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Abstract

In this paper a second order sliding mode observer with finite time convergence is developed for an electromechanical system with

backlash. As a consequence of finite time convergence the sliding mode equivalent control is used to apply identification algorithms in

order to characterize the backlash phenomenon. The dead zone amplitude and the disturbing torque are identified asymptotically.

Simulation and experimental tests applied to an electromechanical actuator are given to support the theoretical development.

r 2006 Published by Elsevier Ltd.
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1. Introduction

The observation of mechanical systems is a difficult task
due to nonlinearity and discontinuity of their dynamics. In
such a case, the usage of sliding mode observers (see for
example Utkin, Guldner, & Shi, 1999) seems to be a
reasonable choice due to the main advantages of sliding
modes: robustness with respect to uncertainties and finite
time convergence (Almeida & Alvarez, 2004; Orlov,
Alvarez, & Acho, 2000; Shtessel, Shkolnikov, & Brown,
2003).

A new generation of differentiators (Levant, 1998) and
observers, based on the second order sliding mode
algorithms, have been recently developed. In Shtessel
et al. (2003), an asymptotic convergence of error was
developed, based on second order siding mode. A sliding
mode observer designed via an extension of the invariance
principle was applied for systems with Coulomb friction in
Orlov et al. (2000).

The application of sliding modes in system observation
allows to use algorithms, either via the control equivalent
value for perturbation identification and/or linear regres-
sion to identify the system parameters (Davila & Fridman,
2004; Utkin et al., 1999).
In mechanical systems, the backlash phenomenon

becomes a mechanical imperfection when the dead zone
amplitude affects the system performance during its control
in a closed loop. Some work has already been carried out
on comparable systems. This work can be arranged into
three main categories: those where the main interest was
the control and fault detection and isolation of similar
systems, for example adaptive control in Tao and
Kokotovic (1995), variable structure control in Tenreiro
Machado (1996), trajectory planning and feedforward
design for electromechanical motion systems in
Lambrechts, Boerlage, and Steinbuch (2005), observer
model-based in Dixon (2004) and adaptive estimation
and compensation in Merzouki, Cadiou, and M’Sirdi
(2004). Those specialized rather in the dynamic analysis
of the system (for example in Allan & Levy, 1980; Barbosa
& Tenreiro Machado, 2002; Shaw & Rand, 1989) and those
where the development is mainly dedicated to the simula-
tion of such systems (see for example in Thompson &
Ghaffari, 1982).
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mechanism, the reconstruction of nonmeasurable states is
needed. For this purpose, the used observers require to
keep the finite time convergence even if the system exhibits
the backlash phenomenon.

In this paper, two nonlinear observers, based on the
second order sliding mode super-twisting algorithm Levant
(1993) are developed. They reconstruct input and output
velocities for mechanical system with backlash phenomen-
on, using position measurements. The finite time conver-
gence of these observers allows to use properties of
equivalent control to identify the backlash as a perturba-
tion, or in a no disturbing frame, using linear regression
algorithms to identify the backlash parameters.

An important implementation restriction of linear
regression algorithm is the persistent excitation condition
required for the signal to be sufficiently rich ensuring the
matrix inversion, and which include all the known
functions of the system. In this paper, the matrix
dimensions in the persisting condition are reduced by
using only unknown parameters in the regressor structure.

The remainder of this paper is organized as follows. The
next section describes the electromechanical test bench.
Section 3 describes the backlash modeling and Section 4
presents the developed super-twisting observer to estimate
the disturbing backlash torque and the dead zone
amplitude. Sections 5 and 6 present simulation and
experimental results, respectively. Conclusion is given in
Section 7 and at last, the algorithm convergence proof is
given in the Appendix.

