Then by Theorem 19.4 (see (19.44)) it follows that ( 0) 0 implies
( ) ( ), where ( ) satisfies

˙ ( ) = 2 ( ( )) ( 0) = 0 := k 0k2

But the solution of the last ODE is always bounded for any finite
0. Indeed,

( )Z
= 0

( )
= 2 ( 0) (19.51)

and ( ) 0 as 0 implies that ˙ ( ) 0, and, hence, ( ) 0 for
all 0. But the solution ( ) can fail to exist on a bounded interval
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[ 0 0 + ] only if it exists on [ 0 0 + ] with and ( )
if 0 + . But this gives the contradiction to (19.50) since the
left-hand side of (19.51) tend to infinity and the right-hand side of
(19.51) remains finite and equal to 2 .

Remark 19.4 The admissible choices of ( ) may be, for example,
ln ... for large enough and as a positive constant.

Remark 19.5 Some generalizations of this theorem can be found in
(Hartman 2002).

Example 19.2 If ( ) is a continuous × matrix and ( ) is con-
tinuous on [ 0 0 + ] vector function, then the Cauchy’s problem

˙ ( ) = ( ) ( ) + ( ) ( 0) = 0 (19.52)

has a unique solution ( ) on [ 0 0 + ]. It follows from the Wintner
theorem 19.5 if take ( ) := (1 + ) with 0.

The continuous dependence of the solution on a parameter
and on the initial conditions

Theorem 19.6 If the right-hand side of ODE

˙ ( ) = ( ( ) ) ( 0) = 0 (19.53)

is continuous with respect to on [ +] and satisfies the condition
of Theorem 19.1 with the Lipschitz constant which is independent
of , then the solution ( ) of (19.53) depends continuously on

[ +] R as well as on 0 in some neighborhood.

Proof. The proof of this assertion repeats word by word the proof
of Theorem 19.1. Indeed, by the same reasons as in Theorem 19.1,
the solution ( ) is a continuous function of both and if is
independent of . As for the proof of the continuous dependence of the
solution on the initial conditions, it can be transform to the proof of
the continuous dependence of the solution on the parameter. Indeed,
putting

:= 0 := ( ) 0
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we obtain that (19.53) is converted to

= ( + 0 + 0 ) (0) = 0

where 0 may be considered as a new parameter so that is continuous
on 0 by the assumption. This proves the theorem.

19.2.3 Linear ODE

Linear vector ODE

Lemma 19.4 The solution ( ) of the linear ODE (or, the corre-
sponding Cauchy’s problem)

˙ ( ) = ( ) ( ), ( 0) = 0 R
× , 0 (19.54)

where ( ) is a continuous × -matrix function, may be presented
as

( ) = ( 0) 0 (19.55)

where the matrix ( 0) is, so-called, the fundamental matrix of
the system (19.54) and satisfies the following matrix ODE

( 0) = ( ) ( 0), ( 0 0) = (19.56)

and fulfills the group property

( 0) = ( ) ( 0) ( 0 ) (19.57)

Proof. Assuming (19.55), the direct di erentiation of (19.55) im-
plies

˙ ( ) = ( 0) 0 = ( ) ( 0) 0 = ( ) ( )

So, (19.55) verifies (19.54). Uniqueness of such presentation follows
from Example 19.2. The property (19.57) results from the fact that

( ) = ( ) = ( ) ( 0) ( 0) = ( 0) ( 0)

Lemma is proven.
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Liouville’s theorem

The next results serves for the demonstration that the transformation
( 0) is non-singular (or, has its inverse) on any finite time interval.

Theorem 19.7 (Liouville, 1836) If ( 0) is the solution to
(19.56), then

det ( 0) = exp

Z
= 0

tr ( ) (19.58)

Proof. The usual expansion for the determinant det ( 0) and
the rule for di erentiating the product of scalar functions show that

det ( 0) =
X
=1

det ˜ ( 0)

where ˜ ( 0) is the matrix obtained by replacing the -th row
1 ( 0) ( 0) of ( 0) by its derivatives ˙ 1 ( 0)

˙ ( 0). But since

˙ ( 0) =
X
=1

( ) ( 0) ( ) = k ( )k =1

it follows
det ˜ ( 0) = ( ) det ( 0)

that gives

det ( 0) =
X
=1

det ˜ ( 0)

=
X
=1

( ) det ( 0) = { ( )}det ( 0)

and, as a result, we obtain (19.58) that completes the proof.
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Corollary 19.10 If for the system (19.54)

Z
= 0

tr ( ) (19.59)

then for any [ 0 ]

det ( 0) 0 (19.60)

Proof. It is the direct consequence of (19.58).

Lemma 19.5 If (19.59) is fulfilled, namely,
Z
= 0

tr ( ) ,

then the solution ( ) on [0 ] of the linear non autonomous ODE

˙ ( ) = ( ) ( ) + ( ), ( 0) = 0 R × , 0 (19.61)

where ( ) and ( ) are assumed to be continuous matrix and vector
functions, may be presented by the Cauchy formula

( ) = ( 0) 0 +

Z
= 0

1 ( 0) ( ) (19.62)

where 1 ( 0) exists for all [ 0 ] and satisfies

1 ( 0) =
1 ( 0) ( ), 1 ( 0 0) = (19.63)

Proof. By the previous corollary, 1 ( 0) exists within the in-
terval [ 0 ]. The direct derivation of (19.62) implies

˙ ( ) = ˙ ( 0) 0 +

Z
= 0

1 ( 0) ( )

+ ( 0)
1 ( 0) ( ) =

( ) ( 0) 0 +

Z
= 0

1 ( 0) ( ) + ( )

= ( ) ( ) + ( )
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that coincides with (19.61). Notice that the integral in (19.62) is well
defined in view of the continuity property of the participating functions
to be integrated. By identities

( 0)
1 ( 0) =

[ ( 0)
1 ( 0)] = ˙ ( 0)

1 ( 0)

+ ( 0)
1 ( 0) = 0

it follows

1 ( 0) =
1 ( 0)

h
˙ ( 0)

i
1 ( 0) =

1 ( 0) [ ( ) ( 0)]
1 ( 0) =

1 ( 0) ( )

Lemma is proven.

Remark 19.6 The solution (19.62) can be rewritten as

( ) = ( 0) 0 +

Z
= 0

( ) ( ) (19.64)

since by (19.57)

( ) = ( 0)
1 ( 0) (19.65)

Bounds for norm of ODE solutions

Let k k := sup
k k=1

k k where k k is Euclidean or Chebishev’s type.

Lemma 19.6 Let ( ) be a solution of (19.61). Then

k ( )k (k ( 0)k+
Z
= 0

k ( )k ) exp(

Z
= 0

k ( )k ) (19.66)
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Proof. By (19.61) it follows

k ˙ ( )k k ( )k k ( )k+ k ( )k
Let ( ) be the unique solution of the following ODE:

˙ ( ) = k ( )k ( ) + k ( )k ( 0) = k ( 0)k
which solution is

( )=[ ( 0)+
Z
= 0

k ( )k exp(-
Z
= 0

k ( )k )] exp(

Z
= 0

k ( )k )

Then, by Lemma 19.7, it follows that k ( )k ( ) for any 0

that gives (19.66).

Corollary 19.11 Similarly, if ( ) is the solution of

˙ ( ) = k ( )k ( ) k ( )k ( 0) = k ( 0)k
then k ( )k ( ) for any 0 that gives

k ( )k (k ( 0)k
Z
= 0

k ( )k ) exp(

Z
= 0

k ( )k ) (19.67)

Stationary linear ODE

If in (19.1) ( ) = is a constant matrix, then it is easily to check
that

( 0) :=
( 0) where =

X
=0

1

!
(19.68)

and (19.62), (19.64) become

( ) = ( 0)
0 +

Z
= 0

( 0) ( )

= ( 0)
0 +

Z
= 0

( ) ( )

(19.69)
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Linear ODE with periodic matrices

In this subsection we show that the case of variable, but periodic,
coe cients can be reduced to the case of constant coe cients.

