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Abstract

The singularly perturbed relay control systems (SPRCS) which have
stable periodic motion in reduced systems are studied. Slow motions in-
tegral manifold of such systems consists of parts which correspond to dif-
ferent values of control and the solutions contain the jumps from the one
part of slow manifold to the other. Three classes of such systems are
considered: systems without sliding modes, systems which contain inter-
nal sliding modes and time delay systems. The theorems about existence
and stability of the slow periodic solutions are proved. The algorithm of
asymptotic representation for this periodic solutions using boundary layer
method is suggested.

1 Introduction

There are a wide classes of relay control systems which are working in periodic
regimes. For example such regimes arise every time in relay control systems
with time delay because time delay does not allow to realize an ideal sliding
mode, but resulting periodic oscillations Kolmanovskii and Myshkis 5, Frid-
man et al 3. In controllers of exhausted gases for fuel injectors automotive
control systems (see for example Choi and Hedrick 2, Li and Yurkovich 6) are
the sensors which can measure only the sign of controlled variable with delay.
In such systems only oscillations around zero value can occur. In the con-
trollers for stabilization of the underwater manipulator it's possible to realize
only oscillations because of the manipulators properties (see in Bartolini et
al 1). Such situation can occur in the mechanical systems with dry friction.
In the paper by Rumpel 8 was shown that there are the periodic oscillations
with the internal sliding modes when we consider the pendulum which has
dry friction contact with some inclined uniformly rotating disk. First this
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pendulum is moving together with disc until returned point in which he will
returned back.

In this paper we will investigate the existence and stability of period-
ic solutions for singularly perturbed relay control systems (SPRCS). SPRCS
could describe for example the complete model of fuel injector systems tak-
ing into account the inuence of the additional dynamics (the car motor).
The knowledge of properties of SPRCS it is necessary in the controllers for
stabilization of the underwater manipulator �ngers to take into account the
inuence of the elasticity of these �ngers. In pendulums systems contacting
with dry friction with inclined uniformly rotated disc SPRCS allows to take
into account the presence of the second small pendulum (see �gure 1). For

Figure 1. Two pendulums on the inclined uniformly rotated disc.

the smooth singularly perturbed systems there are two main classes of period-
ic solutions. The slow periodic solutions of the smooth singularly perturbed
systems "without jumps" are situated on slow motions integral manifold (see
for example Wasov 10). The other important class of such solutions are the
relaxation solutions (see Mishchenko and Rosov 7), which contain the "jumps"
from the neighbourhood of the one stable branch of slow motions manifold to
the neighbourhood of another one.

The slow motions integral manifold of relay systems is discontinuous and
consists at least of two parts which are the corresponding to the di�erent
values of control (see �g. 2). This means that the corresponding periodic
solution of SPRCS should have the jumps from the small neighbourhood of
the one sheet of integral manifold to the neighbourhood of another one. From
this viewpoint the qualitative behavior of this periodic solution will be more
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near to relaxation solution.
But the main speci�c feature of systems with relaxation oscillations is the

following: at the time moment corresponding to the jump from the neighbour-
hood of the one branch of the stable integral manifold to the neighbourhood
of another one, the value of the right hand side is small. That's why to �nd
the asymptotic representation of relaxation solution it was necessary to make
the special asymptotic representations.

The situation with SPRCS is di�erent. The right hand side of SPRCS
immediately after the switching moment the right hand side of fast equations
in (1) is very big. It allows to use the standard boundary layer functions
method ( see Vasil'eva et al 9) for asymptotic representation of slow periodic
solution of system (1).

2 Problem statement

Consider the system

�dz=dt = f(z; s; x; u); ds=dt = g(z; s; x; u);
dx=dt = h(z; s; x; u);

(1)

where z 2 Rm; s 2 R; x 2 Rn; u(s) is relay control depending on s; f; g; h 2
C2( �Z); Z � Rm �R�Rn � [�1; 1]; � is a small parameter.