2. Electromechanical actuator description and modeling

The test bench presented in Fig. 1 has been developed to
identify some mechanical imperfections. All of this devel-
opment is given in Merzouki and Cadiou (2005). It
represents an electromechanical system made up of a
motor reducer involving an external load. The motor part
is actuated by a DC motor delivering a relative important
mass torque. This test bench presents built-in mechanical
imperfections as friction, backlash and elasticity and allows
to vary their amplitudes. Coulomb friction is represented
by a contact of various components of the system
with different rigidities. Viscous friction depends on the
lubricant viscosity, contained between surfaces in contact.
Backlash phenomenon is described by two independent

mechanical parts, whose transmission is carried out via a
dead zone, varying between 01 and 241. A spring system is
placed between the two mechanical parts in order to deliver
a smooth transmission.
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List of notation

j0 dead zone amplitude (rad)
w nonlinear transmitted torque (Nm)
~w nonlinear transmitted torque error (Nm)
Je motor inertia ðNm2Þ

Js load inertia ðNm2Þ

K elasticity constant (Nm/rad)
N0 reducer constant

f e viscous friction coefficient in the motor side
(Nm s/rad)

f s viscous friction coefficient in the load side (Nms/rad)
ye input reducer position (rad)
_ye input reducer velocity (rad/s)
€ye input reducer acceleration ðrad=sec2Þ
ys output reducer position (rad)
_ys output reducer velocity (rad/s)
€ys output reducer acceleration ðrad=s2Þ

Electrical
Actuator

Input

Out put

Reducer Part
Incremental
Encoders

Dead Zone
Mechanism

Fig. 1. Electromechanical test bench.
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Fig. 2. Electromechanical system including mechanical imperfections.
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On this test bench, one can measure input and output
positions of the reducer part by using two incremental
encoders of Fig. 1, where the relative load position is
depending on friction between the gears in contact, as well
as flexible transmission through a dead zone. Fig. 2 illus-
trates the simplified system schema of the real system.

Let us consider that static friction is disregarded, then
the mechanical model of the test bench, including the
backlash is described by the following system

Je:€ye þ f e:_ye þ C ¼ u;

Js:€ys þ f s:_ys ¼ N0:C;

(
(1)

Js, Je, f s, f e are, respectively, inertias and viscous frictions
of reducer and motor parts which are identified experi-
mentally.
€ys, €ye, _ys, _ye are, respectively, accelerations and velocities

of reducer and motor parts which are deduced by
derivation of the measured input and output positions ys

and ye.
u, C, N0 are, respectively, control input torque,

transmitted torque via the dead zone and reduction
constant.

Introducing the variables x1e ¼ ye, x1s ¼ ys, x2e ¼
_ye,

x2s ¼
_ys, model (1) can be rewritten as

_x1e ¼ x2e;

_x1s ¼ x2s;

_x2e ¼ �
f e

Je

:x2e þ
u

Je

�
C

Je

;

_x2s ¼ �
f s

Js

:x2s þ
N0:C

Js

:

8>>>>>>><>>>>>>>:
(2)

3. Backlash torque modeling

Generally, modeling of the mechanical torque, trans-
mitted through a dead zone and a flexible axis (see in
Fig. 2), is given by a nonlinear and noncontinuous function
of Fig. 3(b). Unfortunately, the noncontinuous character-
istic of the transmitted torque around the contact areas,
can make the system observation and control difficult.
Thus, and in order to avoid this noncontinuous property,
once thought of bringing a flexible bond inside the dead
zone areas of the electromechanical system (see Fig. 3(a)).
It describes a body1 trying to transmit motion to body2 via
a dead zone of amplitude 2j0. The transmission will be
correct when the two bodies are in contact (i.e. the two

positions are identical). Otherwise (the bodies are not in
contact), the transmission will be delayed due to the
presence of a dead zone. This physical modification allows
avoiding some undesirable behavior following the shocks
between the various parts of the system and at the same
time to simplify the noncontinuous model and make it rich
in information about modulated dead zone and flexibility
of the transmission link. All the mechanical characteristics
and modeling about the test bench system are developed in
Merzouki and Cadiou (2005).
So, a smooth and continuous model (see Fig. 4) of

transmitted torque C, expressed in (3), is chosen to be
identified in the next sections as perturbation or unknown
linear parameters function. This latter includes a sigmoid
function expressed as follows:

C ¼ K : z� 4:j0:
1� e�g:z

1þ e�g:z

� �
, (3)

where C is the approximate transmitted torque, z ¼ x1e �

N0:x1s defines the difference between input and output
reducer positions, K the rigidity parameter, j0 the dead
zone amplitude and g the slope constant.
One can decompose (3) into two parts

C ¼ C0 þ w (4)

with C0 the linear transmitted torque describing a flexible
link and is given by the linear formulation

C0 ¼ K :z (5)

and w is the disturbing and nonlinear transmitted torque
expressed by

w ¼ �4:K :j0:
1� e�g:z

1þ e�g:z
. (6)

Since the real backlash amplitude j0 is equal to a
constant, its variation is null.
The disturbing torque w have a sigmoid function form,

characterized by its decreasing slope constant g, identified
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in Merzouki et al. (2004) and chosen to give the best
approximation of the transmitted torque inside the dead
zone ½�j0;þj0�.

