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SUMMARY

Response of systems with the second-order sliding-mode (SOSM) control algorithms to an external
harmonic excitation is analysed in the frequency domain. The analysis is done via application of the
concept of the equivalent gain of a nonlinear function. The equivalent gain is used as a model of
propagation of averaged values of signals through nonlinear elements of the system. Two SOSM
algorithms: twisting and super-twisting are analysed. The results are presented in the format of the
conventional amplitude and phase frequency response. Copyright # 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Chattering is usually an undesirable effect and displays system performance deterioration in
comparison with ideal sliding [1, 2]. However, this possibly is not the only manifestation of the
system performance deterioration caused by the presence of parasitic dynamics. In first-order
sliding mode (SM) control systems performance deterioration was discovered not only in the
autonomous mode but also with respect to external input tracking [3].

The second-order sliding-mode (SOSM) algorithms were originally designed as a tool for the
chattering attenuation [4, 5]. However, in [6, 7] was shown that the system controlled by a SOSM
algorithm exhibits chattering in the presence of parasitic dynamics. Since every real system
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always possesses parasitic dynamics of some kind the chattering phenomenon is an unavoidable
feature of every real SOSM control system [6, 7].

Therefore, analysis of the closed-loop performance of systems governed by SOSM with
respect to external input tracking would be of some interest too. In the autonomous mode a
SOSM system exhibits fast periodic motions or chattering [6, 7]. If a relatively slow input is
applied to such a system the system would exhibit the mode that would be a combination of
chattering and external input effect (propagation), so that the output of the SOSM controller
would be a pulse-width-modulated signal, and the output of the system would be a combination
(sum) of the somewhat distorted (lagged and attenuated) input and the chattering component
[8]. The aim of this paper is to assess those distortions of the input signal propagation. In
particular, we aim to assess SOSM control system response to harmonic signals of different
frequencies and amplitudes.

Analysis of input–output properties of the SOSM system can be done via the use of the so-
called linearization due to the ‘chatter smoothing effect’ [8, 9]. With this approach, for analysis
of input–output properties of the system with respect to external inputs, the nonlinear functions
can be replaced with equivalent gains that describe the propagation of averaged values through
those nonlinear functions [3, 8, 9]. The present paper proposes this kind of analysis. The two
most popular SOSM algorithms: twisting and super-twisting are analysed with the use of the
approach proposed below.

2. TWISTING ALGORITHM AND ITS DESCRIBING FUNCTION ANALYSIS

The twisting algorithm [4, 5] is one of the simplest and most popular algorithms among the
SOSM algorithms. There are two ways of using the twisting algorithm [4, 5]: to apply it to the
principal dynamics of relative degree two, or to apply it to the principal dynamics of relative
degree one and introduce an integrator in series with the plant (twisting-as-a-filter). For the
principal dynamics of relative degree two, it can be formulated as follows. Let the plant (or the
plant plus actuator) be given by the following differential equations which would comprise
principal and parasitic dynamics:

’xðtÞ ¼ AxðtÞ þ BuðtÞ; y ¼ Cx; s ¼ f � y ð1Þ

where A; B and C are matrices of respective dimensions, x 2 Rn; u 2 R1; f is the input, y is the
output of the plant, s is the error signal. The control u of the twisting algorithm is given as
follows [4, 5]:

uðtÞ ¼ c1 � signðsÞ þ c2 � signð ’sÞ ð2Þ

where c1 and c2 are positive values, c1 > c2 > 0: Figure 1 shows the system given by Equations (1)
and (2), where the reference signal f ¼ f0 � 0:We assume that the plant is asymptotically stable,
and is a low-pass filter. We shall also use the plant description in the form of the transfer
function WðsÞ; which can be obtained from formulas (1) as follows: WðsÞ ¼ CðIs� AÞ�1B:

Assume that in the autonomous mode (f � 0) a periodic motion occurs in the system with the
twisting algorithm and find the parameters of this periodic motion. The system can be analysed
with the use of the Describing Function (DF) method. We assume that the output of the plant
displays harmonic oscillation. Find the DF N of the twisting algorithm as the first harmonic of
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the periodic control signal divided by the amplitude of sðtÞ (or of yðtÞ) [9]:

N ¼
o
pa1

Z 2p=o

0

uðtÞ sinot dtþ j
o
pa1

Z 2p=o

0

uðtÞ cosot dt ð3Þ

where a1 is the amplitude of the input to the nonlinearity (of yðtÞ in our case) and o¼O is the
frequency of yðtÞ: However, the twisting algorithm can be analysed as the parallel connection of
two ideal relays where the input to the first relay is the sliding variable and the input to the
second relay is the derivative of the sliding variable. The DFs for those nonlinearities are known
[9]. For the first relay, the DF is: N1 ¼ 4c1=pa1; and for the second relay it is: N2 ¼ 4c2=pa2;
where a2 is the amplitude of ds=dt (or of dy=dt). Also, take into account the relationship
between y and dy=dt in the Laplace domain, which gives the relationship between the
amplitudes a1 and a2: a2 ¼ a1O; where O is the frequency of the oscillation. Using the notation
of the twisting algorithm, we can rewrite this equation as follows:

N ¼ N1 þ sN2 ¼
4c1

pa1
þ jO

4c2

pa2
¼

4

pa1
ðc1 þ jc2Þ ð4Þ

where s ¼ jO: Let us note that the DF of the twisting algorithm depends on the amplitude value
only. This suggests the technique of finding the parameters of the limit cycle}via the solution of
the harmonic balance equation [9] for O and a1:

WðjOÞNða1;OÞ ¼ �1 ð5Þ

where WðjoÞ;o 2 ½0;1Þ is the complex frequency response (Nyquist plot) of the plant. Using
the notation of the twisting algorithms, this equation can be rewritten as follows:

WðjOÞ ¼ �
1

Nða1;OÞ
ð6Þ

where the function at the right-hand side is given by

�
1

Nða1;OÞ
¼ �

1

Nða1Þ
¼ pa1

�c1 þ jc2

4ðc21 þ c22Þ

The negative reciprocal of the DF is a function of the amplitude only and does not depend on
the frequency of the oscillation. Equation (5) is equivalent to the condition of the complex
frequency response characteristic of the open-loop system intersecting the real axis in the point
ð�1; j0Þ: The graphical illustration of the technique of solving equation (5) is given in Figure 2.
The function �1=N is a straight line the slope of which depends on c2=c1 ratio. This line is

Figure 1. Diagram of twisting algorithm.
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located in the second quadrant of the complex plane. The point of intersection of this function
and of the Nyquist plot WðjoÞ provides the solution of the periodic problem. This point gives
the frequency of the oscillation and the amplitude a1: Therefore, if the transfer function of the
plant (or plant plus actuator) has relative degree higher than two, a periodic motion occurs in
such a system. For this reason, if an actuator of first or higher order is added to the plant of
relative degree two driven by the twisting controller a periodic motion occurs in the system. The
conditions of the existence of a periodic solution in a system with the twisting controller can be
derived from analysis of Figure 2 Obviously, every system with a plant of relative degree three
and higher would have a point of intersection with the negative reciprocal of the DF of the
twisting algorithm and, therefore, a periodic solution would exist. Another modification of the
twisting algorithm is its application to a plant with relative degree one with the introduction of
the integrator. This is usually referred to as the ‘twisting-as-a-filter’ algorithm. The above
reasoning is applicable in this case too. The introduction of the integrator in series with the plant
makes the relative degree of this part of the system equal to two. As a result, any actuator
introduced in the loop increases the overall relative degree to at least three. In this case, there
always exists a point of intersection of the Nyquist plot of the serial connection of the actuator,
the plant and the integrator and of the negative reciprocal of the DF of the twisting algorithm
Figure 2. Thus, if an actuator of first or higher order is added to the plant with relative degree
one, a periodic motion occurs in the system with the twisting-as-a-filter-algorithm.