Theorem 19.8 (Floquet 1883) Let in ODE

˙ ( ) = ( ) ( ) (19.70)

the matrix ( ) R × ( ) be a continuous and periodic
of period , that is, for any

( + ) = ( ) (19.71)

Then the fundamental ( 0) of (19.70) has a representation of the
form

( 0) = ˜ ( 0) = ( 0)
( 0)

( ) = ( + )
(19.72)

and is a constant × matrix.

Proof. Since ˜ ( ) is fundamental matrix of (19.70), then ˜ ( + )
is fundamental too. By the group property (19.57) it follows ˜ ( + )
= ˜ ( ) ˜ ( ). Since det ˜ ( ) 6= 0 one can represent ˜ ( ) as ˜ ( ) =

and hence
˜ ( + ) = ˜ ( ) (19.73)

So, defining ( ) := ˜ ( ) we get

( + ) = ˜ ( + ) ( + ) =h
˜ ( + )

i
= ˜ ( ) = ( )

that completes the proof.

First integrals and related adjoint linear ODE

Definition 19.2 A function = ( ) : R×C C, belonging to
1 [R× C ], is called the first integral to ODE (19.1) if it is constant
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over trajectories of ( ) generated by (19.1), that is, if for any 0

and any 0 C

( ( )) = ( ( )) +

μ
( ( )) ˙ ( )

¶

= ( ) +

μ
( ( )) ( ( ))

¶
= 0

(19.74)

In the case of linear ODE (19.54) the condition (19.74) is converted
into the following:

( ) +

μ
( ( )) ( )

¶
= 0 (19.75)

Let us try to find a first integral for (19.54) as a linear form of ( ),
i.e., let us try to satisfy (19.75) selecting as

( ) = ( ( ) ( )) := ( ) ( ) (19.76)

where ( ) C is from 1 [C ].
The existence of the first integral for ODE (19.1) permits to de-

crease the order of the system to be integrated since if the equation
( ( )) = can be resolved with respect one of components, say,

( ) = ( 1 ( ) 1 ( ) +1 ( ) ( ))

then the order of ODE (19.1) becomes to be equal to ( 1). If one
can find all first integrals ( ( )) = ( = 1 ) which are
linearly independent, then the ODE system (19.1) can be considered
to be solved.

Lemma 19.7 A first integral ( ) for (19.54) is linear on ( ) as
in (19.76) if and only if

˙ ( ) = ( ) ( ) ( 0) = 0 R ×
0 (19.77)

Proof. a) Necessity. If a linear ( ) = ( ( ) ( )) is a first
integral, then

( ( )) = ( ˙ ( ) ( )) + ( ( ) ˙ ( )) =

( ˙ ( ) ( )) + ( ( ) ( ) ( )) = ( ˙ ( ) ( ))+
( ( ) ( ) ( )) = ( ˙ ( ) + ( ) ( ) ( ))

(19.78)
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Suppose that ˙ ( 0) + ( 0) ( 0) 6= 0 for some 0
0. Put

( 0) := ˙ ( 0) + ( 0) ( 0)

Since ( 0) = ( 0 0) 0 and 1 ( 0 0) always exists, then for 0 =
1 ( 0 0) ( 0) we obtain

( 0 ( 0)) = ( ˙ ( 0) + ( 0) ( 0) ( 0))

= k ˙ ( 0) + ( 0) ( 0)k2 6= 0

that is in the contradiction with the assumption that ( ( )) is a
first integral.
b) Su ciency. It directly results from (19.78) Lemma is proven.

Definition 19.3 The system (19.77) is called the ODE system ad-
joint to (19.54). For the corresponding inhomogeneous system (19.61)
the adjoint system is

˙ ( ) = ( ) ( ) ˜ ( ) ( 0) = 0 R ×
0 (19.79)

There are several results concerning the joint behavior of (19.54)
and (19.77).

Lemma 19.8 A matrix ( 0) is a fundamental matrix for the linear
ODE (19.54) if and only if ( ( 0))

1 = ( 1 ( 0)) is a funda-
mental matrix for the adjoint system (19.77).

Proof. Since ( 0)
1 ( 0) = by di erentiation it follows

that

1 ( 0) =
1 ( 0) ( 0)

1 ( 0) =
1 ( 0) ( )

and, taking the complex conjugate transpose of the last identity gives

¡
1 ( 0)

¢
= ( )

¡
1 ( 0)

¢
The converse is proved similarly.
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Lemma 19.9 The direct (19.61) and the corresponding adjoint (19.79)
linear systems can be presented in the Hamiltonian form, i.e.,

˙ ( ) = ( ) ˙ ( ) = ( ) (19.80)

where

( ) := ( ( )) = ( ( ) + ( )) (19.81)

is called the Hamiltonian function for the system (19.61). In the
stationary homogeneous case when

˙ ( ) = ( ) ( 0) = 0 R ×
0 (19.82)

the Hamiltonian function is a first integral for (19.82).

Proof. The representation (19.80) follows directly from (19.81).

In the stationary, when ( ) = 0, we have

( ) = ( ) +

μ
( ) ˙

¶
+

μ
( ) ˙

¶

=

μ
( ) ( )

¶
+

μ
( ) ( )

¶
= 0

So, ( ) is a constant.

Lemma 19.10 If ( ) = ( ) is skew Hermitian, then

k ( )k = const (19.83)

Proof. One has directly

k ( )k2 = ( ˙ ( ) ( )) + ( ( ) ˙ ( )) = ( ( ) ( ) ( ))+

( ( ) ( ) ( )) = ( ( ) ( ) ( )) + ( ( ) ( ) ( )) =
([ ( ) + ( )] ( ) ( )) = 0

that proves the result.
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Lemma 19.11 (Green’s formula) Let ( ), ( ) and ˜ ( ) be con-
tinuous for [ ]; ( ) be a solution of (19.61) and ( ) be a
solution of (19.79). Then for all [ ]

Z
=

[ | ( ) ( ) - ( )| ˜ ( )] = | ( ) ( )- | ( ) ( ) (19.84)

Proof. The relation (19.84) is proved by showing that both sides
have the same derivatives, since ( ) = ( ).

19.2.4 Index of increment for ODE solutions

Definition 19.4 A number is called a Lyapunov order number
(or the index of the increment) for a vector function ( ) de-
fined for 0, if for every 0 there exists positive constants 0

and such that

k ( )k ( + ) for all large

k ( )k 0 ( ) for some arbitrary large
(19.85)

that equivalently can be formulated as

= lim sup 1 ln k ( )k (19.86)

Lemma 19.12 If ( ) is the solution of (19.61), then it has the Lya-
punov order number

lim sup 1 ln k ( 0)k+
Z
= 0

k ( )k

+ lim sup 1

Z
= 0

k ( )k
(19.87)

Proof. It follows directly from (19.66).
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19.2.5 Riccati di erential equation

Let us introduce the symmetric × matrix function ( ) = | ( )
1 [0 ] which satisfies the following ODE:

˙ ( ) = ( ) ( ) + ( )| ( )
( ) ( ) ( ) + ( )

( ) = 0

(19.88)

with
( ) ( ) R

× ( ) R
× (19.89)

Definition 19.5 We call ODE (19.88) the matrix Riccati di er-
ential equation.

Theorem 19.9 (on the structure of the solution) Let ( ) be a
symmetric nonnegative solution of (19.88) defined on [0 ]. Then
there exist two functional × matrices ( ) ( ) 1 [0 ] sat-
isfying the following linear ODE

μ
˙ ( )
˙ ( )

¶
= ( )

μ
( )
( )

¶

( ) = ( ) = ( ) =

(19.90)

with

( ) =
( ) ( )
( ) | ( )

¸
(19.91)

where ( ) and ( ) are as in (19.88) and such that ( ) may be
uniquely represented as

( ) = ( ) 1 ( ) (19.92)

for any finite [0 ].

