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Numerous systems with bang-bang control algorithms and mechanical systems with dry friction
operate in oscillatory modes. Such systems include, for example, fuel injection control systems [1],
in which the sensor shows only the sign of the deviation of the exhaust parameters from given
values and the basic operation mode is oscillations in a neighborhood of the given values. Another
example of such systems is given by oscillations of a pendulum on an inclined uniformly rotating
disk in the presence of dry friction [2]. Such motions have the specific feature that, for some part
of the period, the pendulum moves together with the disk (in a sliding mode) and then returns to
the original position.

At the same time, real control systems always contain actuators, sensors, and other devices whose
operation is described by differential equations with small parameters multiplying the derivatives
(these parameters correspond to the time constants of these devices); consequently, the complete
model of such a system is described by singularly perturbed bang-bang systems (SPBBS). In fuel
injection control systems [1], SPBBS can describe, say, the influence of the engine on the injector
operation. In the system with a rotating disk, dealing with SPBBS is necessitated if one consid-
ers the problem of perturbations induced by an additional pendulum elastically connected to the
pendulum lying on the disk in the case of dry friction [2].

It was shown in [3–5] that slow periodic solutions of smooth singularly perturbed systems lie
on slow integral manifolds. The integral manifold of slow motions of a SPBBS consists of leaves
corresponding to different values of the bang-bang control. We show that slow periodic solutions
of SPBBS have interior boundary layers appearing in the transition from a neighborhood of one
leaf of the integral manifold into a neighborhood of another. Slow periodic solutions of SPBBS
are also characterized by the fact that, unlike relaxation oscillations (see the bibliography in [6]),
the right-hand sides of the equations describing rapid motions are nonzero at control switching
points, which permits one to use the boundary function method [7] for describing the breakaway of
a solution from a neighborhood of one leaf of the integral manifold into a neighborhood of another
leaf.

1. STATEMENT OF THE PROBLEM

In the present paper, we consider the SPBBS

µdz/dt = g(z, s, x, u), ds/dt = h1(z, s, x, u), dx/dt = h2(z, s, x, u), (1)

where z ∈ Rm, s ∈ R, x ∈ Rn, and u(s) = sgn s. Here g, h1, and h2 are smooth functions of
their arguments, and µ is a small parameter. In control systems, the vector z usually describes the
behavior of actuators, the variables s and x describe the behavior of the controlled object, and µ
characterizes the time constant of the actuators.

We set µ = 0 and express z from the equation

g (z0, s, x, u(s)) = 0 (2)

by the formula z0 = ϕ(s, x, u); then, instead of (1), we obtain the system

ds̄0/dt = h1 (ϕ (s̄0, x̄0, u) , s̄0, x̄0, u) = H1 (s̄0, x̄0, u) ,
dx̄0/dt = h2 (ϕ (s̄0, x̄0, u) , s̄0, x̄0, u) = H2 (s̄0, x̄0, u) .

(3)
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Suppose that this system satisfies sufficient conditions for the existence of an orbitally asymptoti-
cally stable periodic solution.

Note that the slow integral manifold of system (1) consists of two leaves corresponding to z̄+
0 =

ϕ(s, x, 1) and z̄−0 = ϕ(s, x,−1).
We shall show that, under some natural conditions, system (1) can have stable limit cycles

whose slow coordinates are close to periodic solutions appearing in (3). These limit cycles contain
boundary layers describing jumps from a neighborhood of one leaf of the slow integral manifold
into a neighborhood of another leaf at control sign switching times.

2. THE EXISTENCE OF PERIODIC SOLUTIONS

We denote the domains where the variables (z, s, x) and (s, x) range by Z and X, respectively.
Suppose that the following conditions are satisfied:

(10) h1, h2, g ∈ C2
[
Z̄ × [−1, 1]

]
;

(20) the function z0 = ϕ(s, x, u) is an isolated solution of Eq. (2) for all (s, x, u) ∈ Ω = X̄×[−1, 1];
(30) the equilibrium z0 = ϕ(s, x, u) of the system dz/dτ = g(z, s, x, u) is uniformly asymptotically

stable with respect to Ω; moreover, Re Spec(∂g/∂z)(z0, s, x, u) < −α < 0 for all (s, x, u) ∈ Ω.
The right-hand sides of systems (1) and (3) are discontinuous; consequently, one cannot use

the ordinary variational equations in the stability analysis of their periodic solutions. Conditions
for the existence of periodic solutions of systems (1) and (3) and their orbital asymptotic stability
will be stated in terms of the point mappings of the surface s = 0 into itself determined by these
systems.

Let us first define the point mapping of the surface s = 0 into itself determined by system (3).
To this end, we consider the solution of system (3) with u = 1,

ds̄+
0 /dt = H1

(
s̄+

0 , x̄
+
0 , 1
)
, dx̄+

0 /dt = H2

(
s̄+

0 , x̄
+
0 , 1
)

(3+)

with the initial conditions

s̄+
0 (0) = 0, x̄+

0 (0) = ξ, ξ ∈ V ⊂ S+ = {ξ : H1(0, ξ, 1) > 0} . (4)

Suppose that, for all ξ ∈ V , there exists a least positive root t = θ(ξ) of the equation s̄+
0 (θ(ξ)) = 0

such that H1

(
0, x̄+

0 (θ(ξ)),±1
)
> 0. Consequently, the function u jumps from −1 to +1 at t = θ(ξ),

and the behavior of the solution of the Cauchy problem for t > θ(ξ) until the next switching is
described by the equations

ds̄−0 /dt = H1

(
s̄−0 , x̄

−
0 ,−1

)
, dx̄−0 /dt = H2

(
s̄−0 , x̄

−
0 ,−1

)
(3−)

with the initial conditions [sewing conditions for the solutions of system (3)]

s̄−0 (θ(ξ)) = s̄+
0 (θ(ξ)), x̄−0 (θ(ξ)) = x̄+

0 (θ(ξ)). (4−)

