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SUMMARY

In this paper, a higher-order sliding-mode observer is proposed to estimate exactly the observable states
and asymptotically the unobservable ones in multi-input–multi-output nonlinear systems with unknown
inputs and stable internal dynamics. In addition the unknown inputs can be identified asymptotically.
Numerical examples illustrate the efficacy of the proposed observer. Copyright# 2007 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

State observation and unknown input reconstruction for multi-input–multi-output (MIMO)
nonlinear systems is one of the most important problems in modern control theory [1]. The
problem of robust state observation continues to be actively studied using sliding modes, see, for
example, [2–5]. The corresponding implementation effects were extensively studied in [6].
Sliding-mode observation strategies possess such attractive features as

* insensitivity (more than robustness) with respect to unknown inputs;
* the possibility of using the equivalent output error injection as a further source of

information.
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Step-by-step vector-state reconstruction by means of sliding modes has been presented in
[2, 7–9]. These observers are based on a transformation to a triangular or the Brunovsky
canonical form and successive estimation of the state vector using the equivalent output error
injection. The corresponding conditions for linear time-invariant systems with unknown inputs
were obtained in [4, 9–11]. Moreover, the above-mentioned observers theoretically ensure finite-
time convergence for all system states. Unfortunately, the realization of step-by-step observers is
based on conventional sliding modes, leading to filtration at each step due to discretization or
non-idealities of the analog devices used to implement the schemes. In order to avoid the
necessity for filtration, hierarchical observers were recently developed in [10, 12] iteratively using
the continuous super-twisting algorithm, based on second-order sliding-mode ideas [13].

The super-twisting structure is also used in the modified version of the step-by-step observer
in [9]. Unfortunately, these observers are also not free of drawbacks: the super-twisting
algorithm provides the best possible asymptotic accuracy of the derivative estimation at each
single realization step [13]. In particular, the accuracy is proportional to the sampling step d for
the discrete realization in the absence of noise, and to the square root of the input noise
magnitude if the discretization error is negligible. The step-by-step and hierarchical observers
use the output of the super-twisting algorithm as a noisy input at the next step. As a result, the
overall observation accuracy is of the order d1=2

r�1

; where r is the observability index of the
system. Similarly in the presence of measurement noise with magnitude e; the estimation
accuracy is proportional to e1=2

r

which requires measurement noises not exceeding 10�16 for a
fourth-order observer implementation to achieve an accuracy of 10�1:

The use of higher-order sliding-mode differentiators [14] for exact observer design for linear
systems with unknown inputs, initially transformed to the Brunovsky canonical form, is
suggested in [9]. This work has shown that the accuracies increase to d and e1=ðrþ1Þ; respectively.
In this paper, an exact observer scheme for the nonlinear systems with unknown inputs is
proposed based on two steps:

* transformation of the system to the Brunovsky canonical form;
* the application of higher-order sliding-mode differentiators for each component of the

output error vector.

The proposed scheme ensures exact finite-time state estimation of the observable variables
and asymptotic exact estimation of the unobservable variables for the case when the system has
stable internal dynamics. Also the unknown inputs can be identified asymptotically.

2. SYSTEMS DYNAMICS

Consider the following MIMO locally stable system

’x ¼ f ðxÞ þ GðxÞjðtÞ

y ¼ hðxÞ
ð1Þ

where f ðxÞ 2 Rn; hðxÞ ¼ ½h1; h2; . . . ; hm�
T 2 Rm; GðxÞ ¼ ½g1; g2; . . . ; gm� 2 Rn�m; x 2 Rn; y 2 Rm;

j 2 Rm; and gi 2 Rn
8i ¼ 1; . . . ;m are smooth vector and matrix functions defined on an open

set O � Rn:
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Assumptions ðIsidori [15]Þ
At a neighbourhood of any point x 2 O

(i) The system in (1) is assumed to have a vector relative degree r ¼ fr1; r2; . . . ; rmg; i.e.