Suppose that ignoring additional dynamics, having accepted � = 0 and
expressing z0 from the equation

f(z0; s; x; u) = 0

according the formula z0 = '(s; x; u), we obtain the system

ds=dt = g('(s; x; u); s; x; u) = G(s; x; u);
dx=dt = h('(s; x; u); s; x; u) = H(s; x; u):

(2)

For this the su�cient conditions for existence of the orbitally asymptotically
stable isolated periodic solution are held. It turns out that the desired periodic
solution of the original system (1) contains internal boundary layers describing
the jumps from the one part of the slow motions manifold to the another one.
We will �nd su�cient conditions under which the original system (1) has an
orbitally asymptotically stable isolated periodic solution which corresponds
to the periodic solutions of the reduced system. These conditions consist of
the next three blocks:

I. Stability of fast motions.

(i) function z0 = '(s; x; u) at all (s; x; u) 2 �S; S � R � Rn � [�1; 1]
is the uniformly asymptotically stable isolated equilibrium point of system
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Figure 2. Two sheets of slow motions integral manifold.

dz=d� = f(z; s; x; u): Moreover for all (s; x; u) 2 �S

ReSpec
@f(z0; s; x; u)

@z
< �� < 0:

II. Existence and orbital asymptotic stability for the periodic

solution of the reduced system. As the conditions of existence for periodic
solutions of reduced system (2) we will use the conditions of existence of
the �xed point for the corresponding Poincare map, generating by system
(2). The periodic solution of system (2) is orbitally asymptotically stable if
corresponding Poincare is contractive.

III. Attractivity. This conditions ensure the existence of the periodic
solution at the switching time moment of the relay control. This means that
at this time moment the coordinates of the points on the periodic solutions
for one value of relay control are situated in the interior of the attractive
domain for the other part of slow motions integral manifold corresponding to
the other value of the relay control.

In section 3 we will formulate the theorem about existence and stabili-
ty of the slow periodic solution of the original system (1) for the case when
u(s) = sign[s(t)] and periodic solution of the reduced system (2) is the solu-
tion without internal sliding modes. In section 4 we will consider the case when
periodic solution of the reduced system (2) has an internal sliding modes. In
section 5 theorem about existence and stability of the slow periodic solution is
proved for the singularly perturbed relay control systems with time delay for
which u(s) = sign [s(t� 1)]: For the last case the algorithm is suggested for
asymptotic representation of periodic solutions for systems with delay using
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boundary layer method (see for example Vasil'eva et al 9). In section 7 an
example of existence of stable asymptotic periodic solution is given and the
asymptotic representation of this solution is found.

3 Periodic solutions without internal sliding modes

Suppose that u(s) = sign[s(t)] and consequently systems (1) and (2) are not
smooth. Hence it's impossible to use for the investigation of stability of the
systems (1) and (2) the spectral methods and equations in variations. For
that goal we will use the Poincare maps generating by this systems. Consider

Figure 3. The Poincare map �(�):

the switching surface s = 0 in the s; x space and the point � on this surface.
Denote by (�s+0 (t); �x

+
0 (t)) the solution of system (2) for u = 1 with initial

conditions

�s+0 (0) = 0; �x+0 (0) = �; G(0; �; 1) > 0:

Suppose that there exists �(�) being the smallest root of the equation
�s+0 (�(�)) = 0 and moreover G(0; �x+0 (�(�)); 1) < 0: Denote by (�s�0 (t); �x

�

0 (t))
the solution of system (2) for u = �1 with initial conditions

�s�0 (�(�)) = 0; �x�0 (�(�)) = x+(�(�)):

Suppose now that there exists T (�) the smallest root of the equation
�s�0 (T (�)) = 0 and G(0; �x�0 (T (�);�1) > 0:

Then we can write down the Poincare map �(�) = �x�0 (T (�)) of the switch-
ing surface s = 0 into itself generating by the system (2). Suppose that:
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(1i) the Poincare map �(�) has the isolated �xed point � = x0 correspond-
ing to the periodic solution of the system (2).

(1ii) jSpecd�
dx
(x0)j < 1:

(1iii) the switching points

'(0; x0;�1) and'(�s
+
0 (�(x0)); �x

+
0 (�(x0)); 1)

are situated in the attractive domains of stable equilibrium points '(0; x0; 1)
and '(�s+0 (�(x0)); �x

+
0 (�(x0));�1) respectively.