Now we suppose that, for all ξ ∈ V , for the first coordinate s̄−0 (t) of the solution of this Cauchy
problem, there exists a least root T (ξ) of the equation s̄−0 (T (ξ)) = 0 such that x̄−0 (T (ξ)) ∈ V and
H1

(
0, x̄−0 (T (ξ)),−1

)
> 0. Then Ψ(ξ) : ξ → x̄−0 (T (ξ)) is the point mapping of the surface s = 0

into itself determined by system (3).
To a periodic solution of system (3), there corresponds a fixed point ξ0 of the mapping

Ψ (ξ0) = ξ0; the period of this solution and the time of intersection with the discontinuity surface
are determined by the relations T (ξ0) = T0 and θ (ξ0) = θ0; the periodicity and sewing conditions
for the solution acquire the form s̄−0 (T0) = s̄+

0 (0) = 0, x̄−0 (T0) = x̄+
0 (0), s̄−0 (θ0) = s̄+

0 (θ0) = 0,
and x̄−0 (θ0) = x̄+

0 (θ0).
Suppose the following:
(40) system (3) has an isolated T0-periodic solution (s̄0(t), x̄0(t)), s̄0(0) = 0, such that the

corresponding fixed point ξ0 of the mapping Ψ(ξ) satisfies

det(∂Ψ/∂ξ) (ξ0) 6= 0;
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(50) the spectrum of the matrix (∂Ψ/∂ξ) (ξ0) lies inside the unit disk;
(60) the points ϕ (0, ξ0,−1) and ϕ (0, x̄0 (θ0) , 1) lie in the influence domains of the stable equilibria

ϕ (0, ξ0, 1) and ϕ (0, x̄0 (θ0) ,−1), respectively.
By L0(t) we denote the polygon

L0(t) =


ϕ (s̄0(t), x̄0(t), 1) for t ∈ (0, θ0)
ϕ (s̄0(t), x̄0(t),−1) for t ∈ (θ0, T0)
(1− γ)ϕ (0, x̄0 (θ0) , 1) + γϕ (0, x̄0 (θ0) ,−1) for γ ∈ [0, 1] if t = θ0

(1− γ)ϕ (0, ξ0,−1) + γϕ (0, ξ0, 1) for γ ∈ [0, 1] if t = 0.

3. THE EXISTENCE OF SLOW PERIODIC MOTIONS

Suppose that the norm in Rn is chosen to ensure that Ψ is a contraction mapping in some
neighborhood of the point ξ0, and moreover, ‖(∂Ψ/∂ξ) (ξ0)‖ < q < 1. By analogy with the
investigation of a periodic solution of system (3), to prove the existence and analyze the stability
of a periodic solution of system (1), we consider the point mapping Φ(z, x, µ) of the surface s = 0
into itself determined by system (1).

Lemma 1. Under conditions (10)–(60), there exists a neighborhood Γ of the point (ϕ(0, ξ0, 1), ξ0)
on the surface s = 0 such that, for any (η, ξ) ∈ Γ and for sufficiently small µ, there exists a solution
(z(t, µ), s(t, µ), x(t, µ)) of system (1) with the initial conditions

z(0, µ) = η; s(0, µ) = 0, x(0, µ) = ξ (5)

and there exist 0 < θ(η, ξ, µ) < T (η, ξ, µ) such that s(θ(η, ξ, µ), µ) = 0 and s(T (η, ξ, µ), µ) = 0,
the solution is defined and is unique on [0, T (η, ξ, µ)], and its value for t = T (η, ξ, µ) belongs to Γ.

Proof. It follows from the implicit function theorem, theorems on the continuous dependence
of solutions of systems of differential equations on parameters, and the continuity of the function ϕ
that, in the space Rn, there exists a closed ball Ū(α) ∈ V with radius α and center ξ0 on the surface
s = 0 such that if ξ ∈ Ū(α), then ‖(∂Ψ/∂ξ)(ξ)‖ < q′ < 1 and the following assertions are valid:

(a0) for the solution
(
s̄+

0 (t), x̄+
0 (t)

)
of the Cauchy problem (3+), (4), there exists a θ(ξ) such that

s̄+
0 (θ(ξ)) = 0 and

(
ds̄+

0 /dt
)

(θ(ξ)) = H1

(
0, x̄+

0 (θ(ξ)), 1
)
< 0; moreover, H1

(
0, x̄+

0 (θ(ξ)),−1
)
< 0;

(b0) ϕ
(
0, x̄+

0 (θ(ξ)), 1
)

is an interior point of the influence domain of the stable equilibrium
ϕ
(
0, x̄+

0 (θ(ξ)), −1
)
;

(c0) for the solution
(
s̄−0 (t), x̄−0 (t)

)
of problem (3−), (4−), there exists a T (ξ) such that

s̄−0 (T (ξ)) = 0 and(
ds̄−0 /dt

)
(T (ξ)) = H1

(
0, x̄−0 (T (ξ)), 1

)
> 0, x̄−0 (T (ξ)) ∈ U (q′α)

and the set W̄ = coϕ
(
0, Ū (α),−1

)
lies in the influence domain of the stable equilibrium

ϕ
(
0, x̄−0 (T (ξ)), 1

)
.