LgjL
k
f hiðxÞ ¼ 0 8j ¼ 1; . . . ;m 8k5ri � 1 8i ¼ 1; . . . ;m

LgjL
ri�1
f hiðxÞ=0 for at least one 14j4m

ð2Þ

(ii) The m�m matrix

EðxÞ ¼

Lg1ðL
r1�1
f h1Þ Lg2 ðL

r1�1
f h1Þ � � � LgmðL

r1�1
f h1Þ

Lg1ðL
r2�1
f h2Þ Lg2 ðL

r2�1
f h2Þ � � � LgmðL

r2�1
f h2Þ

..

. ..
. ..

. ..
.

Lg1 ðL
rm�1
f hmÞ Lg2ðL

rm�1
f hmÞ � � � Lgm ðL

rm�1
f hmÞ

2
66666664

3
77777775

ð3Þ

is nonsingular;
(iii) The distribution G ¼ spanfg1; g2; . . . ; gmg is involutive.

A well-known property of systems of the form in (1) which satisfy assumptions (i) and (ii) is
summarized in the following lemma [15].

Lemma
Suppose that assumptions (i) and (ii) are valid for the system (1). Then the row vectors

dh1ðxÞ; dLf h1ðxÞ; . . . ;dL
r1�1
f h1ðxÞ

dh2ðxÞ; dLf h2ðxÞ; . . . ;dL
r2�1
f h2ðxÞ

..

.

dhmðxÞ;dLf hmðxÞ; . . . ;dL
rm�1
f hmðxÞ

ð4Þ

are linearly independent. &

The lemma conditions are also interpreted in [16] as the notion of local weak observability.

3. PROBLEM FORMULATION AND MAIN RESULT

The problem considered in this paper is to design an asymptotic observer that generates the
estimates #xðtÞ; #jðtÞ for the state xðtÞ; and the disturbance jðtÞ of the system (1)–(3) given the
measurements y ¼ hðxÞ; i.e.

lim
t!1
jj #xðtÞ � xðtÞjj ¼ 0 ð5Þ

lim
t!1
jj #jðtÞ � jðtÞjj ¼ 0 ð6Þ
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3.1. Coordinate transformation

The system given by (1)–(3) with an involutive distribution G ¼ spanfg1; g2; . . . ; gmg and
total relative degree r ¼

Pm
i¼1 ri5n can be presented in a new basis that is introduced as

follows:

fxT; ZTgT : xi ¼

xi1

xi2

..

.

xiri

0
BBBBBBB@

1
CCCCCCCA
¼

fi
1ðxÞ

fi
2ðxÞ

..

.

fi
ri
ðxÞ

0
BBBBBBB@

1
CCCCCCCA
¼

hiðxÞ

Lf hiðxÞ

..

.

Lri�1
f hiðxÞ

0
BBBBBBB@

1
CCCCCCCA
2 Rri 8i ¼ 1; . . . ;m

x ¼

x1

x2

..

.

xm

0
BBBBBBB@

1
CCCCCCCA
; Z ¼

Z1

Z2

..

.

Zn�r

0
BBBBBB@

1
CCCCCCA ¼

frþ1ðxÞ

frþ2ðxÞ

..

.

fnðxÞ

0
BBBBBB@

1
CCCCCCA ð7Þ

It is well known (see Proposition 5.1.2 on p. 222 of [15]) that if assumption (i) is satisfied then it
is always possible to find n� r functions frþ1ðxÞ; . . . ;fnðxÞ such that the mapping

FðxÞ ¼ colff1
1ðxÞ; . . . ;f

1
r1
ðxÞ; . . . ;fm

1 ðxÞ; . . . ;f
m
rm
ðxÞ;frþ1ðxÞ; . . . ;fnðxÞg 2 Rn

ð8Þ

is a local diffeomorphism in a neighbourhood of any point x 2 %O � O � Rn; which means

x ¼ F�1ðx; ZÞ ð9Þ

Furthermore, for a system given by (1)–(3) with an involutive distribution G ¼ spanfg1; g2; . . . ;
gmg i.e assumption (iii) it is always possible to identify the functions frþ1ðxÞ; . . . ;fnðxÞ in such a
way that