Theorem 1. Under conditions (i) and (1i)-(1iii) system (1) has an
orbitally asymptotically stable isolated periodic solution in the vicinity of
(s0(t); x0(t)) with period T (�) which tend to T (x0) for � ! 0 and bound-
ary layers near t = 0; t = �(x0):

4 Periodic solutions with internal sliding modes

Consider the SPRCS in form

�dz=dt = f(z; s; a; b; u); ds=dt = g(z; s; a; b; u);
da=dt = h1(z; s; a; b; u);
db=dt = h2(z; s; a; b; u);

(3)

where s; a 2 R; b 2 Rn�1; xT = (a; bT ); u(s) = sign[s]; f; g; h1; h2 2
C2( �Z); Z � Rm � R � R � Rn�1 � [�1; 1]: In such case the reduced sys-
tem for the system (3) has the form

z0 = '(s; a; b; u)

ds=dt = g(z0(s; a; b; u); s; a; b; u) = G(s; a; b; u);
da=dt = h1(z0(s; a; b; u); ; s; a; b; u) = H1(s; a; b; u);
db=dt = h2(z0(s; a; b; u); ; s; a; b; u) = H2(s; a; b; u):

(4)

Such systems can describe for example the behavior of the coupled pendulums
if one of this pendulum has dry friction contact with some inclined uniformly
rotating disk (see Fridman and Rumpel 4). Here the periodic solution has the
internal sliding mode and the variable a describes the border of the sliding
domain which means that h1(z; 0; 0; b; 1) � 0; h1(z; 0; 0; b;�1) > 0: Consider
the intersection of the switching surface s = 0 and the border of the sliding
domain a = 0 in the s; a; b space and the point b0 on this intersection. De-
note by (�s+0 (t); �a

+
0 (t);

�b+0 (t)) the solution of system (4) for u = 1 with initial
conditions

�s+0 (0) = 0; �a+0 (0) = 0; �b+0 (0) = b0; H1(0; 0; b
0; 1) > 0:
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Figure 4. The Poincare map B(b0).

Suppose that there exists �(b0) the smallest root of the equation �s+0 (�(b
0)) = 0

and moreover for (c; d) = (�a+0 (�(b
0));�b+0 (�(b

0)));

G(0; c; d; 1) < 0; G(0; c; d;�1) > 0: (5)

Consequently for system (4) the su�cient conditions for the existence of the
stable sliding mode holds. Suppose that the motions in this mode are uniquely
described by the system

da�=dt = H1(0; a
�; b�; u�(a�; b�));

db�=dt = H2(0; a
�; b�; u�(a�; b�));

G(0; a�; b�; u�(a�; b�)) = 0:
(6)

Consider the solution (�a�0(t);
�b�0(t)) of the system (6) with the initial con-

ditions �a�0(�(b
0)) = �a+0 (�(b

0)); �b�0(�(b
0)) = �b+0 (�(b

0)): Suppose that there
exists T (b0) the smallest root of the equation �a�0(T (b

0)) = 0: Moreover
d�a�0
dt
(T (b0)) > 0 at all t 2 (�0(b

0); T0(b
0)) for all (c; d) = (�a�0(t);

�b�0(t)) the
conditions (5) are held.

Then we can write down the Poincare map B(b0) = �b�0(T (b
0)) (see the

�gure 4) of the intersection of the switching surface s = 0 and the border of
the sliding domain a = 0 in the s; a; b space into itself made by the system
(4). Suppose that

(2i) the Poincare map B(b) has the isolated �xed point b0 corresponding
to the periodic solution of the system (4).

(2ii) jSpecdB
db
(b0)j < 1:

(2iii) the point '(0; �a+0 (�(b0));
�b+0 (�(b0)); 1) is situated in the attractive

domain of stable equilibrium point
'(0; �a+0 (�(b0));

�b+0 (�(b0)); u
�(�a+0 (�(b0));

�b+0 (�(b0))).
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Theorem 2. Under conditions (i) and (2i)-(2iii) system (3) has an or-
bitally asymptotically stable isolated periodic solution with period T (�) which
tends to T (b0) for �! 0 and boundary layers near t = 0; t = �(b0):

Remark. There are no zero order boundary layer functions at the point
t = 0 in the asymptotic representation of the periodic solution which exists
in system (3), because at this point the zero approximation of this solution is
continuous (see for example Fridman and Rumpel 4).