Then the Tikhonov theorem [8], together with the implicit function theorem, implies that, for
each point (η, ξ) ∈ W̄ × Ū(α), there exists a µ0(η, ξ) such that the following assertions are valid
for all µ ∈ [0, µ0(η, ξ)]:

(aµ) for the solution (z+(t, µ), s+(t, µ), x+(t, µ)) of system (1) with u = 1 and with the initial
conditions (5), there exists a least positive root θ(η, ξ, µ) of the equation s+(θ(η, ξ, µ), µ) = 0;
moreover, h1 (z±(θ(η, ξ, µ), µ), s±(θ(η, ξ, µ), µ), x±(θ, µ),±1) < 0;

(bµ) the point z+(θ(η, ξ, µ), µ) lies in the influence domain of

ϕ
(
s̄+

0 (θ(η, ξ, µ), µ), x̄+
0 (θ(η, ξ, µ), µ),−1

)
;
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(cµ) for the solution (z−(t, µ), s−(t, µ), x−(t, µ)) of system (1) with u = −1 and with the initial
conditions

z−(θ(η, ξ, µ), µ) = z+(θ(η, ξ, µ), µ), s−(θ(η, ξ, µ), µ) = s+(θ(η, ξ, µ), µ),

and x−(θ(η, ξ, µ), µ) = x+(θ(η, ξ, µ), µ), there exists a least positive root T (η, ξ, µ) > θ(η, ξ, µ) of
the equation s−(T (η, ξ, µ), µ) = 0; moreover,

h1

(
z−(T, µ), s−(T, µ), x+(T, µ),−1

)
> 0,

(
z+(t, µ), s+(t, µ), x+(t, µ)

)
exists and is unique on [θ(η, ξ, µ), T (η, ξ, µ)], and (z−(T (η, ξ, µ), µ), x−(T (η, ξ, µ), µ)) lies in the set(
ϕ(0, U ((1 + q′)α/2) ,−1), U ((1 + q′)α/2)

)
.

Furthermore,

Φ(η, ξ, 0) = lim
µ→0

Φ(η, ξ, µ) =
(
ϕ
(
0, x−(T (ξ)), 1

)
, x−(T (ξ))

)
,

and Φ (ϕ (0, ξ0, 1) , ξ0, 0) = (ϕ (0, ξ0, 1) , ξ0) for ξ = ξ0. Since W̄ × Ū(α) is compact, it follows that
there exists a µ0 such that, for all µ ∈ [0, µ0], the point mapping

Φ(η, ξ, µ) = (Φ1(η, ξ, µ),Φ2(η, ξ, µ)) =
(
z−(T (η, ξ, µ), µ), x−(T (η, ξ, µ), µ)

)
of the surface s = 0 into itself determined by system (1) is defined on the set Γ = W̄ × Ū(α)
and maps this set into itself. It follows that, for all Φ(η, ξ, µ), the mapping µ ∈ [0, µ0] has a
fixed point on Γ corresponding to a periodic solution of system (1) in a neighborhood of the
polygon (L0(t), s̄0(t), x̄0(t)).

4. THE UNIQUENESS OF SLOW PERIODIC MOTIONS AND THEIR STABILITY

Theorem 1. Under conditions (10)–(60), in a neighborhood of the polygon (L0(t), s̄0(t), x̄0(t))
for sufficiently small µ, there exists an isolated orbitally asymptotically stable T (µ)-periodic solu-
tion of system (1) with boundary layers for t = 0 and in a neighborhood of t = θ0. Moreover,
limµ→0 T (µ) = T0.

Proof. The derivative of the mapping Φ with respect to the initial data η and ξ is a smooth
function of the derivatives of the functions θ(η, ξ, µ), T (η, ξ, µ), z+(θ(η, ξ, µ), µ), x+(θ(η, ξ, µ), µ),
z−(T (η, ξ, µ), µ), and x−(T (η, ξ, µ), µ) with respect to initial data, whose existence and continuity
follows from theorems on the differentiability of solutions of systems of singularly perturbed differ-
ential equations with respect to initial data at the endpoint of the interval [9] and from the implicit
function theorem.

We introduce the new variable χ = η − ϕ (0, x−(T (ξ)),−1). Then, instead of the problem of
finding a fixed point of the transformation Φ(η, ξ, µ), we consider the problem of finding a fixed
point of the auxiliary transformation

Λ(χ, ξ, µ) = (Λ1(χ, ξ, µ),Λ2(χ, ξ, µ))

=
(
Φ1

(
χ+ ϕ

(
0, x−(T (ξ)),−1

)
, ξ, µ

)
− ϕ

(
0, x−(T (ξ)),−1

)
,

Φ2

(
χ+ ϕ

(
0, x−(T (ξ)),−1

)
, ξ, µ

))
.

Note that if µ = 0, then the point (0, ξ0) is a fixed point of the transformation Λ, which maps
the set M (β, α, µ̄) =

{
(χ, ξ, µ) : ‖χ‖ < β, x ∈ Ū(α), µ ∈ [0, µ̄]

}
into itself for sufficiently small β

and µ̄.
Let us compute the derivative of Λ with respect to χ and ξ. If µ = 0, then Λ(χ, ξ, 0) is

independent of χ and Λ1(χ, ξ, 0) is independent of ξ. It follows that

∂Λ
∂(χ, ξ)

=

(
O(µ) O(µ)
O(µ) (∂Ψ/∂ξ) (ξ0) +O(µ)

)
.
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We take β, µ̄ > 0 such that supM(β,α,µ̄) ‖∂Λ/∂(χ, ξ)‖ < q1 < 1. Hence Λ(χ, ξ, µ) is a contraction
mapping of M (β, α, µ̄) and has a unique isolated fixed point in M (β, α, µ̄) corresponding to the
desired isolated periodic solution of system (1). The orbital asymptotic stability of this solution
follows from the fact that Λ is a contraction mapping on M (β, α, µ̄).