Proof.
a) Notice that the matrices ( ) and ( ) exist since they are

defined by the solution to the ODE (19.90).
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b) Show that they satisfy the relation (19.92). Firstly, remark that
( ) = , so det ( ) = 1 0. From (19.90) it follows that ( )

is a continuous matrix function and, hence, there exists a time such
that for all ( ] det ( ) 0. As a result, 1 ( ) exists
within the small semi-open interval ( ]. Then, directly using
(19.90) and in view of the identities

1 ( ) ( ) =
£

1 ( )
¤

( ) + 1 ( ) ˙ ( ) = 0

it follows

[ 1 ( )] = 1 ( ) ˙ ( ) 1 ( ) =

1 ( ) [ ( ) ( ) ( ) ( )] 1 ( ) =

1 ( ) ( ) + 1 ( ) ( ) ( ) 1 ( )

(19.93)

and, hence, for all ( ] in view of (19.88)

[ ( ) 1 ( )] = ˙ ( ) 1 ( ) + ( ) [ 1 ( )] =

[ ( ) ( ) | ( ) ( )] 1 ( )+

( ) [ 1 ( ) ( ) + 1 ( ) ( ) ( ) 1 ( )] =

( ) | ( ) ( ) ( ) ( ) + ( ) ( ) ( ) = ˙ ( )

that implies [ ( ) 1 ( ) ( )] = 0, or,

( ) 1 ( ) ( ) = const
( ]

But for = we have

const
( ]

= ( ) 1 ( ) ( ) = ( ) ( ) = 0

So, for all ( ] it follows ( ) = ( ) 1 ( ).
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c) Show that det ( ) 0. The relations (19.90) and (19.92)
lead to the following presentation within ( ]

˙ ( ) = ( ) ( ) ( ) ( ) = [ ( ) ( ) ( )] ( )

and, by the Liouville’s theorem 19.7, it follows

det ( ) = det (0) exp

Z
=0

[ ( ) ( ) ( )]

1 = det ( ) = det (0) exp

Z
=0

[ ( ) ( ) ( )]

det ( ) = exp

Z
=

[ ( ) ( ) ( )] 0

By continuity, again there exists a time 1 that det ( ) 0 for
any [ 1]. Repeating the same considerations we may
conclude that det ( ) 0 for any [0 ].
d) Show that the matrix ( ) := ( ) 1 ( ) is symmetric. One

has

[ | ( ) ( ) | ( ) ( )] = ˙ | ( ) ( ) + | ( ) [ ( )]

| ( ) ( ) | ( ) ˙ ( ) = [ ( ) ( ) | ( ) ( )]| ( )+

| ( ) [ ( ) ( ) ( ) ( )] [ ( ) ( ) ( ) ( )]| ( )

| ( ) [ ( ) ( ) | ( ) ( )] = 0

and ( )| ( ) [ ( )]| ( ) = | ( ) ( ) = | =
0 that implies | ( ) ( ) | ( ) ( ) = 0 for any [0 ]. So,
| ( ) = | ( ) ( ) 1 ( ) = | ( ) ( ) and, hence, by the trans-

position operation we get ( ) = | ( ) ( ) and ( ) = ( ) 1 ( )
= | ( ). The symmetricity of ( ) is proven.
e) The Riccati di erential equation (19.88) is uniquely solvable

with ( ) = ( ) 1 ( ) 0 on [0 ] since the matrices ( ) and
( ) are uniquely defined by (19.92).
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19.2.6 Linear first order partial DE

Consider the following linear first order partial DE

X
=1

( ) = ( ) (19.94)

where R is a vector of independent real variables and = ( )
is a real-valued function of the class 1 (X ), X R . Defining

( ) := ( 1 ( ) ( ))| :=

μ
1

¶|
the equation (19.94) can be rewritten as followsμ

( )

¶
= ( ) (19.95)

Any function = ( ) 1 (X ) satisfying (19.95) is its solution. If
so, then its full di erential is

=

μ ¶
=
X
=1

(19.96)

Consider also the following auxiliary system of ODE:

1

1 ( )
= · · · =

( )
=

( )
(19.97)

or, equivalently,

1
1 ( )

1
= · · · = 1 ( ) = 1 ( ) (19.98)

or,

1
= 1 ( ) 1 ( )

· · ·
= ( ) 1 ( )

(19.99)

which is called the system of characteristic ODE related to (19.95).
The following important result, describing the natural connection of
(19.95) and (19.98), is given below.
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Lemma 19.13 If = ( ) satisfies (19.97), then it satisfies (19.95)
too.

Proof. Indeed, by (19.99) and (19.96) we have

= ( ) 1 ( )

=
X
=1

=
X
=1

( ) 1 ( )

that implies (19.94).

Cauchy’s method of characteristics

The method, presented here, permits to convert the solution of a linear
first order partial DE the solution of a system of nonlinear ODE.
Suppose that we can solve the system (19.98) of ODE and its

solution is
= ( ) = 1 (19.100)

where are some constants.

Definition 19.6 The solutions (19.100) are called the characteris-
tics of (19.94).

Assume that this solution can be resolved with respect to the con-
stants , namely, there exists functions

= ( ) = ( = 1 ) (19.101)

Since these functions are constants on the solutions of (19.98) they are
the first integrals of (19.98). Evidently, any arbitrary function : R
R of constants ( = 1 ) is a constant too, that is,

( 1 ) = const (19.102)

Without the loss of a generality we can take const = 0, so the equation
(19.102) becomes

( 1 ) = 0 (19.103)
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Theorem 19.10 (Cauchy’s method of characteristics) If the
first integrals (19.74) ( ) of the system (19.98) are independent,
that is,

det
( )

¸
=1

6= 0 (19.104)

then the solution = ( ) of (19.97) can be found from the algebraic
equation

( 1 ( ) ( )) = 0 (19.105)

where ( 1 ) is an arbitrary function of its arguments.

Proof. By Theorem 16.8 on an implicit function, the systems
(19.74) can be uniquely resolved with respect to if (19.104) is ful-
filled. So, the obtained functions (19.100) satisfy (19.99) and, hence,
by Lemma 19.13 it follows that = ( ) satisfies (19.95).

Example 19.3 Let us integrate the equation

X
=1

= ( is a constant) (19.106)

The system (19.97)

1

1
= · · · = =

has the following first integrals

= ( = 1 )

So, = ( ) can be found from the algebraic equation

( 1 ) = 0

where ( 1 ) is an arbitrary function, for example,

( 1 ) :=
X
=1

,
X
=1

6= 0

that gives

=

ÃX
=1

! 1X
=1
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19.3 Carathéodory’s Type ODE

19.3.1 Main definitions

The di erential equation

˙ ( ) = ( ( )) 0 (19.107)

in the regular case (with continuous right-hand side in both variables)
is known to be equivalent to the integral equation

( ) = ( 0) +

Z
= 0

( ( )) (19.108)

Definition 19.7 If the function ( ) is discontinuous in and
continuous in R , then the functions ( ), satisfying the inte-
gral equation (19.108) where the integral is understood in the Lebesgue
sense, is called solutions ODE (19.107).

The material presented bellow follows (Filippov 1988).
Let us define more exactly the conditions which the function ( )

should satisfy.

Condition 19.1 (Carathéodory’s conditions) Let in the domain
D of the ( )-space the following conditions be fulfilled:

1) the function ( ) be defined and continuous in for almost
all ;

2) the function ( ) be measurable (see (15.97)) in for each ;

3)
k ( )k ( ) (19.109)

where the function ( ) is summable (integrable in the Lebesgue
sense) on each finite interval (if is unbounded in the domain
D).
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Definition 19.8

a) The equation (19.107), where the function ( ) satisfies the con-
ditions 19.1, is called the Carathéodory’s type ODE.

b) A function ( ), defined on an open or closed interval , is called
a solution of the Carathéodory’s type ODE if

- it is absolutely continuous on each interval [ ] ;

- it satisfies almost everywhere this equation or, which under the
conditions 19.1 is the same thing, satisfies the integral equation
(19.108).

19.3.2 Existence and uniqueness theorems

Theorem 19.11 ((Filippov 1988)) For [ 0 0 + ] and
: k 0k let the function ( ) satisfies the Carathéodory’s

conditions 19.1. Then on a closed interval [ 0 0 + ] there exists a
solution of the Cauchy’s problem

˙ ( ) = ( ( )) ( 0) = 0 (19.110)

In this case one can take an arbitrary number such that

0 ( 0 + ) where ( ) :=

Z
= 0

( ) (19.111)

( ( ) is from (19.109)).

