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In this article we illustrate how the property of di�erential 
atness can be ad-
vantageously joined to the, so called, second order sliding mode controller design
methodology for the robust and active stabilization of a benchmark nonlinear me-
chanical vibration system, known as the rotational/translational proof mass actu-
ator (RTAC).

1 Introduction

Di�erential 
atness is a useful structural property exhibited by many nonlin-
ear systems of practical, or realistic, signi�cance. The theoretical background
of \
atness" has been established in several articles by Prof. M. Fliess and
his colleagues (Fliess et al,4) from the viewpoints, respectively, of di�erential
algebra and Lie-B�acklund transformations.

Sliding mode control, on the other hand, represents a quite robust and
simple approach which has enjoyed well gained respect and popularity over
the years thanks to its theoretical and practical developments (see the book
by V. Utkin, 7). In recent years, an interesting extension of sliding mode
control, known as \higher order sliding" (HOS) has been developed (See the
articles by Friedman and Levant 5, Levant 6 and Bartolini and his co-workers
1, 2).

In this article, we use a nontrivial nonlinear, single input, benchmark
example to suitably combine a second order sliding mode feedback controller
with the di�erential 
atness property of the system.
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2 The nonlinear RTAC system

The RTAC system is shown in Figure 1. This system consists of a cart,
of mass M , connected by means of a linear spring, of sti�ness coe�cient k,
to a �xed reference point. The cart has only one degree of translational
freedom in the direction of the coordinate x The proof mass, of value m,
is constituted by a horizontal pendulum provided with a link, of length L,
whose moment of inertia is I . N is the torque applied to the proof mass, and
F is the disturbance force, acting on the cart. We assume this perturbation is
bounded with bounded time derivatives up to a second order, as that provided
by an eccentric actuator attached to the cart. The angular displacement of
the horizontal pendulum is measured by the angle, �, shown in the �gure.

We choose as generalized coordinates q = [x; �] and as generalized external
forces, the applied torque N and the perturbation force F .

The normalized system dynamics can be derived to be the expressions:

�� + � + �
�
�� cos � � _�2 sin �

�
= !

�� + ��� cos � = u (1)

with � given by,

� =
mLp

(I +mL2)(M +m)

Notice that � is strictly smaller than 1.

2.1 Flatness of the unperturbed model

The unperturbed system is obtained from (1) with ! = 0. The resulting
system is di�erentially 
at, with 
at output given by the normalized Huygens
center of oscillation, which we denote by R, given by,

R = � + � sin � (2)

Indeed, it can be seen that all system variables in the unperturbed system are
di�erentially parameterized by the �ctitious output R,

� = arcsin
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R(4)

�
1� �2 + (R + �R)2

��
(3)

2.2 Equilibrium parameterization, control objective and minimum phase

properties

The desired control objective is to bring the normalized variable � and hence
the actual cart position x, to a stable rest at the value � = 0. Suppose that the
normalized Huygens center of oscillation is forced to a constant rest position
value, given by R, then the di�erential parameterization (3) indicates that
the corresponding equilibria for �, � and u are given, respectively, by � = 0,
� = arcsin(R=�) and u = 0. This means that if the 
at output is stably forced
to any constant value, the corresponding position equilibrium � is forced to
adopt the desired value. The control e�ort will thus be geared towards this
objective via an o�-line speci�ed trajectory for the center of oscillation R,
denoted by R�(t).

Note that this indirect control approach overcomes the critical stability
characteristics exhibited by the \hidden dynamics" of the system variables, �
and �. Indeed, let � = 0 in the parameterization (3). The corresponding zero

dynamics is given by the critically stable system: �R = 0. The variable � is
thus a weakly minimum phase output. Also, for � = 0, the corresponding zero
dynamics is governed by the undampped oscillator �R + R = 0. The angle �
is, therefore, also a weakly minimum phase output.