5. AN ALGORITHM FOR THE CONSTRUCTION
OF THE ASYMPTOTICS OF A PERIODIC SOLUTION

Suppose that h1, h2, g ∈ Ck+3
[
Z̄ × [−1, 1]

]
and conditions (10)–(60) are satisfied.

Let y be the vector formed by the coordinates of the variables (z, s, x). We seek the asymptotics
of a slow periodic solution, the switching time θ(µ), and the period T (µ) of system (1) on the
interval [0,Θ(µ)] in the form

Yk(t, µ) =
k∑
i=0

[
ȳi(t) + Π+

i y(τ) + Π−i y (τk+1)
]
µi,

Sk(t, µ) =
k∑
i=0

[
s̄i(t) + Π+

i s(τ) + Π−i s (τk)
]
µi,

(AS)

Xk(t, µ) =
k∑
i=0

[
x̄i(t) + Π+

i x(τ) + Π−i x (τk)
]
µi,

θ(µ) = θ0 + µθ1 + · · · + µkθk + · · · ,
T (µ) = T0 + µT1 + · · · + µkTk + · · · , Θ(µ) = T (µ)− θ(µ)

(SM),

respectively, where τ = t/µ, τk =
(
t− θ̃k+1(µ)

)
/µ, θ̃k+1(µ) = θ0 +µθ1 + · · ·+µk+1θk+1,

∥∥Π±i y(τ)
∥∥ <

Ce−γτ , C, γ > 0, and Π±i y(τ) ≡ 0 for τ < 0.
We set Θ̃k+1(µ) = Θ0 + µΘ1 + · · · + µk+1Θk+1, T̃k(µ) = T0 + µT1 + · · ·+ µkTk, and

ȳ0(t) =
{
ȳ+

0 (t) =
(
ϕ
(
s̄+

0 (t), x̄+
0 (t), 1

)
, s̄+

0 (t), x̄+
0 (t)

)
for t ∈ [0, θ0]

ȳ−0 (t) =
(
ϕ
(
s̄−0 (t), x̄−0 (t), 1

)
, s̄−0 (t), x̄−0 (t)

)
for t ∈ [θ0, T0].

The function Π+
0 z(τ) is found from the equations

dΠ+
0 z/dτ = g

(
Π+

0 z + ϕ
(
0, x̄+

0 (0), 1
)
, 0, x̄+

0 (0), 1
)
,

Π+
0 z(0) = ϕ

(
0, x̄+

0 (0),−1
)
− ϕ

(
0, x̄+

0 (0), 1
)
,

and Π−0 z(τ) is given by the relations

dΠ−0 z/dτ = g
(
Π−0 z + ϕ

(
0, x̄−0 (θ0) , 1

)
, s̄−0 (θ0) , x̄−0 (θ0) , θ0

)
,

Π−0 z(0) = ϕ
(
0, x̄−0 (θ0) , 1

)
− ϕ

(
0, x̄+

0 (θ0) ,−1
)
.

Now for s̄±1 (t), x̄±1 (t), and z̄±1 (t), we obtain the system of linear equations

z̄±1 (t) = −
[
g′±z
]−1 (

g′±s s̄
±
1 + g′±x x̄

±
1 + g±1 (t)

)
,

ds̄±1 /dt = h′±1z (t)z̄±1 (t) + h′±1s s̄
±
1 (t) + h′±1xx̄

±
1 (t),

dx̄±1 /dt = h′±2z (t)z̄±1 (t) + h′±2s s̄
±
1 (t) + h′±2xx̄

±
1 (t).

(6)

Here the superscript ± indicates that the value of the corresponding function is computed at
the point

(
ϕ
(
s̄±0 (t), x̄±0 (t),±1

)
, s̄±0 (t), x̄±0 (t),±1

)
. For Π±1 z, Π±1 s, and Π±1 x, we have the uniquely
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solvable system

dΠ±1 z/dτ = g′zΠ
±
1 z + g′sΠ

±
1 s+ g′xΠ±1 x+ Π±1 g(τ),

dΠ+
1 s/dτ = Π+

0 h1 = h1

(
z̄+

0 (0) + Π+
0 z, 0, x̄

+
0 (0), 1

)
− h1

(
z̄+

0 (0), 0, x̄+
0 (0), 1

)
,

dΠ+
1 x/dτ = Π+

0 h2 = h2

(
z̄+

0 (0) + Π0z, 0, x̄+
0 (0), 1

)
− h2

(
z̄+

0 (0), 0, x̄+
0 (0), 1

)
,

dΠ−1 s/dτ = Π−0 h1 = h1

(
z̄−0 (θ0) + Π−0 z, 0, x̄

−
0 (θ0) ,−1

)
− h1

(
z̄−0 (θ0) , 0, x̄−0 (θ0) ,−1

)
,

dΠ−1 x/dτ = Π−0 h2 = h2

(
z̄−0 (θ0) + Π−0 z, 0, x̄

−
0 (θ0) ,−1

)
− h2

(
z̄−0 (θ0) , 0, x̄−0 (θ0) ,−1

)
,

where, z̄+
0 (0) = ϕ(0, x0, 1), z̄−0 (θ0) = ϕ

(
0, x̄+

0 (θ0) ,−1
)
, the + superscript in the computation of the

derivatives of the function g indicates that they are computed at the point (z̄+
0 (0) + Π+

0 z, 0, x̄0, 1),
and the derivatives with the− superscript are computed at the point

(
z̄−0 (θ0) + Π−0 z, 0, x̄

−
0 (θ0) ,−1

)
.