5 Periodic zero frequency steady mode for the relay delay

control systems

Let

u(s) = �sign[s(t� 1)]: (7)

Time delay does not allow to realize an ideal sliding mode in the autonomous
scalar relay delay control systems (RDCS), but indices periodic oscillations
which were called steady modes (Kolmanovskii and Myshkis 5, Fridman et
al 3.) Only the steady modes with maximal period namely so called zero
frequency steady modes are stable. This features of the RDCS was the basic
point in design of control systems with time-delayed relay, which stabilize and
quench oscillations (see details in Bartolini et al 1). Here we will obtain the
su�cient conditions under which there exists the stable zero frequency steady
mode for the singularly perturbed RDCS (SPRDCS). Consider the switching
surface s = 0 in the s; x space and the point � on this surface. Denote by
(�s+0 (t); �x

+
0 (t)) the solution of system (2) for u = 1 with initial conditions

�s+0 (0) = 0; �x+0 (0) = �; �s+0 (t) < 0; t 2 [�1; 0):

Suppose that there exists the smallest root �0 of the equation �s�0 (�
0) = 0 and

d�s�0 (�
0)=dt < 0; here (�s�0 (t); �x

�

0 (t)) is the solution of system (2) for u = �1
with the initial conditions

�s�0 (1) = �s+0 (1); �x�0 (1) = �x+0 (1):

Moreover suppose that there exists T (�) being the smallest root of equation
�s+0 (T (�)) = 0 and T (�) > �+1; d�s+0 (T (�))=dt > 0; where (s+0 (t); x

+
0 (t)) is the

solution of system (2) with u = 1 and initial conditions (s+0 (�0 + 1); x+0 (�0 +
1)) = (s�0 (�0+1); x

�

0 (�0+1)): Bellow we will use the properties of the Poincare
map 	(�) = �x+0 (T (�)) (�g. 5) of the surface s = 0 into itself generating by
reduced system (2). Suppose that

(3i) the Poincare map 	(�) has an isolated �xed point � = x0 corre-
sponding to the periodic solution of the system (2) (�s0(t); �x0(t)) with the

sps: submitted to World Scienti�c on March 1, 2001 8



Figure 5. The point mapping 	(�):

initial conditions

�s0(0) = 0; �x0(0) = x0; �s
+
0 (t) < 0; t 2 [�1; 0):

(3ii) jSpecd	
dx
(x0)j < 1:

(3iii) the points '(s0(1); x0(1); 1) and '(s0(�0+1); x0(�0+1);�1) are situ-
ated in the attractive domains of stable equilibrium points '(s0(1); x0(1);�1)
and '(s0(�0 + 1); x0(�0 + 1); 1) respectively.

Theorem 3. Under conditions (i) and (3i)-(3iii) system (1),(7) has
an orbitally asymptotically stable isolated periodic solution in the vicinity of
(s0(t); x0(t)) with period T (�) which tend to T (x0) for � ! 0 and boundary
layers near t = 1; t = �(x0) + 1:

6 Asymptotic representation of the periodic steady mode

Suppose that f; g; h 2 Ck+3[ �Z� [�1; 1]]; conditions of theorem 3 are held and
(3iv) detjd	

dx
(x0)j 6= 0:

We will �nd the asymptotic expansion for switching moment �(�); period
T (�) of the periodic solution of system (1) on the time interval [��(�) +
1; �(�) + 1]; (T (�) = �(�) + �(�)) in form

Yk(t; �) =

kX
i=0

[�yi(t) + ��i y(�
�) + �+

i y(�
+
k+1)]�

i;
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Sk(t; �) =
kX

i=0

[�si(t) + ��i s(�
�) + �+

i s(�
+
k )]�

i;

Xk(t; �) =

kX
i=0

[�xi(t) + ��i x(�
�) + �+

i x(�
+
k )]�

i;