3. PROPAGATION OF SLOW INPUT THROUGH THE SYSTEM
WITH TWISTING ALGORITHM

Let us describe propagation of averaged signals through the nonlinear functions using the
concept of the equivalent gain [8, 9] Assume that the input to the first relay is an asymmetric
harmonic signal

sðtÞ ¼ s0 þ a1 � sinðOtÞ ð7Þ

Define the equivalent gain as the derivative of the averaged output of the nonlinearity with
respect to the averaged input noting that the averaged input is s0: For the first relay,

Figure 2. Finding a periodic solution in a system with the twisting algorithm.
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the equivalent gain will be [8, 9]:

kn1 ¼
@u1
@s0

����
s0¼0
¼

2 � c1

p � a1
ð8Þ

For the second relay, we also assume an asymmetric harmonic input. The equivalent gain can be
obtained as follows:

kn2 ¼
@u2
@ ’s0

����
s0¼0
¼

2 � c2

p � a1O
ð9Þ

With those gains available, we can build now the linearized model of averaged motions in the
system with the twisting algorithm (Figure 3). The transfer function of the closed-loop system is
as follows:

Wf0�yðsÞ ¼
ðkn1 þ skn2ÞCðsI � AÞ�1B

1þ ðkn1 þ skn2ÞCðsI � AÞ�1B
ð10Þ

Figure 3. Block diagram of the system with the linearized twisting algorithm.
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Figure 4. Closed-loop frequency response for the case of plant of relative degree two
WpðsÞ ¼ 1=ðs2 þ sþ 1Þ and actuator of relative degree one WaðsÞ ¼ 1=ð0:01sþ 1Þ;

controlled by twisting algorithm.
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From the formula of the transfer function, all characteristics of the closed-loop frequency
response can be easily obtained. Examples of a few magnitude frequency responses are given in
Figures 4–7. The amplitudes of the relays are selected as c1 ¼ 0:8 and c2 ¼ 0:6: Analysis of those
characteristics shows that up to a certain frequency the system driven by the twisting algorithm
provides a good closed-loop performance (quality of external signal tracking). However, at
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Figure 5. Closed-loop frequency response for the case of plant of relative degree two WpðsÞ ¼ 1=ðs2 þ sþ 1Þ
and actuator of relative degree two WaðsÞ ¼ 1=ð0:0001s2 þ 0:01sþ 1Þ; controlled by twisting algorithm.
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Figure 6. Closed-loop frequency response for the case of plant of relative
degree one WpðsÞ ¼ ðsþ 1Þ=ðs2 þ sþ 1Þ and actuator of relative degree one

WaðsÞ ¼ 1=ð0:01sþ 1Þ; controlled by twisting-as-a-filter algorithm.
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higher frequencies the quality deteriorates, and the higher the frequency the lower the quality of
tracking.

4. SUPER-TWISTING ALGORITHM AND ITS DF ANALYSIS

4.1. DF of super-twisting algorithm

The super-twisting algorithm is one of the popular algorithms among the SOSM algorithms. It
is used for the principal dynamics of relative degree one. The control uðtÞ for the super-twisting
algorithm is given as a sum of two components [5]

uðtÞ ¼ u1ðtÞ þ u2ðtÞ ð11Þ

’u1 ¼ �g signðsÞ

u2 ¼
�ljs0jr signðsÞ if jsj > s0

�ljsjr signðsÞ if jsj4s0

(

where a; r and s0 are design parameters, 0:54r51: The system under analysis can be
represented in the form of the block diagram as in Figure 8. For an arbitrary value of the power
r in (11), the formula of the DF of such nonlinear function can be given as follows:

N2 ¼
2lar�1y

p

Z p

0

ðsin cÞrþ1 dc ¼
2lar�1yffiffiffi

p
p

Gðr=2þ 1Þ

Gðr=2þ 1:5Þ
ð12Þ
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Figure 7. Closed-loop frequency response for the case of plant of relative
degree one WpðsÞ ¼ ðsþ 1Þ=ðs2 þ sþ 1Þ and actuator of relative degree two
WaðsÞ ¼ 1=ð0:0001s2 þ 0:01sþ 1Þ; controlled by twisting-as-a-filter algorithm.
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where ay is the amplitude of variable s (of y), ay4s0 (that is considered the most important
range of the amplitude values for the analysis of the steady state) and G is the gamma-function
[10]. With the square root nonlinearity ðr ¼ 0:5Þ; the DF formula can be derived as