The initial conditions for the boundary functions of the slow coordinates are found from the relations

Π±1 s(0) =

0∫
∞

Π±0 h1(Θ)dΘ, Π±1 x(0) =

0∫
∞

Π±0 h2(Θ)dΘ.

Then s̄+
1 (0) = −Π+

1 s(0) and s̄−1 (θ0) = −Π−1 s(0). The functions x̄±1 (t) and s̄±1 (t) can be uniquely
found from system (6) once we determine the initial conditions x̄+

1 (0) and x̄−1 (θ0).
By matching the first-order terms in the asymptotic expansions of the relations s(T (µ), µ) = 0

and s(θ(µ), µ) = 0, respectively, we obtain

Θ1H1 (0, ξ0, 1) + s̄−1 (T0) = 0, θ1H1

(
0, x̄+

0 (θ0) , 1
)

+ s̄+
1 (θ0) = 0. (7)

It follows from condition (20) that the quantities θ1 and Θ1 can be uniquely expressed via s̄+
1 (0)

and s̄−1 (θ0) in the form Θ1 = − [H1 (0, ξ0,−1)]−1
s̄−1 (T0) and θ1 = −

[
H1

(
0, x̄+

0 (θ0) , 1
)]−1

s̄+
1 (θ0).

By substituting these expressions into the solution sewing condition x−(θ(µ), µ) = x+(θ(µ), µ), we
obtain

x̄−1 (θ0) + Π−1 x(0) = x̄+
1 (θ0) + θ1H2

(
0, x̄+

0 (θ0) , 1
)
. (8)

Likewise, the periodicity condition x+(T (µ), µ) = x+(T (µ), µ) acquires the form

x̄+
1 (0) + Π+

1 x(0) = x̄−1 (T0) + Θ1H2 (0, ξ0,−1) . (9)

Then the quantities x̄+
1 (θ0) and x̄−1 (T0) depend linearly on x̄+

1 (0) and x̄−1 (θ0), and formulas re-
lating them can readily be found from (6). By expressing x̄−1 (θ0) via x̄+

1 (0) from system (9) and
by substituting the result into (8), we obtain a system of linear equations for x̄+

1 (0), whose de-
terminant coincides with the Jacobian of the system for finding a periodic solution of system (3).
The nondegeneracy of this determinant follows from condition (40).

It follows that the initial conditions s̄+
1 (0), x̄+

1 (0), s̄−1 (θ0), and x̄−1 (θ0) are uniquely determined.
Now, to find S1(t, µ) and X1(t, µ), we should define the functions s̄+

i (t) and x̄+
i (t) on the closed

interval
[
0, T̃1(µ)

]
as follows:

ȳi(t) =


ȳ+
i (t) =

(
z̄+
i (t), s̄+

i (t), x̄+
i (t)

)
for t ∈

[
0, θ̃1(µ)

]
ȳ−i (t) =

(
z̄−i (t), s̄−i (t), x̄−i (t)

)
for t ∈

[
θ̃1(µ), T̃1(µ)

]
,

i = 0, 1.

The initial conditions for Π±1 z are uniquely determined by the relations

z̄+
1 (0) + Π+

1 z(0) = z̄−1 (T0) + Θ1dz̄
−
0 (T0) /dt,

z̄−1 (θ0) + Π−1 z(0) = z̄+
1 (θ0) + θ1dz̄

+
0 (θ0) /dt.
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This completes the construction of the asymptotics of the first approximation for the slow com-
ponents and the period of the desired periodic solution. To complete the construction of the first
approximation to the fast variables, one should find θ2 and substitute it into the function Π−1 z (τ2).

Suppose that z±j (t), s±j (t), x±j (t), Π±j z(τ), Π±j s(τ), Π±j x(τ), and the constants θj and Θj,
j = 1, . . . , k − 1, have been found. For s̄±k (t), x̄±k (t), and z̄±k (t), we obtain the system of linear
equations

z̄±k (t) = −
[
g′±z
]−1 (

g′±s s̄
±
k + g′±x x̄

±
k + g±k (t)

)
,

ds̄±k /dt = h′±1z (t)z̄±k (t) + h′±1s s̄
±
k (t) + h′±1xx̄

±
k (t) + h±1k(t),

dx̄±k /dt = h′±2z (t)z̄±k (t) + h′±2s s̄
±
k (t) + h′±2xx̄

±
k (t) + h±2k(t);

(6k)

here the superscript ± indicates that the corresponding function is computed at the point(
ϕ
(
s̄±0 (t), x̄±0 (t),±1

)
, s̄±0 (t), x̄±0 (t),±1

)
;

furthermore, g±k (t), h±1k(t), and h±2k(t) are uniquely determined functions depending only on z̄±j (t),
s̄±j (t), x̄±j (t), θj, and Θj, j = 1, . . . , k − 1. For Π±k z, Π±k s, and Π±k x, we have the uniquely solvable
system

dΠ±k z/dτ = g′zΠ
±
k z + g′sΠ

±
k s+ g′xΠ

±
k x+ Π±k g(τ),

dΠ±k s/dτ = Π±k−1h1, dΠ±k x/dτ = Π±k−1h2,

where the + superscript on the derivatives of g indicates that they are computed at the point(
z̄+

0 (0) + Π+
0 z, 0, x̄0, 1

)
, the derivatives with the − superscript are computed at the point(

z̄−0 (θ0) + Π−0 z, 0, x̄
−
0 (θ0) ,−1

)
,

and Π±k−1h1 and Π±k−1h2 are functions depending only on Π±j z(τ), Π±j s(τ), and Π±j x(τ),
j = 1, . . . , k − 1.