�(�) = �0 + ��1 + � � �+ �k�k + � � � ;

T (�) = T0 + �T1 + � � �+ �kTk + � � � ;

�(�) = T (�)� �(�);

where

~�k+1(�) = �0 + ��1 + � � �+ �k+1�k+1;

~�k+1(�) = �0 + ��1 + � � �+ �k+1�k+1;

�� = (t� 1)=�; �+k+1 = (t� (1� ~�k+1(�)))=�;

~Tk(�) = T0 + �T1 + � � �+ �kTk;

k ��i y(�
�) k< Ce��

�

; C;  > 0;

��i y(�
�) � 0 for �� < 0;

k ��i y(�
+
k+1) k< Ce��

+

k+1 ; �+k+1 > 0:

�+
i y(�

+
k+1) � 0 for �+k+1 < 0:

Let us denote

�y0(t) =

8>><
>>:

�y+0 (t) = ('(�s+0 (t); �x
+
0 (t); 1); �s

+
0 (t); �x

+
0 (t))

for t 2 [��0 + 1; 1];
�y�0 (t) = ('(�s�0 (t); �x

�

0 (t); 1); �s
�

0 (t); �x
�

0 (t))
for t 2 [1; �0 + 1]:

The function �+
0 z(�) is de�ned by system

d�+
0 z=d� = g(�+

0 z + '(�s+0 (��0 + 1);

�x+0 (��0 + 1); 1); �s+0 (��0 + 1); �x+0 (��0 + 1); 1);
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�+
0 z(0) = '(�s+0 (��0 + 1); �x+0 (��0 + 1);�1)�

�'(�s+0 (��0 + 1); �x+0 (��0 + 1); 1):

The boundary layer function ��0 z(�) we will �nd from the system

d��0 z=d� = g(��0 z + '(�s�0 (1); �x
�

0 (1); 1); �s
�

0 (1); �x
�

0 (1); 1);

��0 z(0) = '(�s�0 (1); �x
�

0 (1); 1)� '(�s�0 (1); �x
+
0 (1);�1):

To �nd the functions �s�1 (t); �x
�

1 (t); �z
�

1 (t) we will have the system

�z+1 (t) = �[g0z]
�1(g0s�s

+
1 + g0x�x

+
1 + g+1 (t));

d�s+1 =dt = h01z(t)�z
+
1 (t) + h1s�s

+
1 (t) + h01x�x

+
1 (t);

d�x+1 =dt = h02z(t)�z
+
1 (t) + h2s�s

+
1 (t) + h02x�x

+
1 (t);

�z�1 (t) = �[g0z]
�1(g0s�s

�

1 + g0x�x
�

1 + g�1 (t));

d�s�1 =dt = h01z(t)�z
�

1 (t) + h1s�s
�

1 (t) + h01x�x
�

1 (t);

d�x�1 =dt = h02z(t)�z
�

1 (t) + h2s�s
�

1 (t) + h02x�x
�

1 (t);

where index �means that corresponding functions are computed at the points
('(�s�0 (t); �x

�

0 (t);�1); �s
�

0 (t); �x
�

0 (t);�1)). For the �rst order boundary layer
functions ��1 z;�

�

1 s;�
�

1 x we have the system

d�+
1 z=d� = g0z�

+
1 z + g0s�

+
1 s+ g0x�

+
1 x+�+

1 g(�);

d�+
1 s=d� = �+

0 h1 =

h1(�z
+
0 (��0 + 1) + �+

0 z; 0; �x
+
0 (��0 + 1); 1)�

�h1(�z
+
0 (��0 + 1); 0; �x+0 (��0 + 1); 1);

d�+
1 x=d� = �+

0 h2 =

= h2(�z
+
0 (��0 + 1) + �0z; 0; �x

+
0 (��0 + 1); 1)�

�h2(�z
+
0 (��0 + 1); 0; �x+0 (��0 + 1); 1);

d��1 z=d� = g0z�
�

1 z + g0s�
�

1 s+ g0x�
�

1 x+��1 g(�);
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d��1 s=d� = ��0 h1 =