Proof. For integer 1 define := , and on the intervals
[ 0 + 0 + ( + 1) ] ( = 1 2 ) construct iteratively an approx-
imate solution ( ) as

( ) := 0 +

Z
= 0

( 1 ( )) ( 0 0 + ) (19.112)

(for any initial approximation 0 ( ) for example, 0 ( ) = const).
Remember that if ( ) satisfies the Carathéodory’s conditions 19.1
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then and ( ) is measurable on [ ], then the composite function
( ( )) is summable (integrable in the Lebesgue sense) on [ ]. In

view of this and by the condition (19.111) we obtain k ( ) 0k .
Moreover, for any : 0 0 +

k ( ) ( )k
Z
= 0

( ) = ( ) ( ) (19.113)

The function ( ) is continuous on the closed interval [ 0 0 + ] and
therefore uniformly continuous. Hence, for any 0 there exists a =
( ) such that for all | | the right-hand side of (19.113) is less
than . Therefore, the functions ( ) are equicontinuous (see (14.18))
and uniformly bounded (see (14.17)). Let us choose (by the Arzelà’s
theorem 14.16) from them a uniformly convergent subsequence having
a limit ( ). Since

k ( ) ( )k k ( ) ( )k+ k ( ) ( )k
and the first term on the right-hand side is less then for = ,
it follows that ( ) tends to ( ) by the chosen subsequence. In
view of continuity of ( ) in , and the estimate k ( )k ( )
(19.109) one can pass to the limit under the integral sign in (19.112).
Therefore, we conclude that the limiting function ( ) satisfies the
equation (19.108) and, hence, it is a solution of the problem (19.110).
Theorem is proven.

Corollary 19.12 If the Carathéodory’s conditions 19.1 are satisfied
for 0 0 and k 0k , then a solution exists on the
closed interval [ 0 0] where satisfies (19.111).

Proof. The case 0 is reduced to the case 0 by the simple
substitution of ( ) for .

Corollary 19.13 Let ( 0 0) D R
1+ and let there exists a sum-

mable function ( ) (in fact, this is a Lipschitz constant) such that for
any two points ( ) and ( ) of D

k ( ) ( )k ( ) k k (19.114)

Then in the domain D there exists at most one solution of the
problem (19.110).
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Proof. Using (19.114) it is su cient to check the Carathéodory’s
conditions 19.1.

Theorem 19.12 (on the uniqueness) If in Corollary 19.13 instead
of (19.114) there is fulfilled the inequality

( ( ) ( ) ) ( ) k k2 (19.115)

then in the domain D there exists the unique solution of the problem
(19.110).

Proof. Let ( ) and ( ) be two solutions of (19.110). Define for
0 1 the function ( ) := ( ) ( ) for which it follows

k k2 = 2
μ ¶

= 2 ( ( ) ( ) )

almost everywhere. By (19.115) we obtain k k2 ( ) k k2 and,

hence,
¡

( ) k k2¢ 0 where ( ) =

Z
= 0

( ) . Thus, the ab-

solutely continuous function (i.e., it is a Lebesgue integral of some
other function) ( ) k k2 does not increase, and it follows from ( 0) =
0 that ( ) = 0 for any 0. So, the uniqueness is proven.

Remark 19.7 The uniqueness of the solution of the problem (19.110)
implies that if there exists two solutions of this problem, the graphs
of which lie in the domain D, then these solutions coincide on thew
common part of their interval of existence.

Remark 19.8 Since the condition (19.114) implies the inequality
(19.115) (this follows from the Cauchy-Bounyakoski-Schwartz inequal-
ity), thus the uniqueness may be considered to be proven for 0 also
under the condition (19.114).
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19.3.3 Variable structure and singular perturbed
ODE

Variable structure ODE

In fact, if by the structure of ODE (19.107) ˙ ( ) = ( ( )) we will
understand the function ( ), then evidently any nonstationary sys-
tem may be considered as a dynamic system with a variable structure,
since for di erent 1 6= 2 we will have ( 1 ) 6= ( 2 ). From this
point of view such treatment seems to be naive and having no cor-
rect mathematical sense. But if we consider the special class of ODE
(19.107) given by

˙ ( ) = ( ( )) :=
X
=1

( [ 1 )) ( ( )) (19.116)

where (·) is the characteristic function of the corresponding event,
namely,

( [ 1 )) :=

½
1 if [ 1 )
0 if [ 1 ) 1 (19.117)

then ODE (19.116) can be also treated as ODE with "jumping" pa-
rameters (coe cients). Evidently, that if ( ) are continuous on a
compact D and, hence, are bounded, that is,

max
=1

max
D

°° ( )
°° (19.118)

then the third Carathéodory’s condition (19.109) will be fulfilled on
the time interval [ ], since

( ) =
X
=1

( [ 1 )) = (19.119)

Therefore, such ODE equation (19.116) has at most one solution. If,
in the addition, for each = 1 the Lipschitz condition holds, i.e.,

( ( ) ( ) ) k k2

then, as it follows from Theorem 19.12, this equation has a unique
solution.
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Singular perturbed ODE

Consider the following ODE containing a singular-type of perturba-
tions:

˙ ( ) = ( ( )) +
X
=1

( ) 0 (19.120)

where ( ) is the "Dirac delta-function" (15.128), is a real
constant and is a continuous function. The ODE (19.120) must be
understand as the integral equation

( ) = ( 0) +

Z
= 0

( ( )) +
X
=1

Z
= 0

( ) (19.121)

The last term, by the property (15.134), can be represented as

X
=1

Z
= 0

( ) =
X
=1

( )

where ( ) is the "Heavyside’s (step) function" defined by (19.117).
Let is apply the following state transformation:

˜ ( ) := ( ) +
X
=1

( )

New variable ˜ ( ) satisfies (with 0 := 0) the following ODE:

˜ ( ) =

Ã
˜ ( )

X
=1

( )

!

=
X
=1

( )

Ã
( )

X
=1

!

=
X
=1

( ) ˜ ( ( ))

(19.122)

where

˜ ( ( )) :=

Ã
( )

X
=1

!
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Claim 19.1 This exactly means that the perturbed ODE (19.120)
are equivalent to a variable structure ODE (19.116).

19.4 ODE with DRHS

In this chapter we will follow (Utkin 1992)), (Filippov 1988) and (Gelig
et al. 1978).

19.4.1 Why ODE with DRHS are important in
Control Theory

Here we will present some motivating consideration justifying our fur-
ther study of ODE withy DRHS. Let us start with the simplest scalar
case dealing with the following standard ODE which is a ne (linear)
on control:

˙ ( ) = ( ( )) + ( ) ( ) = 0 is given (19.123)

where ( ) ( ) R are interpreted here as the state of the system
(19.123) and, respectively, the control action applied to it at time

[0 ]. The function : R R is a Lipschitz function satisfying
the, so-called, Lipschitz condition, that is, for any 0

R

| ( ) ( 0)| | 0| 0 (19.124)

Problem 19.1 Let us try to stabilize this system at the point = 0
using the, so-called, feedback control

( ) := ( ( )) (19.125)

considering the following informative situations

- the complete information case when the function ( ) is exactly
known;

- the incomplete information case when it is only known that the
function ( ) is bounded as

| ( )| 0 +
+ | | 0

+ (19.126)

(this inequality is assumed to be valid for any R).
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There are two possibilities to do that:

1. use any continuous control, namely, take : R R as a
continuous function, i.e., ;

2. use a discontinuous control which will be defined below.

The complete information case

Evidently that at the stationary point = 0 any continuous control
( ) := ( ( )) should satisfy the following identity

(0) + (0) = 0 (19.127)

For example, this property may be fulfilled if use the control ( )
containing the nonlinear compensating term

( ) := ( )

and the linear correction term

( ) := 0

that is, if

( ) = ( ) + ( ) = ( ) (19.128)

The application of this control (19.128) to the system (19.123) implies
that

˙ ( ) = ( )

and, as the result, one gets

( ) = 0 exp ( )
0
0

So, this continuous control (19.128) in the complete information case
solves the stabilization problem (19.1).
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The incomplete information case

Several informative situations may be considered.