4. Observer design

The proposed observer has the form

_̂x1e ¼ x̂2e þ z1e;
_̂x1s ¼ x̂2s þ z1s;

_̂x2e ¼ �
f e

Je

:x̂2e þ
u

Je

þ z2e;

_̂x2s ¼ �
f s

Js

:x̂2s þ z2s;

8>>>>>>>><>>>>>>>>:
(7)

where x̂1e, x̂1s, x̂2e and x̂2s are the state estimations, z1e, z1s,
z2e and z2s are the correction factors based on the
super-twisting algorithm (see Fig. 5) and are given by the
formulas

z1e ¼ l1jx1e � x̂1ej
1=2 signðx1e � x̂1eÞ;

z2e ¼ a1 signðx1e � x̂1eÞ;

z1s ¼ l2jx1s � x̂1sj
1=2 signðx1s � x̂1sÞ;

z2s ¼ a2 signðx1s � x̂1sÞ

8>>>><>>>>: (8)

and the parameters ai and li are designed so as to fulfill the
conditions

ai4f þi ;

li4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

a� f þi

s
ðai þ f þi Þð1þ qiÞ

ð1� qiÞ
;

where i ¼ 1; 2, the constants f þ1 ¼ 2max €x2e, f þ2 ¼ 2max €x2s,
and 0oqio1 (Davila & Fridman, 2004).

Then the state observation error is expressed as

_~x1e ¼ ~x2e � l1j ~x1ej
1=2 signð ~x1eÞ;

_~x1s ¼ ~x2s � l2j ~x1sj
1=2 signð ~x1sÞ

_~x2e ¼ �
f e

Je

: ~x2e �
C

Je

� a1 signð ~x1eÞ;

_~x2s ¼ �
f s

Js

: ~x2s þ
CN0

Js

� a2 signð ~x1sÞ:

8>>>>>>>><>>>>>>>>:
(9)

Using these observers ensure the finite time convergence
of observation states error to zero. In this case, a finite time
convergence of the estimated states to the real states values
is obtained. Convergence proof is given in the Appendix.

4.1. Perturbation identification

As a consequence of finite time convergence and the
existence of a equivalent control ensuring the sliding
motion is guaranteed (Utkin et al., 1999). This equivalent
control ensuring the sliding motion, allows to directly
identify the external perturbations acting on the system.
In order to perform perturbation identification, each

couple of the system coordinates ðx1e;x2eÞ and ðx1s; x2sÞ (2)
has the following representation:

_x1 ¼ x2;

_x2 ¼ f ðt;x1;x2; uÞ þ x:

(
(10)

System (10) can be rewritten in a more general form as

_x1 ¼ x2;

_x2 ¼ ajðt;x1;x2; uÞ þ x;

(
(11)

where a is a vector of parameters, jðt; x1; x2; uÞ is a vector
of all the state functions in the electromechanical system
and x is a perturbation term.
In the case where the nonlinear transmitted torque

is unknown, it would be practical to consider it as a
perturbation. Then, the following perturbation definition is
deduced from (9):

x ¼
�

C

Je

: for motor part;

N0C

Js

: for reducer part:

8>><>>:
Then, the super-twisting observer is given by

_̂x1 ¼ x̂2 þ lj ~x1j
1=2 signð ~x1Þ;

_̂x2 ¼ ājðt;x1; x̂2; uÞ þ a signð ~x1Þ;

(
(12)

where ā is a vector of nominal values of the parameter
vector a. The equations for the error become

_~x1 ¼ ~x2;
_~x2 ¼ Dajðt;x1; ~x2; uÞ þ x� a signð ~x1Þ:

(
(13)

The finite time convergence of x1 and x2 allows to write

z2 ¼ a signð ~x1Þ ¼ Dajðt;x1; ~x2; uÞ þ x, (14)

ARTICLE IN PRESS

Fig. 5. Super-twisting observer structure.
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with Da ¼ a� ā and jðt;x1; ~x2; uÞ is a nonlinear vector
containing all the states functions.

