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SUMMARY

Sufficient conditions for a robust relay delayed non-local stabilization of linear systems are found, which
relate the upper bound of an uncertainty in a time delay and the maximum of the real part of system
spectrum. Algorithm of delayed relay control gain adaptation for non-local stabilization is suggested. The
proposed algorithm suppresses bounded uncertainties in the time delay: once this relay delayed control law
for the upper bound of uncertainty in the time delay for given system is designed, we ensure non-local
stabilization for all values of the time delay less than the upper bound even in the case of a variable delay.
Copyright © 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Relay control systems are widely used due to the following main reasons:

e relay controllers suppress bounded uncertainties (see Reference [1]);
e there are control systems in which only sign of variables is observable (References [2—4]).

Time delay that usually takes place in relay and sliding mode control systems must be taken
into account for system analysis and design (see for example Reference [1]). On the other hand,
time delay does not allow to design the sliding mode control in the space of state variables.
Moreover, in References [5, 6], it was shown that even in the simplest one-dimensional delayed
relay control system only oscillatory solutions can occur. That is why the main directions in
relay delayed control are:

(a) The research of time delay compensation: Pade approximation of delay that reduces the
relay delay output tracking problem to the sliding mode control for non-minimum phase system
was suggested in Reference [7]. Roh and Oh [8] designed the sliding mode control in the space of
predictor variables (see also [9]). This approach allowed to solve eigenvalues assignment
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16 L. FRIDMAN, V. STRYGIN AND A. POLYAKOV

problem without any restriction on time delay and spectral properties of open-loop system.
However in References [10, 11], it was remarked that sliding mode control design in the space of
predictor variables

e cannot compensate even the matching uncertainties;

e in the simplest case of square systems, if the dimensions of state space and control vector
are the same, sliding mode design in the space of predictor variables can remove the
uncertainties in the space of predictor variables but cannot guarantee compensation of
uncertainties in the space of state variables.

Robustness properties of the Smith predictors with respect to uncertainties in time delay were
studied in a series of papers (see for example References [12, 13]). The conditions of robustness
of Smith predictors with respect to the uncertainty in the time delay are formulated by Furutani
and Araki [13] in terms of stability margins.

(b) Control of amplitudes of oscillations: P.1. control algorithms for amplitude control for one-
dimensional relay system with delay in the input was suggested in Reference [14].

Fridman et al. [S] have shown that any solution to the following equation:

X(t) = ax — psign[x(t — h)] (1)
with the initial conditions
0= o). re-h0L  lpO)<p—o — @
for all t € [T}, 00), Ty > 0 is bounded:
¥l <p(e” — 1) /o = ro 3)
whenever stabilization condition
O<oh<In2 4)

holds. It is important to remark that

e Condition (4) is sufficient and necessary condition relay delayed stabilization;
e The size of the domain of stabilization is proportional to the control gain p.

In References [5,6] the following algorithm for controlling the motion amplitudes was
developed: since after finite time all solutions coincide with the periodic solution, one can
extrapolate the next zero for the periodic solution, and reduce the control gain near to zero of
the periodic solution. This algorithm needs only the knowledge of the sign of state variable with
delay but requires stabilization condition (4). This algorithm is valid for any constant delay
satisfying condition (4) and does not depend on the value of delay. Stabilization condition (4)
and algorithm for stabilization were generalized by Shustin [15] for linear second-order relay
delay systems.

Strygin et al. [16] have generalized stabilization condition (4) for MIMO systems and
proposed a delayed relay control algorithm, allowing to reach local stabilization of oscillations
amplitudes for controllable systems.

In this paper, the algorithm of delayed relay switching of the control gain is suggested using
the knowledge of solutions amplitudes at the delayed time moment. It allows to achieve non-
local stabilization of amplitudes of the oscillations rejecting uncertainty in the time delay.
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NONLOCAL STABILIZATION 17

2. PROBLEM FORMULATION

Consider a linear system with delayed control and uncertainties of the form

St Bus(c— ) (5.0 5)
where x € R" is the vector of state space, 4, B are real matrices, h(t) (0<h(f)<hy for all t e
[0, 00)) is the continuous function describing an uncertainty in the time delay, u € R™ is the relay
control vector bounded in every bounded domain [|x||<D, x e R", the function f(x,?) is
continuous on 7, smooth on x and corresponds to the presence of an uncertainty in the model of
the plant.
Let us denote as x(¢) the solution to system (5) with the initial condition:

x(1) = (0),"  (—=hy<1<0), ¢(1) € C[—/,0] (6)

The existence and uniqueness for the solutions to the Cauchy problem (5) and (6) is proved in
Reference [17]. We will consider the problem of nonlocal stabilization for the system (5). As it
was shown in [5], the amplitude of oscillations in relay delay systems is proportional to the relay
control gain. That is why to achieve nonlocal stabilization for system (5) we need to use
sufficiently big initial relay control gain in order to stabilize the solutions of (5) with sufficiently
big initial conditions. Consequently, the desired relay control law should depend on the size of
the initial domain. On the other hand, due to the oscillatory properties of relay delay systems
solutions [5], one can conclude that it is impossible to achieve asymptotic stability for the
solutions to system (5) via relay controllers with a finite number of switches. That is why it is
impossible to ensure semiglobal stabilization in the sense of Isidory [18] via relay delayed control
law with finite number of switching in control gain. In the paper the following modification of
the semiglobal stability notion is used.