The initial conditions for the boundary functions of slow coordinates are found from the relations

Π±k s(0) =

0∫
∞

Π±k−1h1(Θ)dΘ, Π±k x(0) =

0∫
∞

Π±k−1h2(Θ)dΘ.

Then s̄+
k (0) = −Π+

k s(0) and s̄−k (θ0) = −Π−k s(0). The functions x̄±k (t) and s̄±k (t) can be uniquely
found from system (6k) once the initial conditions x̄+

k (0) and x̄−k (θ0) have been determined.
By matching the kth-order terms in the asymptotic expansions of the relations s(T (µ), µ) = 0

and s(θ(µ), µ) = 0, respectively, we obtain

ΘkH1 (0, ξ0,−1) + s̄−k (T0) + S −
k = 0, θkH1

(
0, x̄+

0 (θ0) , 1
)

+ s̄+
k (θ0) + S +

k = 0. (7k)

Just as with the first approximation, we express θk and Θk from (7k) and substitute them into
the sewing condition for solutions under the jump of the control sign from + to − and into the
periodicity condition; then we obtain

x̄−k (θ0) + Π−k x(0) = x̄+
k (θ0) + θkH2

(
0, x̄+

0 (θ0) , 1
)

+ X +
k , (8k)

x̄+
k (0) + Π+

k x(0) = x̄−k (T0) + ΘkH2 (0, ξ0,−1) + X −
k , (9k)

respectively, where S ±
k and X +

k are functions depending on s̄+
j (θ0), x̄+

j (θ0), s̄−j (T0), and x̄−j (T0),
j = 1, . . . , k − 1. System (8k), (9k) has the same structure as system (8), (9). Consequently, the
initial conditions s̄+

k (0), x̄+
k (0), s̄−k (θ0), and x̄−k (θ0) are uniquely determined. Now, to find Sk(t, µ)

and Xk(t, µ), one should complete the definition of the functions s̄+
i (t) and x̄+

i (t) on the closed
interval

[
0, θ̃k(µ)

]
as follows:

ȳi(t) =


ȳ+
i (t) =

(
z̄+
i (t), s̄+

i (t), x̄+
i (t)

)
for t ∈

[
0, θ̃k(µ)

]
ȳ−i (t) =

(
z̄−i (t), s̄−i (t), x̄−i (t)

)
for t ∈

[
θ̃k(µ), T̃k(µ)

]
,

i = 0, . . . , k.
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The initial conditions for Π±k z are uniquely determined by the relations

z̄+
k (0) + Π+

k z(0) = z̄−k (T0) + Θkdz̄
−
0 (T0) /dt + Z −k ,

z̄−k (θ0) + Π−k z(0) = z̄+
k (θ0) + θkdz̄

+
0 (θ0) /dt+ Z +

k ,

where the Z ±
k are functions depending only on z̄+

j (θ0) and z̄−j (T0), j = 1, . . . , k− 1. Now, to com-
plete the construction of the first approximation for the rapid variables, one should find the quantity
θk+1 and substitute it into the function Π−k z (τk+1).

Theorem 2. Under conditions (10)–(60), the estimates∣∣∣T̃k(µ)− T (µ)
∣∣∣ < Cµk+1, ‖y(t, µ)− Yk(t, µ)‖ < Cµk+1,

‖(s(t, µ), x(t, µ)) − (Sk(t, µ),Xk(t, µ))‖ < Cµk+1
(10)

are valid uniformly with respect to
[
0, T̂ (µ)

]
, where T̂ (µ) = max

{
T (µ); T̃k+1(µ)

}
.

Theorem 2 follows from Theorem 1 and Lemma 2, which will be proved in Section 7.

6. EXAMPLE

Let us consider the singularly perturbed bang-bang system

µdz/dt = −z − u, ds/dt = x+ u/2, dx/dt = −x+ z, u = sgn[s(t)], (11)

where z, s, x ∈ R and µ is a small parameter. Let us prove the existence and uniqueness of a slow
periodic solution of system (11) and construct the zero and first approximations to its asymptotics.

Let us first show that system (11) satisfies the assumptions of Theorems 1 and 2. If µ = 0, then
system (11) acquires the form

z̄0 = −u, ds̄0/dt = x̄0 + u/2, dx̄0/dt = −x̄0 − u, (12)

and its solution with the initial conditions x̄+
0 (0) = ξ > 0, s̄+

0 (0) = 0 has the form

x̄+
0 (t, ξ) = e−t(ξ + 1)− 1, s̄+

0 (t, ξ) =
(
1− e−t

)
(ξ + 1)− t/2.

System (12) is symmetric around the origin. Consequently, θ0 is the half-period of the desired peri-
odic solution, and the fixed point ξ0 of the transformation Ψ(ξ) corresponding to the desired periodic
solution is found from the relations

s̄+
0 (θ0, ξ0) = 0, x̄+

0 (θ0, ξ0) = −ξ0;

therefore, ξ0 =
(
1− e−θ0

)
/
(
1 + e−θ0

)
, ξ0 = θ0/4. By solving this system of algebraic equations,

we obtain θ0
∼= 3.83 and ξ0

∼= 0.96. Moreover,

(∂Ψ/∂ξ)1/2 (ξ0) =
(
1− e−θ0 − θ0

)
/
(
eθ0 − θ0 − 1

) ∼= −0.07,

which provides the validity of the assumptions of Theorems 1 and 2.
Let us complete the construction of the zero approximation to the periodic solution:

z̄0(t) =
{
z̄+

0 (t) = 1 if 0 ≤ t < θ0

z̄−0 (t) = −1 if θ0 ≤ t ≤ T0.