1. ( ) is unknown, but a priory it is known that (0) = 0.
In this situation the condition the Lipschitz condition (19.124)
is transformed in to

| ( )| = | ( ) (0)| | |
that for the Lyapunov function candidate ( ) = 2 2 implies

˙ ( ( )) = ( ) ˙ ( ) =
( ) [ ( ( )) + ( ( ))] | ( )| | ( ( ))|
+ ( ) ( ( )) | ( )|2 + ( ) ( ( ))

(19.129)

Since ( ) is unknown let us select ( ) in (19.128) as

( ) = ( ) =
( ) := 0

(19.130)

The use of (19.130) in (19.129) leads to the following identity:

˙ ( ( )) 2 ( ) + ( ) ( ( )) =
( ) 2 ( ) = 2 ( ) ( ( ))

Selecting big enough (this method is known as the "high-gain
control") we get

˙ ( ( )) 2 ( ) ( ( )) 0
( ( )) ( 0) exp ( 2 [ ] )

0
0

This means that in the considered informative situation the "high-
gain control" solves the stabilization problem.

2. ( ) is unknown and it is admissible that (0) 6= 0. In
this situation the condition (19.127) never can be fulfilled since
we do not know exactly the value (0) and, hence, neither the
control (19.128) no the control (19.130) can be applied. Let us
try to apply a discontinuous control, namely, let us take ( ) in
the form of the, so-called, sliding-mode(or relay) control :

( ) = sign ( ) 0 (19.131)
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where

sign( ):=
1 if 0
1 if 0

[ 1 1] if = 0
(19.132)

(see Fig.19.1). Staring from some 0 6= 0 analogously to (19.129)

Figure 19.1: The signum function.

and using (19.126), we have

˙ ( ( )) = ( ) ˙ ( ) = ( ) [ ( ( )) + ( ( ))]

| ( )| | ( ( ))|+ ( ) ( ( )) | ( )| ( 0 +
+ | ( )|)

( ) sign ( ( )) = | ( )| 0 +
+ | ( )|2 | ( )|

Taking
= ( ( )) := 0 + 1 | ( )|

0
0

1 +
(19.133)

one has

˙ ( ( )) | ( )| ( 0
0) ( 1 +) | ( )|2

| ( )| ( 0
0) = 2 ( 0

0)
p

( ( )) 0

Hence,
( ( ))p
( ( ))

2
¡
0

0

¢



616 Chapter 19. Ordinary Di erential Equations

that leads to the following identity

2
³p

( ( ))
p

( 0)
´

2
¡
0

0

¢
or, equivalently,

p
( ( ))

p
( 0)

0
0

2

This means that the, so-called, "reaching phase", during which
the system (19.123) controlled by the sliding-mode algorithm
(19.131)-(19.133) reaches the origin, is equal to

=

p
2 ( 0)
0

0
(19.134)

Conclusion 19.1 As it follows from the considerations above, the
discontinuous (in this case, sliding-mode) control (19.131)-
(19.133) can stabilize the class of the dynamic systems (19.123),
(19.124), (19.126) in finite time (19.134) without the exact knowl-
edge of its model. Besides, the reaching phase may be done as
small as you wish by the simple selection of the gain parameter 0 in
(19.134). In other words, the discontinuous control (19.131)-(19.133)
is robust with respect to the presence of unmodelled dynamics
in (19.123) that means that it is capable to stabilize a wide class of
"black/grey-box" systems.

Remark 19.9 Evidently, that using such discontinuous control, the
trajectories of the controlled system can not stay in the stationary
point = 0 since it arrives to it in finite time but with a nonzero
rate, namely, with ˙ ( ) such that

˙ ( ) =

½
(0) + 0 if ( ) +0
(0) 0 if ( ) 0

that provokes the, so-called, "chattering e ect" (see Fig.19.2). Sim-
ple engineering considerations show that some sort of smoothing (or,
low-pass filtering) should be applied to keep dynamics close to the sta-
tionary point = 0.
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Figure 19.2: The chattering e ect.

Remark 19.10 Notice that when ( ) = = 0 we only know that

˙ ( ) [ (0) 0 (0) + 0] (19.135)

This means that we deal with a di erential inclusion (not an equa-
tion) (19.135). So, we need to define what does it mean mathematically
correctly a solution of a di erential inclusion and what is it itself.

All these questions, arising in the remarks above, will be considered
below in details and be illustrated by the corresponding examples and
figures.

19.4.2 ODE with DRHS and di erential inclu-
sions

General requirements to a solution

As it is well known, a solution of the di erential equation

˙ ( ) = ( ( )) (19.136)

with a continuous right-hand side is a function ( ) which has a deriv-
ative and satisfies (19.136) everywhere on a given interval. This defi-
nition is not, however, valid for DE with DRHS since in some points
of discontinuity the derivative of ( ) does not exists. That’s why
the consideration of DE with DRHS requires a generalization of the
concept of a solution. Anyway, such generalized concept should nec-
essarily meet the following requirements:
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- For di erential equations with a continuous right-hand side the de-
finition of a solution must be equivalent to the usual (standard)
one.

- For the equation ˙ ( ) = ( ) the solution should be the functions
( ) =

R
( ) + only.

- For any initial data ( 0) = within a given region the solution
( ) should exist (at least, locally) for any 0 and admit the
possibility to be continued up to the boundary of this region or
up to infinity (when ( ) ).

- The limit of a uniformly convergent sequences of solutions should
be a solution too.

- Under the commonly used changes of variables a solution must be
transformed into a solution.

The definition of a solution

Definition 19.9 A vector-valued function ( ), defined by a map-
ping : R × R R , is said to be piecewise continuous in a
finite domain G R

+1 if consists of a finite numbers of a domains
G ( = 1 ), i.e.,

G =
[
=1

G

such that in each of them the function ( ) is continuous up to the
boundary

M := Ḡ \G ( = 1 ) (19.137)

of a measure zero.

The most frequent case is the one where the set

M =
[
=1

M

of all discontinuity points consists of a finite number of hypersurfaces

0 = ( ) 1 = 1

where ( ) is a smooth function.
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Definition 19.10 The setM defined as

M = { R | ( ) = ( 1 ( ) ( ))| = 0} (19.138)

is called a manifold in R . It is referred to as a smooth manifold
if ( ) 1 = 1 .

Now we are ready to formulate the main definition of this section.

Definition 19.11 (A solution in the Filippov’s sense) A solu-
tion ( ) on a time interval [ 0 ] of ODE ˙ ( ) = ( ( )) with
DRHS in the Filippov’s sense is called a solution of the di eren-
tial inclusion

˙ ( ) F ( ( )) (19.139)

that is, an absolutely continuous on [ 0 ] function ( ) (which can
be represented as a Lebesgue integral of another function) satisfying
(19.139) almost everywhere on [ 0 ], where the set F ( ) is the
smallest convex closed set containing all limit values of the
vector-function ( ) for ( ) M, , = const.

Remark 19.11 The set F ( )

1) consists of one point ( ) at points of continuity of the func-
tion ( );

2) is a segment (a convex polygon, or polyhedron), which in the case
when ( ) M (19.137) has the vertices

( ) := lim
( ) G

( ) (19.140)

All points ( ) are contained in F ( ), but it is not obliga-
tory that all of them are vertices.

Example 19.4 For the scalar di erential inclusion

˙ ( ) sign ( ( ))

the set F ( ) is as follows (see Fig.19.3):

1. F ( ) = 1 if 0;

2. F ( ) = 1 if 0;

3. F ( ) = [ 1 1] if = 0.
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Figure 19.3: The right-hand side of the di erential inclusion ˙ =
( ).

Semi-continuous sets as functions

Definition 19.12 A multi-valued function (or, a set) F = F ( )
( R R ) is said to be

• a semi-continuous in the point ( 0 0) if for any 0 there
exists = ( 0 0 ) such that the inclusion

( ) { | k ( 0 0)k } (19.141)

implies

F ( ) { | k ( 0 0)k } (19.142)

• a continuous in the point ( 0 0) if it is a semi-continuous and,
additionally, for any 0 there exists = ( 0 0 ) such that
the inclusion

( 0 0) { | k ( 0 0)k } (19.143)

implies

F ( 0 0) { | k ( 0 0)k } (19.144)

Example 19.5 Consider the multi-valued functions F ( ) depicted
at Fig.19.4.
Here the functions (sets) F ( ), corresponding the plots 1)-4),

are semi-continuous.
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Figure 19.4: Multivalued functions.