LgjfiðxÞ ¼ 0 8i ¼ rþ 1; . . . ; n 8j ¼ 1; . . . ;m ð10Þ

in a neighbourhood of any point x 2 %O � O � Rn:
Taking into account Equations (7) and (8), the system given by (1)–(3) with an involutive

distribution G ¼ spanfg1; g2; . . . ; gmg and a total relative degree r ¼
Pm

i¼1 ri5n can be written in
the form

’xi ¼ Lix
i
þ ci
ðx; ZÞ þ liðx; Z;jðtÞÞ 8i ¼ 1; . . . ;m ð11Þ

’Z ¼ qðx; ZÞ ð12Þ
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where

Li ¼

0 1 0 � � � 0

0 0 1 � � � 0

..

. ..
. ..

.
� � � ..

.

0 0 0 0 0

2
6666664

3
7777775 2 Rri�ri ; ci

ðx; ZÞ ¼

0

0

..

.

Lri
f hiðxÞ

0
BBBBBB@

1
CCCCCCA ¼

0

0

..

.

Lri
f hiðF

�1ðx; ZÞÞ

0
BBBBBBB@

1
CCCCCCCA

liðx; Z;jðtÞÞ ¼

0

0

..

.

Pm
j¼1 LgjL

ri�1
f hiðxÞjjðtÞ

0
BBBBBBB@

1
CCCCCCCA
¼

0

0

..

.

Pm
j¼1 LgjL

ri�1
f hiðF�1ðx; ZÞÞjjðtÞ

0
BBBBBBB@

1
CCCCCCCA
8i ¼ 1; . . . ;m

Remark
In this paper, it has been assumed that the total relative degree r ¼

Pm
i¼1 ri5n: The

developments, however, are also applicable to the case when r ¼ n with minor modifications.
In this situation, there will be no internal dynamics and all the results will be finite time in
nature.

3.2. Internal dynamics

It is assumed that for some norm-bounded x ¼ %xðtÞ : jj%xðtÞjj4Lx; there exists an unique and
norm-bounded solution of the equations of the internal dynamics (12) Z ¼ %ZðtÞ : jj%ZðtÞjj4LZ:

This norm-bounded solution of the internal dynamics (12) is assumed to be locally
asymptotically stable: this means that, first of all, it is stable in a Lyapunov sense and, second,
there exists an e > 0 such that 8%Zðt0Þ satisfying jjZðt0Þ � %Zðt0Þjj5e) limt!1 jjZðtÞ � %ZðtÞjj ¼ 0:
Such an assumption guarantees that there exists a domain Y : jjZðt0Þjj 2 LZðt0Þ so that a solution
Z ¼ Zðt; t0Þ; Zðt0Þ 2 Y; asymptotically converges to a solution Z ¼ %Zðt; t0Þ with some unknown
initial condition %Zðt0Þ 2 Y and forced by x ¼ %xðtÞ; i.e. limt!1 jjZðt; t0Þ � %ZðtÞjj ¼ 0:

Remark
Of course, not all systems satisfy this assumption (in the same way not all systems have stable
zero dynamics for instance). In addition, for general nonlinear systems, this requirement may be
difficult to check.

3.3. Higher-order sliding-mode observer

Definition 1
System (1)–(3) is said to be locally detectable, if

* total relative degree is r ¼
Pm

i¼1 ri5n;
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* the distribution G ¼ spanfg1; g2; . . . ; gmg is involutive;
* the internal dynamics (12) are locally asymptotically stable.

The derivatives xijðtÞ 8i ¼ 1; . . . ;m 8j ¼ 1; . . . ; ri of the measured outputs yi ¼ hiðxÞ can be
estimated in finite time by the higher-order sliding-mode differentiator [14]. This can be written
in the form

’zi0 ¼ vi0

vi0 ¼ �l
i
0jz

i
0 � yiðtÞj

ðri=ðriþ1ÞÞ sign ðzi0 � yiðtÞÞ þ zi1

’zi1 ¼ vi1

vi1 ¼ �l
i
1jz

i
1 � vi0j

ððri�1Þ=riÞ sign ðzi1 � vi0Þ þ zi2

..