= h1(�z
�

0 (1) + ��0 z; 0; �x
�

0 (1);�1)�

�h1(�z
�

0 (1); 0; �x
�

0 (1);�1);

d��1 x=d� = ��0 h1 =

= h2(�z
�

0 (1) + ��0 z; 0; �x
�

0 (1);�1)�

�h2(�z
�

0 (1); 0; �x
�

0 (1);�1);

where index �means that corresponding functions are calculated at the points

(�z+0 (��0 + 1) + �+
0 z; 0; �x

+
0 (��0 + 1); 1)

and

(�z�0 (1) + ��0 z; 0; �x
�

0 (1);�1)

respectively.
The initial conditions for the �rst order boundary layer functions we can

�nd from the equations

�+
1 s(0) =

Z 0

1

�+
0 h1(�)d�;

�+
1 x(0) =

Z 0

1

�+
0 h2(�)d�;

��1 s(0) =

Z 0

1

��0 h1(�)d�;

��1 x(0) =

Z 0

1

��0 h2(�)d�:

For obtaining of the �rst approximation of the slow coordinates it is nec-
essary to �nd the initial conditions �s�1 (0) and �x�1 (0): For this initial values we
will use the following conditions

� intersection with the surface s = 0; using the �rst order approximation
of equations s(T (�); �) = 0 and s(�(�); �) = 0
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�1H1(0; �0; 1) + �s+1 (0) = 0; (8)

�1H1(0; �x
�

0 (�0);�1) + �s�1 (�0) = 0;

� continuity of the solution at the point t = 1

�s�1 (1) + ��0 s(0) = �s+1 (1) + �1H1(�s
+
0 (1); �x

+
0 (1); 1);

�x�1 (1) + ��0 x(0) = �x+1 (1) + �1H2(�s
+
0 (1); �x

+
0 (1); 1); (9)

� continuity of the solutions of system (1) at the time moment t = �(�) +
1; t = ��(�) + 1

�s+1 (��0 + 1) + �+
0 s(0) = �s�1 (�0 + 1)+

+�1H1(�s
�

0 (�0 + 1); �x�0 (�0 + 1);�1); (10)

�x+1 (��0 + 1) + �+
0 x(0) = �x�1 (�0 + 1)+

+�1H2(�s
�

0 (�0 + 1); �x�0 (�0 + 1);�1):

The values �1 and �1 can be found uniquely from equations (8) because
according to condition of the (i) and (3i)-(3iv) the periodic solution of system
(2) cross the surface s = 0 without touch. This means that we can express �1
and �1 through �s+1 (0) and �s�1 (�0) in the form

�1 = �[H1(0; �0; 1)]
�1�s+1 (0);

�1 = �[H1(0; �x0(�0);�1)]
�1�s�1 (�0):

Now we can substitute �1;�1 into equations (9) and (10), by this
we have the system of linear algebraic equations with respect to
�s+1 (0); �x

+
1 (0); �s

�

1 (�0); �x
�

1 (�0)

�s�1 (1) + ��0 s(0) =

= �s+1 (1)� [H1(0; �0; 1)]
�1�s+1 (0)H1(�s

+
0 (1); �x

+
0 (1); 1);

�x�1 (1) + ��0 x(0) =

= �x+1 (1)� [H1(0; �0; 1)]
�1�x+1 (0)H2(�s

+
0 (1); �x

+
0 (1); 1);

�s+1 (��0 + 1) + �+
0 s(0) = �s�1 (�0 + 1)�
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�[H1(0; �x0(�0);�1)]
�1�s�1 (�0)H1(�s

�

0 (�0 + 1); �x�0 (�0 + 1);�1);

�s+1 (��0 + 1) + �+
0 s(0) = �s�1 (�0 + 1)�

�[H1(0; �x0(�0);�1)]
�1�s�1 (�0)H1(�s

�

0 (�0 + 1); �x�0 (�0 + 1);�1):

The determinant of this system coincides with the detjd	
dx
(x0)j and conse-

quently this system has the unique solution.
Hence we have found the initial conditions

�s+1 (0); �x
+
1 (0); �s

�

1 (�0); �x
�

1 (�0)

and it's possible to determine uniquely the functions �s�1 (t); �x
�

1 (t): Now we can
denote

�y1(t) =

8>><
>>:

�y+1 (t) = (�z+1 (t); �s
+
1 (t); �x

+
1 (t))

for t 2 [�~�1(�) + 1; 1];
�y�1 (t) = (�z�1 (t); �s

�

1 (t); �x
�

1 (t))

for t 2 [1; ~�1(�) + 1]:

The initial conditions for ��1 z are uniquely de�ned by equations

�z�1 (0) + ��1 z(0) = �z+1 (1) + �1d�z
+
0 =dt(1);

�z+1 (��0 + 1) + �+
1 z(0) = �z�1 (�0 + 1) + �1d�z

�

0 =dt(�0 + 1):

Thus we have found the �rst approximation of asymptotic expansion of the
slow variables and period of desired periodic solution. To obtain the �rst
approximation of the fast variables it is necessary to �nd the value �2 and
substitute this constant into the function �+

1 z(�
+
2 ): In such case the initial

conditions for �1z
� are uniquely de�ned by the system

�z+1 (��0 + 1) + �+
1 z(0) = �z�1 (�0 + 1) + �1d�z

�

0 =dt(�0 + 1);

�z�1 (1) + ��0 z(0) = �z+1 (1) + �1d�z
+
0 =dt(1):

The terms for the higher order approximation can be found analogously.
Theorem 4. Let's conditions (i) and (3i)�(3iv) hold. Then the following

estimates

j ~Tk(�)� T (�)j < C�k+1;

k y(t; �)� Yk(t; �) k< C�k+1;

k (s(t; �); x(t; �)) � (Sk(t; �); Xk(t; �)) k< C�k+1
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take place uniformly on time interval

[��̂(�) + 1; �̂(�) + 1];

where �̂(�) = maxf�(�); ~�k+1(�)g;

�̂(�) = maxf�(�); ~�k+1(�)g:

7 Example of asymptotic representation for periodic solution

Consider the system

�dz=dt = �z + u; ds=dt = x;
dx=dt = �x+ z; u = �sign[s(t� 1)]:

(11)

For � = 0 system (11) has the form

d�s0
dt

= �x0;
d�x0
dt

= ��x0 + u: (12)

Then for the solution of (12) with initial conditions

�x+
0 (0) = �; �s+0 (0) = 0;

sign [�s+0 (t� 1)] = �1; u = 1 for t 2 [�1; 0]

we have

�x0
+(t; �) = e�t(� � 1) + 1; �s+0 (t; �) = (1� e�t)(� � 1) + t;

and consequently

�x+
0 (1; �) = e�1(� � 1) + 1; �s+0 (1; �) = (1� e�1)(� � 1) + 1:

For t > 1; u = �1 and until switching of sign[u]

�x�0 (t; �) = e�(t�1)(�x+
0 (1; �) + 1)� 1;

�s�0 (t; �) =

= (1� e�(t�1))(�x+
0 (1; �) + 1)� (t� 1) + (1� e�1)(� � 1) + 1:

In this case the switching moment �(�) is de�ned by equation s�0 (�(�); �) = 0:
Taking into account the symmetry of system (12) with respect to the point
s = x = 0, we can conclude that the semi-period of the desired periodic
solution �0 and the �xed point �0 of the point mapping 	(�) are described by
equation

�s�0 (�0; �0) = 0; �x�0 (�0; �0) = ��0 ;
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hence

�0 = 1� 2
e��0+1

1 + e��0
; �0 = 4� 4

e��0+1

1 + e��0
:

This system has a solution �0 � 3; 75; �0 � 0; 87: Here �0 is the �xed point
of point mapping 	(�); corresponding to the 2�0� periodic solution of (12)
determined by the equations

(�s0(t); �x0(t)) =

�
(�s+0 (t; �0); �x

+
0 (t; �0)); for � �0 + 1 � t � 1;

(�s�0 (t; �0); �x
�

0 (t; �0)); for 1 � t � �0 + 1:

Moreover,

d	

d�
(�0) =

�
dx�(�(�); �)

d�
(�0; �0)

�2

=

�
e��0�2

e��0+1(1� e��0)

e��0 + 1� 2e��0+1

�2

� 0; 0144:

Then the conditions of Theorem 4 hold for system (12), therefore system (11)
has an orbitally asymptotically stable periodic zero frequency steady mode at
least for the small �:

To complete the zero approximation of periodic solution denote

�z0(t) =

�
�z +
0 (t) = 1 for � �0 + 1 � t � 1;

�z �0 (t) = �1; for 1 � t � �0 + 1:

Then

d��

0 z=d� = ���

0 z; ��

0 z(0) = 2;

��

0 z(�
�) = 2e��

�

; �� = (t� 1)=�;

d�+
0 z=d� = ��+

0 z; �+
0 z(0) = �2;

�+
0 z(�

+) = �2e��
+

; �+ = (t+�(�)� 1)=�:

Let's compute the �rst order terms. Equations for the slow parts have
the form

�z �1 = 0; d�s�1 =dt = x�1 ; d�x�1 =dt = ��x�1 ;

and consequently

�x+
1 (t; �x

+
1 (0)) = �x+

1 (0)e
�t; �s+1 (t) = (1� e�t)�x+

1 (0) + �s+1 (0);

�x�1 (t; �x
�

1 (�0)) = �x�1 (�0)e
�(t��0); �s�1 (t) = (1� e�(t��0))�x�1 (�0) + �s�1 (�0):
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De�ning the boundary layer terms of the �rst order for the slow variables we
will have

��

1 s(�
�) � 0; ��

1 s(0) = 0; ��

1 x(�
�) =

Z ��

1

��

0 z(�)d�; ��

1 x(0) = �2;

�+
1 s(�

+) � 0; �+
1 s(0) = 0; �+

1 x(�
+) =

Z �+

1

�+
0 z(�)d�; �+

1 x(0) = 2:

Equations for �1 and �1 have the form

�1�0 + �s+1 (0) = 0; �1�x
�

0 (�0) + �s�1 (�0) = 0:

In this case it's possible to express the variables �1 and �1 via �s+1 (0); �s
�

1 (�0)
according to the formulae

�1 = ��s�1 (�0)=�x
�

0 (�0); �1 = ��s+1 (0)=�0:

Now

�s�1 (1) = �s+1 (1)� �x+
0 (1)�s

+
1 (0)=�0;

�x�1 (1) + ��

1 x(0) = �x+
1 (1)� (��x+

0 (1) + 1)�s+1 (0)=�0;
�s+1 (��0 + 1) = �s�1 (�0 + 1)� �x�0 (�0 + 1)�s�1 (�0)=�x

�

0 (�0);
�x+
1 (��0 + 1) + �+

1 x(0) = �x�1 (�0 + 1) + (�x�0 (�0 + 1) + 1)�s�1 (�0)=�x
�

0 (�0):
(13)

Taking into account the symmetry of system (11) we will have �x+
1 (��0+1) =

��x�1 (1); �s
+
1 (��0 + 1) = ��s�1 (1); �0 = �0; Consequently

��s�1 (1) = (1� e��0)�x�1 (1) + �s�1 (1)�
[(1�e��0+1)�x�

1
(1)+�s�

1
(1)](1�e��0 )

(1�2e��0+1+e��0 )
;

��x�1 (1)� 2 = e��0 �x�1 (1)� 2
[(1�e��0+1)�x�

1
(1)+�s�

1
(1)]e��0

(1�2e��0+1+e��0 )
:

(14)

Consequently

�x�1 (1) = 2
1 + 3e��0 � 4e��0+1

e�2�0 + 2e��0 + 1� 4e�0+1
� �2; 06;

�s�1 (1) = 2
e��0 � e��0+1 � e�2�0 + e�2�0+1

e�2�0 + 2e��0 + 1� 4e�0+1
� �0; 10;

�1 = 2
(1 + e��0)(1 + e��0 � 2e��0+1)

e�2�0 + 2e��0 + 1� 4e�0+1
� 2:32:
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Conclusions

Three classes of the singularly perturbed relay control systems are considered.
For such systems

� the theorems about existence and stability of the periodic solutions are
discussed;

� the algorithm for the asymptotic representation of this periodic solutions
using boundary layer method is suggested.
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