Theorem on the local existence of solution

First, let us formulate some useful result which will be applied in the
following considerations.

Lemma 19.14 If ( ) is absolutely continuous on the interval
[ ] and within this interval k ˙ ( )k , then

1
( ) Conv

a.a. [ ]
˙ ( ) (19.145)

where Conv is a convex closed set containing ˙ ( ) for almost all
[ ].

Proof. By the definition of the Lebesgue integral

1
( ) =

1
Z
=

˙ ( ) = lim
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where

=
X
=1
| | ˙ ( ) 0

X
=1

= | |

are Lebesgue sums of the integral above. But Conv
a.a. [ ]

˙ ( ).

Hence, the same fact is valid for the limit vectors lim that proves

the lemma.

Theorem 19.13 (on the local existence) Suppose that

A1) a multi-valued function (set) F ( ) is a semi-continuous at
each point

( ) ( 0 0) := {( ) | k 0k | 0| }

A2) the set F ( ) is a convex compact and sup k k = whenever

F ( ) and ( ) ( 0 0)

Then for any such that | 0| := there exists an ab-
solutely continuous function ( ) (may be, not unique) such that

˙ ( ) F ( ) ( 0) = 0

that is, the ODE ˙ ( ) = ( ( )) with DRHS has a local solution
in the Filippov’s sense (see Definition 19.11).

Proof. Divide the interval [ 0 0 + ] into 2 -parts ( )
:=

0+ ( = 0 ±1 ± ) and construct the, so-called, partially linear

Euler’s curves

( ) :=
³
( )
´
+
³

( )
´

(̂ )
³
( )
´ h

( ) ( +1)
i

³
( )
0

´
= 0

(̂ )
³
( )
´

F
³
( )

³
( )
´´

By the assumption A2) it follows that ( ) is uniformly bounded and
continuous on ( 0 0). Then, by the Arzelà’s theorem 14.16 there
exists a subsequence { ( )} which uniformly converges to some vec-
tor function ( ). This limit evidently has a Lipschitz constant on
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( 0 0) and satisfies the initial condition ( 0) = 0. In view of
Lemma 19.14, for any 0 one has

1 [ ( + ) ( )] Conv
a.a.[ 0 0+ ]

[
=

(̂ )

Conv
a.a. 0 0+ +

[
=

(̂ )
( ) :=

Since F ( ) is semi-continuous, it follows that sup inf k k 0

whenever (here := Conv
a.a. [ + ]

[
=

( )). The convex-

ity of F ( ) implies also that sup inf
F( )

k k 0 when 0

that, together with previous property, proves the theorem.

Remark 19.12 By the same reasons as for the case of regular ODE,
we may conclude that the solution of the di erential inclusion (if it
exists) is continuously dependent on 0 and 0.

19.4.3 Sliding mode control

Sliding mode surface

Consider the special case where the function ( ) is discontinuous
on a smooth surface given by the equation

( ) = 0 : R R (·) 1 (19.146)

The surface separates its neighborhood (in R ) into domains G+ and
G . For = const and for the point approaching the point
from the domains G+ and G let us suppose that the function ( )
has the following limits:

lim
( ) G

( ) = ( )

lim
( ) G+

( ) = + ( )
(19.147)

Then by the Filippov’s definition, F ( ) is a linear segment joining
the endpoints of the vectors ( ) and + ( ). Two situations are
possible.
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- If for ( 1 2) this segment lies on one side of the plane tangent
to the surface at the point , the solutions for these pass
from one side of the surface to the other one (see Fig.19.5
depicted at the point = 0);

Figure 19.5: The sliding surface and the rate vector field at the point
= 0.

- If this segment intersects the plane , the intersection point is the
endpoint of the vector 0 ( ) which defines the velocity of the
motion

˙ ( ) = 0 ( ( )) (19.148)

along the surface in R (see Fig.19.6 depicted at the point
= 0). Such a solution, lying on for all ( 1 2), is often

called a sliding motion (or, mode). Defining the projections
of the vectors ( ) and + ( ) to the surface ( ( ) 6= 0)
as

( ) :=
( ( ) ( ))

k ( )k
+ ( ) :=

( ( ) + ( ))

k ( )k
one can find that when ( ) 0 and + ( ) 0

0 ( ) = ( ) + (1 ) + ( )

Here can be easily found from the equation¡
( ) 0 ( )

¢
= 0
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Figure 19.6: The velocity of the motion.

or, equivalently,

0 = ( ( ) ( ) + (1 ) + ( )) =

( ) + (1 ) + ( )

that implies

=
+ ( )

+ ( ) ( )

Finally, we obtain that

0 ( ) =
+ ( )

+ ( ) ( )
( )+

μ
1

+ ( )
+ ( ) ( )

¶
+ ( )

(19.149)

Sliding mode surface as a desired dynamics

Let us consider in this subsection several examples demonstrating that
a desired dynamic behavior of a controlled system may be expressed
not only in the traditional manner, using some cost (or payo ) func-
tionals as possible performance indices, but also representing a nom-
inal (desired) dynamics in the form of a surface (or, manifold) in a
space of coordinates.
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First-order tracking system Consider a first-order system given
by the following ODE:

˙ ( ) = ( ( )) + ( ) (19.150)

where ( ) is a control action and : R×R R is supposed to be
bounded, that is,

| ( ( ))| +

Assume that the desired dynamics (signal), which should be tracked,
is given by a smooth function ( ) (| ˙ ( )| ), such that the tracking
error is (see Fig.19.7)

( ) := ( ) ( )

Select a desired surface as follows

Figure 19.7: A tracking system.

( ) = = 0 (19.151)

that exactly corresponds to an "ideal tracking" process. Then, design-
ing the control ( ) as

( ) := sign( ( ))

we derive that

˙ ( ) = ( ( )) ˙ ( ) sign ( ( ))

and for ( ) = 2 2 one has

˙ ( ( )) = ( ) ˙ ( ) = ( ) [ ( ( )) ˙ ( ) sign ( ( ))]

= ( ) [ ( ( )) ˙ ( )] | ( )| | ( )| [ + + ] | ( )|

= | ( )| [ + + ] = 2 [ + ]
p

( ( ))
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and, hence,

p
( )

p
( 0)

1

2

£
+

¤
So, taking + + implies the finite time convergence of (with

the reaching phase =

p
2 ( 0)

+
) to the surface (19.151) (see Fig.

19.8, and Fig. 19.9).

Figure 19.8: The finite time error cancellation.

Figure 19.9: The finite time tracking.

Stabilization of a second order relay-system Let us consider a
second order relay-system given by the following ODE
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¨ ( ) + 2 ˙ ( ) + 1 ( ) = ( ) + ( )
( ) = sign (˜( )) - the relay-control

˜( ) := ˙ ( ) + ( ) 0
| ( )| + - a bounded unknown disturbance

(19.152)

One may rewrite the dynamic ( 1 := ) as

˙ 1 ( ) = 2 ( )
˙ 2 ( ) = 1 1 ( ) 2 2 ( ) + ( ) + ( )

( ) = sign ( 2 ( ) + 1 ( ))
(19.153)

Here the sliding surface is

( ) = 2 + 1

So, the sliding motion, corresponding the dynamics ˜( ) := ˙ ( ) +
( ) = 0 is given by (see Fig.19.10)

( ) = 0

Let us introduce the following Lyapunov function candidate:

Figure 19.10: The sliding motion on the sliding surface ( ) = 2+ 1

( ) = 2 2
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for which the following property holds:

˙ ( ) = ˙ = ( ( ))
( ( ))

1
˙ 1 ( ) +

( ( ))

2
˙ 2 ( )

¸
=

( ( )) [ 2 ( ) 1 1 ( ) 2 2 ( ) + ( ) + ( )]

| ( ( ))| £| 1| | 1 ( )|+ ( + | 2|) | 2 ( )|+ +
¤
- ( ( )) sign ( ( ( )))

=
£ | 1| | 1 ( )| ( + | 2|) | 2 ( )| +

¤ | ( ( ))| 0

if take

= | 1| | 1 ( )|+ ( + | 2|) | 2 ( )|+ + + 0 (19.154)