.

’ziri�1 ¼ viri�1

viri�1 ¼ �l
i
ri�1
jziri�1 � viri�2j

ð1=2Þ sign ðziri�1 � viri�2Þ þ ziri

’ziri ¼ �l
i
ri
sign ðziri � viri�1Þ

ð13Þ

for i ¼ 1; . . . ;m: By construction,

#x11 ¼ #f1
1ðxÞ ¼ z10; . . . ;

#x1r1 ¼
#f1
r1
ðxÞ ¼ z1r1�1;

#’x1r1 ¼
#’f1
r1
ðxÞ ¼ z1r1

..

.

#xm1 ¼ #fm
1 ðxÞ ¼ zm0 ; . . . ;

#xmrm ¼
#fm
rm
ðxÞ ¼ zmrm�1;

#’xmr1 ¼
#’fm
rm
ðxÞ ¼ z1rm

ð14Þ

Therefore, the following exact estimates are available in finite time:

#xi ¼

#xi1
#xi2

..

.

#xiri

0
BBBBBBB@

1
CCCCCCCA
¼

#fi
1ðxÞ

#fi
2ðxÞ

..

.

#fi
ri
ðxÞ

0
BBBBBBB@

1
CCCCCCCA
2 Rri 8i ¼ 1; . . . ;m #x ¼

#x1

#x2

..

.

#xm

0
BBBBBBB@

1
CCCCCCCA
2 Rr

ð15Þ

Next, integrating Equation (12), with #x replacing x

’#Z ¼ qð#x; #ZÞ ð16Þ

and with some initial condition #Zðt0Þ 2 Y from the stability domain Y of the internal dynamics
(12), a solution #ZðtÞ is obtained. This solution #ZðtÞ converges asymptotically to an unknown
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(unobservable) solution ZðtÞ that passes through an unknown initial condition Zðt0Þ: In other
words, the asymptotic estimate #ZðtÞ of ZðtÞ can be obtained locally:

#Z ¼

#Z1

#Z2

..

.

#Zn�r

0
BBBBBB@

1
CCCCCCA ¼

#frþ1ðxÞ

#frþ2ðxÞ

..

.

#fnðxÞ

0
BBBBBBB@

1
CCCCCCCA

ð17Þ

Finally, the asymptotic estimate for the mapping (8) is identified as

Fð #xÞ ¼ colf #f1
1ð #xÞ; . . . ;

#f1
r1
ð #xÞ; . . . ; #fm

1 ð #xÞ; . . . ;
#fm
rm
ð #xÞ; #frþ1ð #xÞ; . . . ; #fnð #xÞg 2 Rn

ð18Þ

The asymptotic estimate #x of the state vector x can be easily identified via Equations (9) and
(18) as

#x ¼ F�1ð#x; #ZÞ ð19Þ

It is worth noting that the operation (19) is also local and can be performed, for
example, by inverting a Jacobian of the map (18) that is nonsingular in a vicinity of some
point x:

Combining the last equations in the ith subsystem in (11) in a new system, we obtained:

’xiri ¼ Lri
f hiðF

�1ðx; ZÞÞ þ
Xm
j¼1

LgjL
ri�1
f hiðF�1ðx; ZÞÞjjðtÞ 8i ¼ 1; . . . ;m ð20Þ

Since the finite-time exact estimates #’xir1 of ’xir1 8i ¼ 1; . . . ;m are available via the higher-order
sliding-mode differentiator (13), (14), and using the estimates #x; #Z for x; Z in (20), the asymptotic
estimate #jðtÞ of the disturbance jðtÞ in (1) can be identified

#jðtÞ ¼ E�1ðF�1ð#x; #ZÞÞ

#’x1r1
#’x2r2

..