2.3 Second order sliding mode control of the RTAC system

2.4 Nominal feedback linearization

The locally invertible input coordinate transformation,

u =
1q

�2 � (R+ �R)2

("
(R +R(3))2(R + �R)

�2 � (R+ �R)2
+ �R

#
+ v

h
1� �2 + (R + �R)2

i)

(4)
reduces the unperturbed normalized nonlinear system (??) to a simpler linear
system in Brunovsky's canonical form

R(4) = v (5)

which, as shown in the previous section, greatly facilitates the second order
sliding based feedback controller design for trajectory tracking on the part of
the output R.

tora: submitted to World Scienti�c on August 3, 2000 3



In terms of the (measurable) state variables �, _� �, the nominal input
coordinate transformation (4) is given by the expression,

u = _�2 tan � �
�

� cos �
+ v

�
1� �2 cos2 �

� cos �

�
(6)

Evidently the region of validity of the input coordinate transformation is
given by the inequality,

�
�

2
< � <

�

2

Let T > 0 be a �nite time instant and R�(t) be a desired trajectory which
satis�es R�(t) = R for all times t � T . We let the auxiliary variable � be
de�ned as,

� = ( �R � �R�(t)) + 2�!n( _R � _R�(t)) + !2
n(R�R�(t))

with � 2 (0; 1], representing the damping coeÆcient of the underlying second
order linear system, and !n being a strictly positive constant representing the
corresponding natural oscillating frequency of the closed loop system.

We choose the \parabolic twisting" algorithm, as an ideal dynamics to be
imposed on the auxiliary variable �,

��+
1

2
sign(�) [A+B + (A�B)sign(� _�)] = 0; A > B > 0 (7)

The transformed control input v is given by

v =
d4

dt4
R�(t)� 2�!n

�
R(3) �

d3

dt3
R�(t)

�
� !2

n

�
�R� �R�(t)

�

�
1

2
sign(�) [A+B + (A�B)sign(� _�)] (8)

with

R(3) = � _�
�R = ��

_R = _� + � _� cos �

R = � + � sin �

� = �� � �R�(t) + 2�!n( _� + � _� cos � � _R�(t)) + !2
n(� + � sin � �R�(t))

(9)

The 
at output tracking error for the closed loop system, after � converges
to zero in �nite time, is thus governed by the second order asymptotically
stable dynamics

( �R � �R�(t)) + 2�!n( _R � _R�(t)) + !2
n(R�R�(t)) = 0
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2.5 The perturbed case

The proposed input coordinate transformation (4) when applied to the per-
turbed system yields a state-dependent pertubrbed Brunovsky form, given,
in this case, by

R(4) = v + # (10)

with

# = �w �
w

1� �2 cos2 �

For sinusoidal perturbations of the form ! =M sin(
t), the perturbation #(t)
is bounded by

j # j �
M

1� �2
�
1 + (1� �2)
2

�
The use of the designed second order sliding mode linearizing controller

(8), (9) yields then the following closed loop dynamics for the auxiliary vari-
able �

��+
1

2
sign(�) [A+B + (A�B)sign(� _�)] = # (11)

Since the perturbation term in the right hand side of (11) is assumed to be
bounded, it follows, from well known results in second order sliding mode
control, that the perturbed closed loop dynamics is guaranteed to converge
to a vicinity of the origin where the trajectories remain bounded by a ball
centered around the origin of coordinates in the phase plane (�; _�). It follows
that the 
at output tracking error is governed by a linear asymptotically
stable dynamics subject to external bounded perturbations. Consequently,
the closed loop tracking error also remains bounded.

3 Simulation results

Simulations were performed on a RTAC mechanical system characterized by
the following set of realistic parameters obtained from the article by Bupp 3

M = 1:3608 [Kg]; m�0:096 [Kg]; L = 0:0592 [m]; I = 0:0002175 [Kg�m2];

k = 186:3 [N=m]; � = 0:200
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3.1 Control objectives and trajectory planning

The controlled maneuvers were speci�ed as follows: We let the system freely
oscillate before a certain time, TCi. At this moment, we engage the feedback
control action, N by means of a \clutch", smoothly increasing the controls
amplitudes from zero to its maximum value during a (small) time interval,
[TCi; TCf ]. The 
at output reference trajectory R

�(t) is planned so that it has
a nonzero reference equilibrium value, R for all times prior to a certain time
T1, i.e. in the interval, (�1; T1]. The control engaging interval is necessarily
contained in the in�nite interval, i.e. [TCi; TCf ] � (�1; T1]. The clutched
controller is thus engaged to achieve, right after time TCf , asymptotic stabi-
lization of the 
at output toward the speci�ed constant nonzero equilibrium
value, R. The �rst stage of the stabilization process, started at TCi, should
not last beyond the time instant T1 > TCf (see Figure 2).