This implies ˙ ( )
p
2 ( ), and, hence, the reaching time

(see Fig.19.9) is

=

p
2 ( 0)

=
| ˙ 0 + 0| (19.155)

Sliding surface and a related LQ-problem Consider a linear
multi-dimensional plant given by the following ODE

˙ ( ) = ( ) ( ) + ( ) ( ) + ( )

0 is given, ( ) R , ( ) R
| ( ) ( ) 0 rank [ ( )] = for any [ 1]
( ) is known external perturbation

(19.156)

A sliding mode is said to be taking place in this system (19.156) if there
exists a finite reaching time , such that the solution ( ) satisfies

( ) = 0 for all (19.157)

where ( ) : × + is a sliding function and (21.65) defines
a sliding surface in +1. For each 1 0 the quality of the system
(19.156) motion in the sliding surface (21.65) is characterized by the
performance index (Utkin 1992)

1 =
1

2

1R
( ( ) ( )) = | 0 (19.158)
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Below we will show that the system motion in the sliding surface
(21.65) does not depend on the control function , that’s why (19.158)
is a functional of and ( ) only. Let us try to solve the following
problem.
Problem formulation: for the given linear system (19.156) and 1

0 define the optimal sliding function = ( ) (21.65) providing the
optimization in the sense of (19.158) in the sliding mode, that is,

1 inf (19.159)

where is the set of the admissible smooth (di erentiable on all ar-
guments) sliding functions = ( ). So, we wish to minimize the
performance index (19.158) varying (optimizing) the sliding surface

.
Introduce new state vector defined by

= ( ) (19.160)

where the linear nonsingular transformations ( ) are given by

( ) := ( )×( ) 1 ( ) ( 2 ( ))
1

0 ( 2 ( ))
1

¸
(19.161)

Here ( )×( )
1 ( ) R × and 2 ( ) R × represent the matrices

( ) in the form

( ) = 1 ( )

2 ( )

¸
, det [ 2 ( )] 6= 0 0 (19.162)

Applying (19.162) to the system (19.156), we obtain (below we will
omit the time-dependence)

˙ =

μ
˙1
˙2

¶
=

μ
˜
11 1 + ˜

12 2

˜
21 1 + ˜

22 2

¶
+

μ
0
¶
+

μ
˜
1
˜
2

¶
(19.163)

where 1 2 and

˜ =
˜
11

˜
12

˜
21

˜
22

¸
= 1 + ˙ 1

μ
˜
1 ( )
˜
2 ( )

¶
= ( ) (19.164)
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Using the operator 1, it follows = 1 and, hence, the perfor-
mance index (19.158) in new variables may be rewritten as

1 =
1

2

1R
( ) =

1

2

1R ³
˜

´
=

1

2

1R h³
1
˜
11 1

´
+ 2

³
1
˜
12 2

´
+
³

2
˜
22 2

´i
˜ := ( 1)

| 1 =
˜
11

˜
12

˜
21

˜
22

¸ (19.165)

and the sliding function = ( ) becomes

=
¡

1
¢
:= ˜ ( ) (19.166)

Remark 19.13 The matrices ˜11 ˜12 ˜21 and ˜22 are supposed to
be symmetric. Otherwise, they can be symmetrized as follows:

1 =
1

2

1R £¡
1
¯
11 1

¢
+ 2

¡
1
¯
12 2

¢
+
¡
2
¯
22 2

¢¤
¯
11 :=

³
˜
11 + ˜|

11

´
2 ¯

22 :=
³
˜
22 + ˜|

22

´
2

¯
12 =

³
˜
12 + ˜|

12 + ˜
21 + ˜|

21

´
2

(19.167)

Assumption (A1). We will look for the sliding function (19.166) in
the form

˜ ( ) := 2 + ˜0 ( 1 ) (19.168)

If the sliding mode exists for the system (19.163) in the sliding sur-
face ˜ ( ) = 0 under the assumption A1, then for all the
corresponding sliding mode dynamics, driven by the unmatched dis-
turbance ˜1 ( ), are given by

˙1 = ˜
11 1 + ˜

12 2 + ˜1
2 = ˜0 ( 1 )

(19.169)

with the initial conditions 1 ( ) = ( ( ))1. Defining 2 as a virtual
control, that is,

:= 2 = ˜0 ( 1 ) (19.170)
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the system (19.169) may be rewritten as

˙1 = ˜
11 1 + ˜

12 + ˜1 (19.171)

and the performance index (19.165) becomes

1 =
1

2

1Z h³
1
˜
11 1

´
+ 2

³
1
˜
12

´
+
³

˜
22

´i
(19.172)

In view of (19.171) and (19.172), the sliding surface design problem
(19.159) is reduced to the following one:

1 inf (19.173)

But this is the standard LQ-optimal control problem. This means
that the optimal control = ( 1 ), optimizing the cost functional
(19.172), defines the optimal sliding surface ( ) (see (19.171) and
(19.168)) by the following manner:

( 1 ) = ˜0 ( 1 )
˜ ( ) = 2 ( 1 ) = 0

or, equivalently,

( ) = ( )2 (( )1 ) = 0 (19.174)

Equivalent control method

Equivalent control construction Here a formal procedure will be
described to obtain sliding equations along the intersection of sets of
discontinuity for a nonlinear system given by

˙ ( ) = ( ( ) ( ))

0 is given
( ) R ( ) R

(19.175)

and the manifoldM (19.138) defined as

( ) = ( 1 ( ) ( ))| = 0 (19.176)

representing an intersection of submanifolds ( ) ( = 1 ).
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Definition 19.13 Hereinafter the control ( ) will be referred to (ac-
cording to V.Utkin) as the equivalent control ( ) ( ) in the system
(19.175) if it satisfies the equation

˙ ( ( )) = ( ( )) ˙ ( ) = ( ( )) ( ( ) ( )) = 0

( ( )) R
× ( ( )) = ( ( ))

(19.177)

It is quite obvious that, by virtue of the condition (19.177), a
motion starting at ( ( 0)) = 0 in time 0 will proceed along the
trajectories

˙ ( ) =
¡

( ) ( ) ( )
¢

(19.178)

which lies on the manifold ( ) = 0.

Definition 19.14 The above procedure is called the equivalent con-
trol method (Utkin 1992), (Utkin, Guldner & Shi 1999) and the
equation (19.178), obtained as a result of applying this method, will be
regarded as the sliding mode equation describing the motion on the
manifold ( ) = 0.

From the geometric viewpoint, the equivalent control method im-
plies a replacement of the undefined discontinued control on the dis-
continuity boundary with a continuous control which directs the ve-
locity vector in the system state space along the discontinuity surface
intersection. In other words, it exactly realizes the velocity
0
¡

( ) ( ) ( )
¢
(19.149) corresponding to the Filippov’s definition

of the di erential inclusion in the point = ( ).
Consider now the equivalent control procedure for an important

particular case of a nonlinear system which is a ne on , the right-
hand side of whose di erential equation is a linear function of the
control, that is,

˙ ( ) = ( ( )) + ( ( )) ( ) (19.179)

where : R × R R and : R × R R × are all argument
continuous vector and matrix, respectively, and ( ) R is a control
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action. The corresponding equivalent control should satisfies (19.177),
namely,

˙ ( ( )) = ( ( )) ˙ ( ) = ( ( )) ( ( ) ( ))

= ( ( )) ( ( )) + ( ( )) ( ( )) ( ) = 0
(19.180)

Assuming that the matrix ( ( )) ( ( )) is nonsingular for all
( ) and , one can find the equivalent control from (19.180) as

( ) ( ) = [ ( ( )) ( ( ))] 1 ( ( )) ( ( )) (19.181)

Substitution of this control into (19.179) yields the following ODE:

˙ ( ) = ( ( ))

( ( )) [ ( ( )) ( ( ))] 1 ( ( )) ( ( ))
(19.182)

which describes the sliding mode motion on the manifold ( ) = 0.
Below the corresponding trajectories in (19.182) will be referred to as
( ) = ( ) ( ).

Remark 19.14 If we deal with an uncertain dynamic model (19.175)
or, particularly, with (19.179), then the equivalent control ( ) ( ) is
not physically realizable.