.

#’xmrm

0
BBBBBBBB@

1
CCCCCCCCA
�

Lr1
f h1ðF

�1ð#x; #ZÞÞ

Lr2
f h2ðF

�1ð#x; #ZÞÞ

..

.

Lrm
f hmðF�1ð#x; #ZÞÞ

0
BBBBBBBB@

1
CCCCCCCCA

2
666666664

3
777777775

ð21Þ

Based on the developments in this section, the following theorems are true.

Theorem 1
If system (1)–(3) is locally detectable in the sense of Definition 1, the higher-order sliding-mode
observer (13), (14), (19), (21) asymptotically estimates the state x and the disturbance jðtÞ in the
system, and hence the goals of the observer design (5) and (6) are met.

When the total relative degree of the system is r ¼ n; all the states are estimated in finite time.
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Theorem 2
Suppose that system (1)–(3) is locally detectable in the sense of Definition 1 and the measured
outputs are corrupted with noise which is a Lebesgue-measurable function of time with maximal
magnitude e: Then the higher-order sliding-mode observer (13), (14), (19), (21) ensures a state
observation error accuracy of the order of e2=ð%rþ1Þ; %r ¼ max ri; i ¼ 1; . . . ;m:

Theorem 3
Suppose that the outputs of system (1)–(3) are measured at discrete sampling times
with a sufficiently small sampling interval d: Then the higher-order sliding-mode observer
(13), (14), (19), (21), after some transient, ensures a state observation error accuracy of the
order of d2:

Remark
When the total the relative degree of the system r ¼ n; all the states are estimated in finite time.

4. EXAMPLES

Example 1
Consider a satellite system which is modelled as in [17] as

’r ¼ v

’v ¼ ro2 �
kgM

r2
þ d

’o ¼ �
2vo
r
�

yo
m

where r is the distance between the satellite and the Earth centre, v is the radial speed
of the satellite with respect to the Earth, o is the angular velocity of the satellite around the
Earth, m and M are the mass of the satellite and the Earth, respectively, kg represents
the universal gravity coefficient, and y is the damping coefficient. The quantity d which
affects the radial velocity equation is assumed to be a disturbance which is to be
reconstructed/estimated. Let x :¼ colðx1; x2; x3Þ :¼ ðr; v;oÞ: The satellite system can be rewritten
as follows:

’x ¼

x2

x1x
2
3 �

k1

x21

�
2x2x3

x1
� k2x3

0
BBBBBB@

1
CCCCCCAþ

0

1

0

0
BB@

1
CCAdðtÞ ð22Þ

y ¼ x1 ð23Þ

where y is the system output, k1 ¼ kgM and k2 ¼ y=m:
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By direct computation, it follows that

LghðxÞ ¼ 0; LgLf hðxÞ ¼ 1

and thus the system (22)–(23) has global relative degree 2. Choose the coordinate
transformation as T : x1 ¼ x1; x2 ¼ x2; Z ¼ x21x3: Note that for x1=0; this transformation is
invertible and an analytic expression for the inverse can be obtained as x1 ¼ x1; x2 ¼ x2; x3 ¼
Z=x21; since x1 ¼ r is the distance of the satellite from the centre of the Earth x1=0: It follows
that in the new coordinate system colðx1; x2; ZÞ; system (22)–(23) can be described by

’x1 ¼ x2

’x2 ¼
Z2

x31
�

k1

x21
þ d

’Z ¼ �k2Z

Clearly, the system internal dynamics are asymptotically stable since k2 > 0: Therefore, system
(21)–(22) is locally asymptotically observable. From (13) and (14), the higher-order sliding-
mode differentiator is described by

’z10 ¼ n10

n10 ¼ �l
1
0jz

1
0 � yj2=3 sign ðz10 � yÞ þ z11

’z11 ¼ n11

n11 ¼ �l
1
1jz

1
1 � n10j

1=2 sign ðz11 � n10Þ þ z12

’z12 ¼ �l
1
2 sign ðz

1
2 � n11Þ

Define #x1 ¼ z10;
#x2 ¼ z11;