It is assumed that the term z2 changes at a high,
theoretically infinite frequency. However, in practice,
various imperfections make the state oscillate in some
vicinity of the intersection, whereas the components of z2
are switched at finite high frequency. The high frequency
term z2 is filtered out and the motion in the sliding mode is
determined by the slow component (Utkin et al., 1999). It is
reasonable to assume that the equivalent control is close to
the slow component of the real control. The latter may be
derived by filtering out the high frequency component
using a lowpass filter. The filter time constant should be
sufficiently small to preserve the slow component but large
enough to eliminate the high frequency component.

After using z̄2, the filtered version of z2, expression (14)
can be formulated as

z̄2 ¼ a signð ~x1Þ ¼ Dajðt;x1; ~x2; uÞ þ x. (15)

When the parameters of the system are totally known,
i.e.

a ¼ ā ¼

�
f e

Je

: for motor part;

�
f s

Js

: for reducer part;

8>><>>: (16)

the term Da ¼ 0 (see Fig. 6) and z̄2 gives an estimation of
the perturbation x

z̄2 ¼ a signð ~x1Þ ¼ x. (17)

4.2. Parameter identification

In the case when the transmitted torque C is modelled as
described in Section 3, in the absence of any perturbation
(i.e. x ¼ 0), let us consider that only nominal values of the
system parameters are known (see Fig. 6). Then, the use of
equivalent control, in combination with identification
algorithms, allows to identify the real values of system
parameters.
After a finite time duration, the next equality holds for

z̄2:

z̄2 ¼ a signð ~x1Þ ¼ Dajðt;x1; ~x2; uÞ, (18)

where Da ¼ a� ā, equality (18) has the model structure for
linear regression (Soderstrom & Stoica, 1989)

hðtÞ ¼ YjðtÞ, (19)

where hðtÞ is a measurable quantity, Y is a vector of
unknown parameters to be identified, jðtÞ is a vector of
known quantities. Defined in our case Y ¼ Da, hðtÞ ¼ z̄2
and

jðtÞ ¼

�
z

Je

4

Je

1� e�g:z

1þ e�g:z

0BB@
1CCA for motor part;

N0z

Js

�
4N0

Je

1� e�g:z

1þ e�g:z

0BB@
1CCA for reducer part;

8>>>>>>>>>>>><>>>>>>>>>>>>:
(20)

where z ¼ ye �N0 ys, is the measured difference position
between motor and reducer parts, N0 the reduction
constant, g is a decreasing slope constant, supposedly
known in the nonlinear sigmoid function and Je, Js are,
respectively, the electromechanical inertias. The uncertain
part is defined as

DaT ¼ ðK Kj0Þ, (21)

where K is the transmission constant stiffness and j0 is the
dead zone amplitude. One may notice in (20), the known
part of the system used in (7) is not taken into account, as it
is not an uncertain part. Then, its value in (18) is equal to
zero, leading to reduce the order of the matrix jðtÞ and, as
a consequence, making the fulfillment of the persistent
excitation condition easier (Soderstrom & Stoica, 1989).
In this case, Da is considered a constant vector, taking

the value of hðtÞ ¼ z̄2. It is possible to apply a linear
regression algorithm like the least square method to
identify dynamic system parameters. Developing least
square algorithm, the average expression of time integra-
tion with s as auxiliary time variable is given by

1

t

Z t

0

z̄2ðsÞjðsÞ
T ds ¼ Da

1

t

Z t

0

jðsÞjðsÞT ds, (22)

ARTICLE IN PRESS

Fig. 6. Perturbation and parameter identification schema.
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therefore, the parameters can be estimated as

cDa ¼

Z t

0

z̄2ðsÞjðsÞ
T ds

� � Z t

0

jðsÞjðsÞT ds
� ��1

, (23)

where cDa is the estimation of Da.
Defining Gt ¼ ½

R t

0 jðsÞjðsÞ
T ds��1 along with the

equalities

G�1t Gt ¼ I ,

G�1t
_Gt þ _G

�1

t Gt ¼ 0, ð24Þ

a parameter estimation algorithm can be written. From
(23), the following equation is obtained:

_cDa ¼

Z t

0

z̄2ðsÞjðsÞ
T ds

� �
_Gt þ z̄2jTGt, (25)

using Eq. (24), then Eq. (25) is written as follows:

_cDa ¼ cDaG�1t
_Gt þ z̄2jTGt, (26)

using the equalities of Gt given above, the dynamic
expression to compute cDa is given by

_cDa ¼ ½�cDajþ z̄2�jTGt. (27)

A dynamic form to find Gt is

_Gt ¼ �GtjjTGt. (28)

The use of Eqs. (27) and (28) ensures the asymptotic
convergence of cDa to Da. These equations allow to identify
the real values of the parameters K and j0.

5. Simulation results

For the simulation tests, a variable velocity trajectory
tracking is carried out in the system model set up of Fig. 1.
After the injection of a sinusoidal control signal, see Fig. 7,
the corresponding simulation constants are given in
Table 1. The value of g represents a nominal value taken

from the experimental test bench. For input velocity
estimation of Fig. 8, one can notice a good performance
of the estimation with an asymptotic convergence of the
error in Fig. 9. Then, the input position estimation
deduction of Fig. 10 shows that the position estimation
error goes also to zero (see Fig. 11). Similarly, the state
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Table 1

Simulation model parameters

Observers parameters System parameters

a1 1.8 Js 7

a2 0.08 f s 16

l1 0.005 N0 5

l2 0.004 Jm 0.05

f m 0.15

g 20

K 1
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Fig. 8. Estimation of input velocity signal.
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Fig. 9. Input velocity estimation error.
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estimation of the output system part is illustrated in
Figs. 12 and 14. These latter show the convergence of
velocity and position errors asymptotically to zero (see

Figs. 13 and 15). So, using the super-twisting algorithm, the
dead zone magnitude and backlash transmitted torque
have been identified and estimated respectively (see
Fig. 16). Also, due to reconstruction of the system states
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via the considered observers, the disturbing position
hysteresis has been well identified as shown in Fig. 17.

6. Experimental results

Experimental tests have been done on the electromecha-
nical test bench (see Fig. 1) described in Section 2, with the
observer parameters given in Table 2. Only two states are
measured, corresponding to positions of the motor axes
(input position) and reducer part (output position). The
proposed observers reconstruct input and output velocities
of backlash phenomenon from the already performed input

and output position measurements. Fig. 18 shows the real
input velocity signal (continuous line) and its estimation
through the corresponding observer (dotted line), where
the estimation error converges to zero with less variations
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Table 2

Experimentation parameters

Observers parameters

a1 0.15

a2 0.025

l1 0.01

l2 0.004
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Fig. 18. Estimation of input velocity signal.
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Fig. 19. Input velocity estimation error.
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(see Fig. 19). Then, input position is deduced from the
velocity estimation. It approaches to the real one, see
Fig. 20, after convergence insurance of estimation error
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presented in Fig. 21. In a similar way as the input velocity,
the output velocity (see Fig. 22) is estimated via its
corresponding observer with a finite time convergence as
shown in Fig. 23. Convergence of position error is
described in Figs. 24 and 25 (see also Fig. 26). The
robustness of the proposed observers is illustrated in
Fig. 27, by a good reconstruction of the dead zone
phenomenon. Ultimately, Fig. 28 shows the limit cycles
of the backlash system after reconstruction.

7. Conclusion

In this work, a second order sliding mode observer
ensuring the finite time convergence of estimated state
values towards real state values is implemented in a
nonlinear mechanical system with backlash phenomenon.
The experimental results show the good performance of
these observers in a real frame. The knowledge of equi-
valent control allows to identify the backlash phenomenon
as perturbation. In a nonperturbed environment, the
equivalent control permits the direct usage of the linear
regression algorithms for the backlash parameters identi-
fication. Simulation and experimental tests support the
theoretical development.