Below we will show that ( ) ( ) may be successfully approximated
(in some sense) by the output of the first order low-pass filter with the
input equal to the corresponding sliding mode control.

Sliding mode control design Let us try to stabilize the system
(19.179) applying sliding mode approach. For the Lyapunov function
( ) := k ( )k2 2 considered on the trajectories of the controlled

system (19.179), one has

˙ ( ( )) =
³
( ( )) ˙ ( ( ))

´
=

( ( ( )) ( ( )) ( ( )) + ( ( )) ( ( )) ( )) =

( ( ( )) ( ( )) ( ( )))+ ( ( ( )) ( ( )) ( ( )) ( ))

k ( ( ))k k ( ( )) ( ( ))k+ ( ( ( )) ( ( )) ( ( )) ( ))
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Taking ( ) as a sliding mode control , i.e.,

( ) = ( ) ( )

( ) ( ) := [ ( ( )) ( ( ))] 1 SIGN ( ( ( )))

0 SIGN ( ( )) := (sign ( 1 ( )) sign ( ( )))|

(19.183)

we obtain

˙ ( ( )) k ( )k k ( ( )) ( ( ))k
X
=1

| ( ( ))|

that, in view of the inequality, k k P
=1

| |, implies

˙ ( ( )) k ( )k ( k ( ( )) ( ( ))k)

Selecting

= k ( ( )) ( ( ))k+ 0 (19.184)

gives ˙ ( ( )) k ( )k = p
2 ( ( )) that provides the reach-

ing phase in time

=

p
2 ( 0)

=
k ( 0)k (19.185)

Remark 19.15 If the sliding motion on the manifold ( ) = 0 is
stable then there exists a constant 0 (0 ) such that

k ( ( )) ( ( ))k 0

and, hence, (19.184) may be selected as a constant

:= = 0 + (19.186)
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Low-pass filtering To minimize the influence of the chattering ef-
fect arising after the reaching phase let us consider the property of the
signal obtained as an output of a low-pass filter with the input equal
to the sliding mode control, that is,

˙ ( ) ( ) + ( ) ( ) = ( ) ( )
( )
0 = 0 0 (19.187)

where ( ) ( ) is given by (19.183). The next simple lemma states the
relation between the, so-called, averaged control ( ) ( ), which is the
filtered output, and the input signal ( ) ( ).

Lemma 19.15 If
+ k ( ( ))k := 1 2

max ([
| ( ( )) |] [ ( ( ))])

1 2
min ([

| ( ( )) |] [ ( ( ))]) × 0
(19.188)

then for the low-pass filter (19.187) the following properties hold:

1. The di erence between the input and output signals are bounded,
i.e.,

( ) ( ) = ( ) ( ) + ( )

k ( )k 2 := ( + + )

°° ˙ ( ) ( )
°° 2

(19.189)

2. The amplitude-frequency characteristic ( ) of the filter is

( ) =
1q

1 + ( )2
, [0 ) (19.190)

whose plot is depicted at Fig.19.11 for = 0 01, where = ( )
and = .

Proof. 1) The solution of the ODE (19.183) and its derivative are
as follows:°° [ ( )] 1

°° (k ( )k+ )
°°[ ( )] 1

°°
=

(k ( )k+ )
1 2
min ([

| ( ) |] [ ( )])

1 ( + + )
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Figure 19.11: The amplitude-phase characteristic of the low-pass filter.

°°° ( )
°°° 1

¡
+ +

¢
:=

and by (19.187)

( )
=
1 R

=0

( ) ( )

˙
( )

=
1 ( ) 1 R

=0

( ) ( )

¸ (19.191)

that implies

°°° ˙ ( )
°°° °°° ( )

°°°+ 1 R
=0

( )
°°° ( )

°°°
+

R
=0

( ) = +
R
=0

( ) ( ) =

+
R
˜=0

( )̃ ˜ = +
¡
1

¢
2

Hence, (19.189) holds.
2) Applying the Fourie transformation to (19.187) leads to the

following identity:

( ) ( ) + ( ) ( ) = ( ) ( )
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or, equivalently,

( ) ( ) =
1

1 +
( ) ( ) =

1

1 + ( )2
( ) ( )

So, the amplitude-frequency characteristic

( ) :=

q
[Re ( ) ( )]

2
+ [Im ( ) ( )]

2

of the filter (19.187) is as in (19.190). Lemma is proven.

The realizable approximation of the equivalent control

By (19.191) ( ) may be represented as ( )
=
R
=0

( ) ¡ ( )
¢
.

Consider the dynamics ( ) of the system (19.175) controlled by ( )

(19.191) at two time intervals: during the reaching phase and during
the sliding mode regime.

1. Reaching phase ( [0 ]). Here the integration by part
implies

( )
=

Z
=0

( )
¡

( )
¢
=

( ) ( )
0

Z
=0

˙ ( ) ( )

Supposing that ( ) (19.183) is bounded almost everywhere, i.e.,°°° ˙ ( )
°°° . The above identity leads to the following estimation:

°°° ( ) ( )
°°° °°° ( )

0

°°° +
R
=0

( ) =
°°° ( )

0

°°° +

R
=0

( ) ( ) =
°°° ( )

0

°°° +
R
˜=0

( )̃ ˜ =°°° ( )
0

°°° +
¡
1

¢
= +

¡ ¢
So, ( ) may be represented as

( )
=

( )
+ (19.192)
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where may be done as small as you wish taking tending to
zero, since

k k +
¡ ¢

As a result, the trajectories ( ) and ( ) will di er a little bit.
Indeed,

˙
( )
=

³
( )
´ ³

( )
´

( )

˙
( )

=
³

( )
´ ³

( )
´

( )

Defining

˜ =
³

( )
´
˜ =

³
( )
´

˜=
³

( )
´

and omitting the arguments for the simplicity, the last equation
may be represented as

˙
( )
=

( )
˙
( )

= ˜ ˜ ( )

Hence by (19.192), the di erence :=
( ) ( ) satisfies

= 0

R
=0

h³
˜́ ( )

+ ˜ ( )
i

=

0

R
=0

h³
˜́ ( )

+ ˜
³

( )
+

´i
Taking into account that 0 = 0 (the system starts with the
same initial conditions independently on an applied control) and
that ( ) and ( ) are Lipschitz (with the constant and
) on it follows

k k R
=0

h°°° °̃°°+ °°°³ ˜ ´
( )
+ ˜

°°°i
R
=0

h
k k+ k k

°°° ( )
°°°+ °°° ˜°°° k k

i
R
=0

h³
+

°°° ( )
°°°´ k k+

°°° ˜°°° ¡ +
¡ ¢¢i

Since
¡ ¢

=
³
1

´
= (1) and

°° ( )
°° ( )

+

°°° ˜°°° +
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we finally have

k k R
=0

h³
+

( )
+

´
k k+ + ( + )

i
+ ( + ) +

R
=0

³
+

( )
+

´
k k

Now let us apply the Gronwall lemma which says that if ( ) and
( ) are nonnegative continuous functions on [ 0 ) verifying

( ) +

Z
= 0

( ) ( ) (19.193)

then for any [ 0 ) the following inequality holds:

( ) exp

Z
= 0

( ) (19.194)

This results remains true if = 0. In our case

( ) = k k = + ( + ) ( ) = +
( )
+

for any [0 ). So,

k k := + ( + ) exp
³³

+
( )
+

´ ´
(19.195)

Claim. For any finite reaching time and any small value
0 there exists a small enough such that k k is less than

.

2. Sliding mode phase ( ). During the sliding mode phase
we have³

( )
´
= ˙

³
( )
´
=

³
( )
´
= 0 (19.196)

if =
( ) for all . Applying =

( ) we can not
guarantee (19.196) already. Indeed,

³
( )
´
=

³
( )
´
+

Z
=

˙
¡

( )
¢
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and, by (19.195),°°° ³
( )
´°°°=°°° ³

( )
´
-
³

( )
´°°° °°° ³

( )
´ °°° ( )

Hence, in view of (19.196),
°°° ³

( )
´°°° = ( ).

Claim 19.2 During the sliding-mode phase

°°° ³
( )
´°°° = ( ) (19.197)