’#x2 ¼ z12: Then,

#x :¼
#x1

#x2

2
4

3
5 2 R2

is an estimate of x and the estimate for Z can be obtained from the equation ’#Z ¼ �k2 #Z:
Therefore, the estimate of the disturbance dðtÞ is available online, and from (21),

#dðtÞ ¼ #’x2 �
#Z2

#x31
þ

k1
#x21

is a reconstruction for the disturbance dðtÞ: As in [17], the parameters have been chosen as
follows: m ¼ 10;M ¼ 5:98� 1024; kg ¼ 6:67� 10�11 and y ¼ 2:5� 10�5: For simulation pur-
poses, choose dðtÞ ¼ e�0:002tsinð0:02tÞ: The differentiator gains lji are chosen as l10 ¼ 2 and l11 ¼
l12 ¼ 1: In the following simulation, the initial values x0 ¼ ð10

7; 0; 6:3156� 10�4Þ for the plant
states in the original coordinates whilst for the observer z0 ¼ ð1:001� 107; 0; 1Þ and #Z0 ¼
6:3156� 10�4 (in the transformed coordinate system). Figures 1 and 2 show that the states and
the disturbance signal dðtÞ can be reconstructed faithfully.
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Example 2
Consider the fifth-order nonlinear system

’x ¼

�2x1 � x2

x1

�x33 � 2x3 � x4

x3

ðx2 � 4Þ
2x5 þ sin x5

2þ cos x5

2
66666666664

3
77777777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
f ðxÞ

þ

1 0

0 0

0 1þ ð2x5 þ sin ðx5ÞÞ
2

0 0

0 0

2
666666664

3
777777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
GðxÞ:¼½g1ðxÞ;g2ðxÞ�

j1ðtÞ

j2ðtÞ

" #
|fflfflfflfflffl{zfflfflfflfflffl}

jðtÞ

ð24Þ

y1 ¼ h1ðxÞ ¼ x2

y2 ¼ h2ðxÞ ¼ x4
ð25Þ

in the domain O ¼ fðx1;x2;x3;x4; x5Þj jx2j53:5;x1; x3; x4; x5 2 Rg; where x 2 R5 is the system
state, y ¼ colðy1; y2Þ is the system output, and jðtÞ ¼ ½j1ðtÞj2ðtÞ�

T is the system input which will
be reconstructed.

By direct computation, it follows that

Lg1h1 ¼ Lg2h2 ¼ 0

0 200 400 600 800 1000
−20

−10

0

10

20

time [sec]

d(t)
reconstruction of d(t)

0 200 400 600 800 1000
−1

−0.5

0

0.5

1

time [sec]

d(t)
reconstruction of d(t)

Figure 1. The disturbance signal dðtÞ and its reconstruction signal #dðtÞ:
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and

Lg1Lf h1 Lg2Lf h1

Lg1Lf h2 Lg2Lf h2

" #
¼

1 0

0 1þ ð2x5 þ sin x5Þ
2

" #

which is nonsingular in R5: Therefore, system (24)–(25) has relative degree f2; 2g: Further,
F ¼ spanfg1; g2g is an involutive distribution and thus Assumptions (i)–(iii) are satisfied. This
implies that system (24)–(25) is weakly observable in the domain O: Then, under the coordinate
transformation: x11 ¼ x2; x

1
2 ¼ x1; x

2
1 ¼ x4; x

2
2 ¼ x3; Z ¼ 2x5 þ sin x5; the system (22)–(23) in the

new coordinate system can be described by

’x11 ¼ x12

’x12 ¼ �2x
1
2 � x11 þ j1ðtÞ

’x21 ¼ x22

’x22 ¼ �ðx
2
2Þ

3
� x21 � 2x22 þ ð1þ Z2Þj2ðtÞ

’Z ¼ ðx11 � 4ÞZ
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Figure 2. The response of system states and their estimates.
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It is clear that it is not possible to obtain an analytic inverse for the inverse transformation
because the fifth coordinate x5 cannot be expressed analytically as a function of Z since Z ¼
2x5 þ sin x5:

Clearly, the system internal dynamics are asymptotically stable in the domain O: Therefore,
system (24)–(25) is locally asymptotically observable. From (13) and (14), the high-order sliding-
mode differentiator (13) is described by

’z10 ¼ n10

n10 ¼ �l
1
0jz

1
0 � y1j

2=3 sign ðz10 � y1Þ þ z11

’z11 ¼ n11

n11 ¼ �l
1
1jz

1
1 � n10j

1=2 sign ðz11 � n10Þ þ z12

’z12 ¼ �l
1
2 sign ðz

1
2 � n11Þ

’z20 ¼ n20

n20 ¼ �l
2
0jz

2
0 � y2j

2=3 sign ðz20 � y2Þ þ z21

’z21 ¼ n21

n21 ¼ �l
2
1jz

2
1 � n20j

1=2 sign ðz21 � n20Þ þ z22

’z22 ¼ �l
2
2 sign ðz

2
2 � n21Þ

Define #x11 ¼ z10;
#x12 ¼ z11;

#’x12 ¼ z12;
#x21 ¼ z20;

#x22 ¼ z21;
#’x22 ¼ z22: Then,

#x :¼
#x1

#x2

2
4

3
5 :¼

#x11
#x12
#x21
#x22

2
6666664

3
7777775 2 R4

is an estimate of x and the estimate for Z can be obtained from equation

’#Z ¼ ð#x11 � 4Þ#Z

Therefore,

#jðtÞ ¼
’#x12 þ #x11 þ 2#x12

ð
’#x22 þ ð#x

2
2Þ

2
þ #x21 þ 2#x22Þ=ð1þ #Z2Þ

2
4

3
5

is available online and from (19) it is a reconstruction for the input jðtÞ: For simulation
purposes, choose j1ðtÞ ¼ sinð0:5tÞ and j2ðtÞ ¼ 0:5 sinð0:5tÞ þ 0:5 cos t: From [16], lji can be
chosen as l10 ¼ l20 ¼ 3; l11 ¼ l21 ¼ 1:5; and l12 ¼ l22 ¼ 1:1: The simulation with the initial
values x0 ¼ ð0; 0:1; 0;�0:2; 0:2Þ; z0 ¼ ð0; 0; 0;�0:2; 0Þ; and #Z0 ¼ 0:5 are shown in the following
figures. Figure 3 shows the states and the estimates in the original coordinate system. Here
only asymptotic convergence is achieved. To obtain the values of #x in terms of #x and #Z;
it has been necessary to embed in the simulation an iteration scheme to extract #x5 from
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#Z ¼ 2 #x5 þ sin #x5 given #Z: Figure 4 shows the estimate of the unknown inputs. From the
simulation, it is observed that the proposed strategy can reconstruct the input faithfully after
approximately 1:1 s:

0 1 2 3 4 5 6 7 8 9 10
-0.25
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0
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0.1

time [sec]
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Figure 3. The original state variables xðtÞ and their estimates #xðtÞ:
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Figure 4. The inputs of system (22)–(23) and their reconstruction signal.
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5. CONCLUSIONS

In this paper, an exact observer scheme for nonlinear locally detectable systems with unknown
inputs has been proposed based on higher-order sliding-mode concepts. The approach is
applicable for a class of nonlinear systems with unknown inputs, which enter affinely. The
systematic design approach consists of two steps: first the transformation of the system to the
Brunovsky canonical form; and second the application of higher-order sliding-mode
differentiators for each coordinate of the output vector error.

The proposed scheme ensures exact finite state estimation for the observable variables and
asymptotic exact estimation of the unobservable variables for the case when the system has
stable internal dynamics. When the total the relative degree of the system r ¼ n; all the states are
estimated in finite time. In addition to estimating the states, the unknown inputs can also be
identified asymptotically.
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