Then dΠ±0 z/dτ = −Π±0 z, Π±0 z(0) = ±2, and Π±0 z (τ±) = ±2e−τ
±

. Let us compute terms of first-
order smallness with respect to µ. The equations for the regular part of the asymptotics acquire
the form z̄±1 = 0, ds̄±1 /dt = x±1 , dx̄±1 /dt = −x̄±1 ; consequently,

x̄+
1

(
t, x̄+

1 (0)
)

= x̄+
1 (0)e−t, s̄+

1 (t) =
(
1− e−t

)
x̄+

1 (0) + s̄+
1 (0),

x̄−1
(
t, x̄−1 (θ0)

)
= x̄−1 (θ0) e−(t−θ0), s̄−1 (t) =

(
1− e−(t−θ0)

)
x̄−1 (θ0) + s̄−1 (θ0) .
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Let us find the first-order boundary terms for the slow variables: Π±1 s(τ) ≡ 0, Π±1 s(0) = 0,
Π±1 x(τ) =

∫ τ
∞Π±0 z(Θ)dΘ, and Π±1 x(0) = ∓2. Then s̄+

1 (0) = s̄−1 (θ0) = 0.
In this case, relations (7) acquire the form

Θ1 (ξ0 − 1/2) + s̄−1 (T0) = 0, θ1

(
x̄+

0 (θ0) + 1/2
)

+ s̄+
1 (θ0) = 0;

therefore, the quantities θ1 and Θ1 can be expressed via x̄+
1 (0) and x̄−1 (θ0) by the formulas

θ1 = −
(
1− e−θ0

)
x̄+

1 (0)/
(
x̄+

0 (θ0) + 1/2
)
,

Θ1 = −
(
1− e−θ0

)
x̄−1 (θ0)/(ξ0 − 1/2) .

By the symmetry of (12), θ1 = 2x̄+
1 (0)

(
1− e−2θ0

)
/
(
1− 3e−θ0

)
. Relations (8) acquire the form

−x̄+
1 (0) + Π−1 (0) = x̄+

1 (0)
(
−3e−θ0 + e−2θ0/

(
1− 3e−θ0

))
,

x̄+
1 (0) = 2

(
1− 3e−θ0

)
/
(
e−2θ0 − 6e−θ0 + 1

) ∼= 2.15,

and θ1 = 4
(
1− e−2θ0

)
/
(
e−2θ0 − 6eθ0 + 1

) ∼= 4.60, and the half-period of the desired periodic solu-
tion is given by the relation T (µ) ∼= 3.83 + 4.60µ +O (µ2).

7. THE ASYMPTOTICS OF SOLUTIONS OF SINGULARLY PERTURBED SYSTEMS
WITH FINITELY MANY SWITCHINGS

Consider the Cauchy problem for system (1) with the initial conditions (5). Suppose that
conditions (10)–(30) are satisfied together with the following conditions:

(4∗) the solution
(
s̄+

0 (t), x̄+
0 (t)

)
of system (3+) with u = 1 and with the initial conditions

s̄+
0 (0) = 0 and x̄+

0 (0) = ξ exists and is unique on [0, θ0], where θ0 is the least positive root of the
equation s̄+

0 (θ0) = 0; moreover,
(
ds̄+

0 /dt
)

(θ0) = H1

(
0, x̄+

0 (θ0) , 1
)
< 0 and H1

(
0, x̄+

0 (θ0) ,−1
)
< 0;

(5∗) ϕ
(
0, x̄+

0 (θ0) , 1
)

is an interior point of the influence domain of ϕ
(
0, x̄+

0 (θ0) ,−1
)
;

(6∗) the solution
(
s̄−0 (t), x̄−0 (t)

)
of system (3−) with u = −1 and with the initial conditions

s̄−0 (θ0) = 0 and x̄−0 (θ0) = x̄+
0 (θ0) exists and is unique on [θ0, T ]; moreover, sgn s̄−0 (t) < 0 and(

ϕ
(
s̄−0 (t), x̄−0 (t),−1

)
, s̄−0 (t), x̄−0 (t)

)
∈ Z for all t ∈ [θ0, T ].

It follows from the Tikhonov theorem [8], condition (4∗), and the implicit function theorem
that the solution of the Cauchy problem (1), (5) with u = 1 exists, is unique for sufficiently small
µ and intersects the discontinuity surface at some time θ(µ) [θ(µ) → θ0 as µ → 0]. Moreover,
condition (5∗) implies that the solution of problem (1), (5) enters the domain u = −1, and it
follows from the condition (6∗) that u = 1 for the solution of problem (1), (5) for t ∈ [θ(µ), T (µ)].
Consequently, the solution of problem (1), (5) can be reduced to the successive solution of the
following two Cauchy problems:

(a) the solution (z+(t, µ), s+(t, µ), x+(t, µ)) of the Cauchy problem for system (1) with the initial
conditions (5) for u = 1;

(b) the solution (z−(t, µ), s−(t, µ), x−(t, µ)) of the Cauchy problem for system (1) with u = −1
and with the initial conditions

z−(θ(µ), µ) = z+(θ(µ), µ),
s−(θ(µ), µ) = s+(θ(µ), µ),
x−(θ(µ), µ) = x+(θ(µ), µ).