Appendix A. Convergence proof

Each couple of system (2) coordinates ðx1e;x2eÞ and
ðx1s;x2sÞ has the following representation:

_x1 ¼ x2;

_x2 ¼ f ðt;x1;x2; uÞ þ xðt;x1;x2Þ;

y ¼ x1:

8><>: (29)

For the system under the form (29), the super-twisting
observer is expressed as

_̂x1 ¼ x̂2 þ z1;
_̂x2 ¼ f ðt; x1; x̂2; uÞ þ z2;

(
(30)

where x̂1 and x̂2 are the state estimations, z1 and z2 are the
correction factors based on the super-twisting algorithm
and are given by the formulas

z1 ¼ ljx1 � x̂1j
1=2 signðx1 � x̂1Þ;

z2 ¼ a signðx1 � x̂1Þ:

(
(31)

Assume that

jf ðt; x1; x2; uÞ � f ðt;x1; x̂2; uÞ þ xðt;x1;x2Þjpf þ.

Then a and l satisfy the inequalities

a4f þ;

l4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

a� f þ

s
ðaþ f þÞð1þ qÞ

ð1� qÞ
;

8>><>>: (32)

where q is some chosen constant in the interval 0oqo1.

To prove the convergence of the state estimates to the
real states, it is first necessary to prove the convergence of
~x1 and _~x1 to zero. Computing the derivative of _~x1; then the
following is obtained:

€~x1 ¼ gðt;x1;x2; x̂2; uÞ �
l
2
_~x1j ~x1j

�1=2 � a signð ~x1Þ. (33)

The trivial identity ðd=dtÞjxj ¼ _x signx is used here. The
latter equation may be rewritten as

€~x1 2 ½�f þ; f þ� �
1

2
l

_~x1

j ~x1j
1=2
þ a sign ~x1

� �
. (34)

The inclusion (34) does not ‘‘remember’’ anything of the
real system, but can be used to describe the majorant curve
drawn in Fig. 29. In case when ~x140 and _~x140, the
trajectory is confined between the axis ~x1 ¼ 0, _~x1 ¼ 0 and
the trajectory of the equation €~x1 ¼ �ða� f þÞ. Let ~x1M

be
the intersection of this curve with the axis _~x1 ¼ 0.
Obviously, 2ða� f þÞ ~x1M

¼ _~x
2

10
: It is easy to see that for
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~x140; _~x140

€~x1pf þ � a signð ~x1Þ �
1

2
l

_~x1

j ~x1j
1=2

o0. (35)

Thus the trajectory approaches the axis _~x1 ¼ 0.
The majorant curve for ~x140; _~x1X0 is described by the

equation (see Fig. 29)

_~x
2

1 ¼ 2ða� f þÞð ~x1M
� ~x1Þ for _~x140. (36)

The majorant curve for ~x140; _~x1p0 consists of two parts.
In the first part the point instantly drops down from
ð ~x1M

; 0Þ to the point ð ~x1M
;�ð2=lÞðf þ þ aÞ ~x1=2

1M
, where the

right hand side of inclusion (34) in the ‘worst case’ is equal
to zero. The second part of majorant curve is the horizontal
segment between the points ð ~x1M

;�ð2=lÞðf þ þ aÞ ~x1=2
1M
Þ ¼

ð ~x1M
; _~x1M
Þ and ð0; _~x1M

Þ.
Condition (32) implies that

j _~x1M
j

j _~x10 j
o

1� q

1þ q
o1. (37)

Inequality (37) ensures the convergence of the state ð ~x1i
; _~x1i
Þ

to ~x1 ¼ _~x1 ¼ 0 and, moreover, the convergence ofP1
0 j
_~x1i
j. To prove the convergence finite time, consider

the dynamics of ~x2. Obviously, ~x2 ¼ _~x1 at the moments
when ~x1 ¼ 0 and taking into account that

_~x2 ¼ gðx1;x2; x̂2; uÞ � a signð ~x1Þ (38)

obtain

0oa� f þpj _~x2jpaþ f þ (39)

holds in a small vicinity of the origin. Thus

j _~x1i
jXða� f þÞti, (40)

where ti is the time interval between the successive
intersection of the trajectory with the axis ~x1 ¼ 0. Hence

tip
j _~x1i
j

ða� f þÞ
(41)

and the total convergence time is given by

Tp
X j _~x1i

j

ða� f þÞ
. (42)

So T is finite and the estimated states converge to the real
states in finite time.
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