At time T1, the �nal stabilization maneuver of the 
at output towards
zero is started. The controller proceeds to drive the 
at output R to follow
a suÆciently smooth, time-polynomial, trajectory connecting the achieved
constant equilibria, R, with the �nal rest value of zero for the 
at output
displacement. This last maneuver is speci�ed to take place in the closed
time interval [T1; T2]. Evidently, the speci�ed control objectives result in a
�nal steady state stable equilibrium at zero for all the system (angular and
translational) displacements.

For the proposed control scheme we chose a Hurwitz polynomial of the
form � = (p2+2�!np+!2

n)(R�R
�(t)) with �; !n > 0. The controller design

parameters were set to be,

� = 0:707; !n = 1; A = 0:1; B = 0:01

According to the described control objective we speci�ed the 
at output
trajectory R�(t) as follows:

R�(t) =

8<
:
R for t � T1
R [1�  R(t; T1; T2)] for T1 < t < T2
0 for t � T2

with  R(t; T1; T2) being suÆciently di�erentiable polynomial time functions
satisfying:  R(T1; T1; T2) = 0 and  R(T2; T1; T2) = 1. For the simulations
presented we used a polynomial spline of the B�ezier type in order to have a
suÆciently smooth transfer maneuver between the imposed temporary equi-
librium value of the 
at output R and the �nal value zero.

The \clutch" was modeled as a time varying factor, K(t) multiplying
the expression of the feedback control input, as K(t)N . The \clutch" was

tora: submitted to World Scienti�c on August 3, 2000 6



also speci�ed using polynomial splines of the B�ezier type, which smoothly
interpolated between the initial value of 0 and the �nal value of 1.

K =

8<
:
0 for t � TCi
 R(t; TCi; TCf ) for TCi < t < TCf
1 for t � TCf

with  R(TCi; TCi; TCf ) = 0 and  R(TCf ; TCi; TCi) = 1. The clutch function
is given by the following polynomial spline interpolating between 0 and 1.

 (t; TCi; TCf ) =

�
t� TCi
TCf � Tci

�3 �
r1 � r2

�
t� TCi

TCf � TCi

�
+ r3

�
t� TCi

TCf � TCf

�2

�r4

�
t� TCi

TCf � TCi

�3 �

The constants r1; : : : ; r4 were suitably chosen to guarantee smooth departures
and arrivals i.e., with enough time derivatives being equal to zero at the
instants, TCi and TCf .

Figure 3 shows the closed loop responses of the unperturbed system's
position variables x and � to the designed feedback controller. The controlled
behavior clearly meets the speci�ed objectives. We also show the applied
input torque, N(t), the corresponding evolution of the closed loop auxiliary
tracking error dynamics in the phase plane (�; _�) and the controlled behavior
of the normalized 
at output. In the simulations we set; TCi = 0:884 [s],
TCf = 3:56 [s], T1 = 4:42 [s], T2 = 6:18 [s]. The intermediate equilibrium
value of the 
at output was chosen to be R = 0:1.

3.2 Robustness test

In order to test the robustness of the control scheme with respect to sustained
unmodelled oscillatory perturbations. We used a perturbation function for
F (t), of the form :

F (t) = 0:12 sin(2 � f t)

The frequency f was set to be 7:203[Hz].
Figure 4 shows the performance of the designed controller to the signi�-

cant unmodelled perturbations.
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4 Conclusions

In this article we have shown the bene�ts, for feedback controller design tasks,
of associating a high order sliding mode control scheme with the di�erential

atness property of a given nonlinear system. The natural candidate output
for imposing a discontinuous high order stabilizing dynamics is precisely given
by the 
at output. This indirect control technique is known to eÆciently cir-
cumvent any problem associated to the regulation of a non-minimum phase,
or weakly minimum phase, output variable while preventing undesirable tran-
sient behavior on the closed loop system variables.
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Figure 1. RTAC system

Figure 2. Flat output trajectory and \clutch" function
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Figure 3. Controlled behavior of unperturbed RTAC system variables

Figure 4. Controlled behavior of perturbed RTAC system variables
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