N2 ¼
2l
pay

Z p

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ay sin c

p
sin c dc

¼
2lffiffiffiffiffiffiffipay
p

Gð1:25Þ
Gð1:75Þ

�
1:1128lffiffiffiffiffi

ay
p ð13Þ

The DF of the first component of the super-twisting algorithm can be written as follows:

N1 ¼
4g
pay

1

jo

which is a result of the cascade connection of the ideal relay having the DF equal to 4g=pay [7]
and the integrator with the transfer function 1=s (for the harmonic signal the Laplace variable s
can be replaced with jo). Taking into account both control components, we can rewrite the DF
of the super-twisting algorithms as follows:

N ¼ N1 þN2 ¼
4g
pay

1

jo
þ

1:1128lffiffiffiffiffi
ay
p ð14Þ

Let us note that the DF of the super-twisting algorithm depends on both: the amplitude and the
frequency values. The parameters can be found via the solution of the harmonic balance
equation (5), where the DF N is given by (14). The function at the negative reciprocal of the DF
can be represented by the following formula:

�
1

Nðay;oÞ
¼

1

1:1128
lffiffiffiffiffi
ay
p þ

4g
pay

1

jo

¼ �

0:8986

ffiffiffiffiffi
ay
p

l
þ j1:1329

g

l2
1

o

1þ 1:3092
g2

l2
1

ayo2

ð15Þ

The function �1=Nðay;oÞ is of two variables: the amplitude and the frequency. It can be
depicted as a number of plots representing the amplitude dependence, with each of those plots

Figure 8. Block diagram of the system with the super-twisting algorithm.
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corresponding to a certain frequency. The frequency range of interest lies below the frequency
corresponding to the intersection of the Nyquist plot and the real axis. The plots of function
�1=Nðay;oÞ are depicted in Figure 9. The plots 1–4 correspond to four different frequencies,
with the following relationship: o1 > o2 > o3 > o4: Each of those plots represents the
dependence of the DF on the amplitude value. Function �N�1ðay;oÞ (where o ¼ const) has
an asymptote at ay!1; which is the horizontal line �j1:1329ðg=l2Þ1=o: Also, it is easy to
show that

lim
ay!0

o¼const

argð�N�1ðay;oÞÞ ¼ �p=2

5. PROPAGATION OF SLOW INPUT THROUGH THE SYSTEM WITH
SUPER-TWISTING ALGORITHM

Let us describe propagation of averaged signals through the nonlinear functions of the super-
twisting algorithm in the same way as through the twisting algorithm}using the concept of the
equivalent gain [8, 9] (Figure 10). Assume that the input to the controller is an asymmetric
harmonic signal:

sðtÞ ¼ s0 þ ay � sinðotÞ ð16Þ

The equivalent gain kn for the first nonlinear function is

kn1 ¼
2g
pay

ð17Þ

where g is the amplitude output of the relay. kn2 can be derived in accordance with its definition
as follows. The averaged output of the second nonlinearity is

v20 ¼
1

T

Z T

0

jsðtÞjr dt ð18Þ

If r ¼ 0:5 (that is considered a typical value) then

v20 ¼
l
T

Z T

0

jðs0 þ ay � sinðotÞj1=2 dt ð19Þ

Figure 9. Plots of the function �1=N:
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Taking derivative of (19) results in the following formula:

kn2 ¼
@v20
@s0

����
s0¼0
¼ l

Gð1
4
Þ

2
ffiffiffiffiffi
ay
p

Gð34Þ
� l

0:8346ffiffiffiffiffi
ay
p ð20Þ

With both equivalent gains available, we can easily build the linearized model of the dynamical
system. The nonlinear functions of the super-twisting controller need to be replaced with the
respective equivalent gains for that purpose, and the subsequent analysis can be done as of a
linear system. The transfer function of the system input–outputs is defined as follows:

Wf0�yðsÞ ¼
ðkn1=sþ kn2ÞCðsI � AÞ�1B

1þ ðkn1=sþ kn2ÞCðsI � AÞ�1B
ð21Þ

The frequency response of the super-twisting controller for r ¼ 0:5; g ¼ 0:8 and l ¼ 0:6 is
shown in Figures 11 and 12.