(13)

We construct the asymptotics of the switching time in the form (SM) and the asymptotics of the
solution of problem (1), (5) in the form (AS).

The coefficients of the series (SM) are found from the equation

s+
(
θ0 + µθ1 + · · ·+ µiθi + · · · , µ

)
= 0.
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Assuming that the coefficients s̄+
0 (t), s̄+

1 (t), . . . , s̄+
k (t) of the expansion of problem (1), (5) by the

method of boundary functions for u = 1 are known, one can write out the equations for θi in
the form

s̄+
0

(
θ0 + · · ·+ µiθi + · · ·

)
+ µs̄+

1

(
θ0 + · · · + µiθi + · · ·

)
+ · · ·

+ µis̄+
i

(
θ0 + · · · + µiθi + · · ·

)
+ · · · = 0.

The terms Π+s(θ(µ)/µ) are exponentially small; therefore, they can be neglected. By expanding the
functions on the left-hand side in the last equation in powers of µ and by matching the coefficients
of like powers of µ, we obtain a linear equations for θk in the form

θiH1

(
0, x̄+

0 (θ0) , 1
)

+ pi (θ0, θ1, . . . , θi−1) = 0,

where pi is some known function depending only on θ0, θ1, . . . , θi−1. It follows from condition (4∗)
that the coefficient of θi is always nonzero; consequently, the quantities θ0, θ1, . . . , θi, . . . are uniquely
determined.

Suppose that the quantities θ0, θ1, . . . , θk+1 and the coefficients ȳ+
i (t) (i = 1, . . . , k) of the regular

parts of the asymptotic expansions of the solution of problem (1), (5) with u = 1 have been found.
Let us find the asymptotics for the segment

Ȳ −k

(
θ̃k(µ), µ

)
=

k∑
i=0

ȳ−i

(
θ̃k(µ), µ

)
µi

of the regular part of the asymptotics of the quantity y−
(
θ̃k(µ), µ

)
. To this end, we use the

asymptotic expansions of the functions ȳ+
i

(
θ̃k(µ)

)
in powers of µ and, instead of the segments of

the asymptotics Ȳ +
k

(
θ̃k(µ), µ

)
we consider the segment Ŷ +

k

(
θ̃k(µ), µ

)
of the series

Ȳ +
k

(
θ̃k(µ), µ

)
= ȳ−0 (θ0) + µ

(
ȳ+

1 (θ0) + θ1

(
dȳ+

0 /dt
)

(θ0)
)

+ · · ·

up to the power µk.
To find the asymptotics of the solution of problem (1), (13), we use the asymptotics of the

solution of the Cauchy problem for system (1) with u = 1 and with the initial conditions

y+
(
θ̃k+1(µ), µ

)
= Ŷ −k

(
θ̃k(µ), µ

)
. (14)

Lemma 2. Under conditions (10)–(30) and (4∗)–(6∗), there exist constants µ0 such that, for all
µ ∈ [0, µ0] , the solution of the Cauchy problem (1), (5) exists, is unique on t ∈ [0, T ], and satisfies
the estimate (10) uniformly on [0, T ].

Proof. To be definite, we suppose that θ(µ) < θ̃k+1(µ) for sufficiently small µ. There exists a
K1 > 0 such that |θ(µ)− θ̃k+1(µ)| < K1µ

k+2 and ‖y+(θ(µ), µ)− Ŷ +
k (θ(µ), µ)‖ < K1µ

k+1. Then on
the closed interval [θ(µ), θ̃k+1(µ)], the solution of problem (1), (5) is the solution of problem (1),
(14) for u = 1; consequently,

∥∥z−(t, µ)− z+(θ(µ), µ)
∥∥ =

∥∥∥∥∥∥∥
t∫

θ(µ)

g
(
z−(τ, µ), s−(τ, µ), x−(τ, µ), 1

)
dτ/µ

∥∥∥∥∥∥∥
< M1

∣∣∣θ̃k+1(µ)− θ(µ)
∣∣∣/µ,∥∥(s−(t, µ), x−(t, µ)

)
−
(
s+(θ(µ), µ), x+(θ(µ), µ)

)∥∥ < M2

∣∣∣θ̃k+1(µ)− θ(µ)
∣∣∣ ,∥∥∥Ȳ +

k (t, µ)− Ŷ +
k

(
θ̃k(µ), µ

)∥∥∥ < K2µ
k+1, K2 > 0,

M1 = sup
Z̄×[−1,1]

‖g(z, s, x, u)‖, M2 = sup
Z̄×[−1,1]

‖(h1(z, s, x, u), h2(z, s, x, u))‖ ,
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for all t ∈ [θ(µ), θ̃k+1(µ)]. It follows that ‖Ŷ −k (θ̃k(µ), µ)−y+(θ̃k+1(µ), µ)‖ < K3µ
k+1, K3 > 0. These

estimates provide the validity of Lemma 2 on [θ(µ), θ̃k+1(µ)]; next, it follows from the Vasil’eva
theorem [7] that the asymptotic expansions of the solutions of the Cauchy problem (1), (14) and
(1), (5) for u = −1 by the method of boundary functions for t ∈ [θ̃k+1(µ), T ] coincide up to terms
of order µk, and the estimates (10) are valid on the closed intervals [0, θ(µ)] and [θ̃k+1(µ), T ].

The proof in the case θ̃k+1(µ) < θ(µ) can be performed in a similar way.
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