Figure 10. Linearized model of the super-twisting algorithm.
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Figure 11. Closed-loop frequency response for the case of plant of relative
degree one WpðsÞ ¼ ðsþ 1Þ=ðs2 þ sþ 1Þ and actuator of relative degree one

WaðsÞ ¼ 1=ð0:01sþ 1Þ; controlled by super-twisting algorithm.
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6. FREQUENCY-DOMAIN ANALYSIS OF DIFFERENTIATOR BASED ON
SUPER-TWISTING ALGORITHM

Consider now a practical real-time differentiation problem. Let input signal f ðtÞ be a measurable
locally bounded continuously differentiable function defined on ½0;1Þ: Let us apply the super-
twisting algorithm [5, 11] to keep f ðtÞ � y ¼ 0: The averaged control u0ðtÞ would be the
derivative of f ðtÞ if the plant is chosen to be the integrator. The algorithm itself is given by
expression (13), the principal dynamics will be the integrator, and the parasitic dynamics will be
denoted by the transfer function WðsÞ [12]. Therefore, the plant dynamics (that would include
the principal and parasitic dynamics) are given by the following transfer function: WðsÞ=s
(Figure 13). Compute the frequency response of the differentiator for g ¼ 1:5 and l ¼ 1:1: As
per Equation (21), the transfer function of the differentiator (affected by parasitic dynamics
WðsÞ) can be given as follows:

WfðtÞ�yðsÞ ¼
ðkn1 þ skn2ÞsWðsÞ

s2 þ ðkn1 þ skn2ÞWðsÞ
ð22Þ

The frequency response of the differentiator (with the account of parasitic dynamics) is
presented in Figure 14. One can see that at lower frequencies the effect of parasitic dynamics is
small and the frequency response of the differentiator coincides with the one of the ideal
differentiator. At higher frequencies, the effect of the parasitic dynamics is revealed as the
downfall character of the magnitude response, which indicates that the differentiator has a
limited bandwidth. The results of simulations of the super-twisting algorithm based
differentiator [11] are presented in Table II. Those results closely match to the analytical results
presented in Table I.
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Figure 12. Closed-loop frequency response for the case of plant of relative
degree one WpðsÞ ¼ ðsþ 1Þ=ðs2 þ sþ 1Þ and actuator of relative degree two

WaðsÞ ¼ 1=ð0:0001s2 þ 0:01sþ 1Þ; controlled by super-twisting algorithm.
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Figure 13. Linearized model of the differentiator (WðsÞ ¼ 1 for ideal case).

Figure 14. Frequency response of the differentiator with parasitic dynamics
WðsÞ ¼ 1=ð0:0001s2 þ 0:01sþ 1Þ (lower line) and WðsÞ ¼ 1=ð0:01sþ 1Þ (upper line).

Table I. Results of DF analysis of differentiator based on super-twisting algorithm.

DF analysis

WðsÞ 1=ð0:01sþ 1Þ 1=ð0:0001s2 þ 0:01sþ 1Þ
Amplitude ay 2:43� 10�4 7:75� 10�4

Frequency O ðrad=sÞ 88:58 66:31
Equivalent gain kn1 3929.8 1232.2
Equivalent gain kn2 58.89 32.98
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7. CONCLUSIONS

The frequency-domain analysis of the SOSM control system response to external signals is
analysed with the use of the concepts of linearization via ‘chatter smoothing’ and equivalent
gain. It is shown that the systems exhibit closed-loop performance deterioration in the presence
of parasitic dynamics. This performance deterioration is frequency dependent. At lower
frequencies, the deterioration is smaller than at higher frequencies. Thus, the methodology of
performance analysis of SOSM affected by parasitic dynamics is developed based on commonly
used techniques of the transfer functions and frequency response.
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