Definition 1

The zero solution to system (5) is said to be practically semiglobal stabilizable, if for any
R>¢e>0thereared >0, D = D(R,¢) > 0, relay delay control u(¢t — /(¢)) and time moment 7" > 0,
such that the inequalities ||@(0)||< R and ||f (¢, x)|| <de ¥x : ||x||< D imply the inequality

sup [[x(1)]| <&
te[ T ,00)

In this paper, relay delayed control law and non-local stability conditions are proposed ensuring
practical semiglobal stabilization for the zero solution to system (5). The proposed control law
requires:

amplitude of solutions at delayed time moment;

upper bound of the time delay;

upper bound of initial conditions;

size of the desired neighbourhood of the zero solution to system (5).

"The values of relay delayed control for 7 e [0,/(0)] will be defined below through the value of the initial function
(1), t € [—hy, 0] but for the state variable x only the restriction at the initial point x(0) = ¢(0) is necessary.
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18 L. FRIDMAN, V. STRYGIN AND A. POLYAKOV

The paper is organized as follows. The properties of relay delay control for the simplest scalar
case are introduced in Section 3. In Section 4 a modification of relay control is suggested for
controlled system having two unstable complex conjugate roots. In Section 5 the design
procedure for relay delayed algorithm is described. In Section 6 proposed algorithm is compared
with the linear control algorithm. All proofs are given in the appendix.

3. SCALAR CASE

To explain the basics of proposed algorithm, let us return first to Equation (1) and conditions
(2) and (4). Let us find conditions ensuring that the magnitude of steady oscillations r, is less
than the magnitude of the initial conditions r:

(eoch _ 1)/0(

Foo/T0 < (2 — ™) /(o) <

and

et — <2 e ah<iln2

Consider the scalar control system with the continuous uncertain time delay /A(t), 0 <h(t) <hy
and smooth bounded uncertainty f(x, f)

X = ox + u(x(t — h())) + f(x, 1) (7)
x(1) = @), t1€[—ho,0] ®)

Suppose that
och0<L:%1n2 )

Now, the idea of the desired control algorithm is the following:

e Consider the amplitude of stabilization domain for each value of relay delayed control
gain as the amplitude of the initial conditions for the next step;
e by decreasing the control gain, enter into a smaller neighbourhood of zero.

Let us choose 0 <e< R< + 00, and define the constants o/, 6™, 7, N as follows:
(1) the interval 5, = (e /(2 — e*0),a/(e*™ — 1)) is not empty due to (9) and we can select
O(/ € I’Zh(] (10)

(2) 8™ = (o (2 — e*0) Jue®0 — 1).
(3) 7= (L (o + 5™ /)™ — (ol + ™) 2.
(4) logs(R/e)< N <logy(R/e) + 1.

Suppose that there exists such 6 > 0 that 6 <™ and o + J € I, and
If(x,0|<de for all x:|x]<3Vey (11)

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 14:15-37



NONLOCAL STABILIZATION 19

Consider the system of neighbourhoods of zero: Uy = {x: ||x||<vi},vi =3 ey, k=1,...,N,

where the indicator function
1 for |x|> v
H, (|x]) = (12)
0 for |x|< v

whose zero value indicates that x € Uy. In this case the desired control law takes the form

N
u(t — h(1)) = ure(x(t — h(1) = —o'e (1 +2> 3 H, (Ix( - h(t))|)> sign[x(1 — h(1))]  (13)
n=1

Remark 1

The radius of neighbourhoods Uy and the control gain increase thrice in such a step. This factor
r can be chosen, for example, as the solution of some optimal problem. However, if r > 3, then
we need to make condition (9) stronger. On the other hand, for r <3 the number of relay control
elements grows up.

This control law has the following properties:

1°. The set of control values is M = {+d'e, + 30, ..., + 3%, ..., +3Vd ).

20 If v < |x(t — h(1))| <Vig1, then, [u(x(t — h(1)))| = 3roe.

3°If |x(t — h(1))| <vis1, then, [u(x(t — (1)) <3Fo'e (1 <k<N —1).

4 u(x(t — ()| <3Vole (V1=0).

5° ye<3eVke (1,2, .. N+ 1L

6°. viy1 — 3¥e(of — &) /o = 3ke(y — (o — §)/)<0 Yk € {0,1,2,...,N}. It is easy to see that

y_aliéz ]_|_OC_/ ea/10+%5max_2“_/+5*5max
o o o o o

< 1_|_OC_, eo(ho_'_ﬂémax_za_,:o
o o o

Theorem 1
For any initial condition ¢(7) : |¢(0)| < R, there exists such time moment 7 > 0, that for any
t> T we have |x(7)|<e.

4. STABILIZATION OF SECOND ORDER SYSTEM WITH UNSTABLE COMPLEX
CONJUGATE EIGENVALUES

Consider the system
x o =B\ [x ur (x(1 — h(2)), p(t — h(1))) Si(x,p, 1)
= + + (14)
y B y up(x(1 — h(1)), y(t — h(1))) So(x,p,0)

where (x(1), 1(1))" € R? is the state vector, o >0 and >0, (u;,u>)" € R? is the control vector,

fi1(x, 1), f>(x, t) are uncertainties and /(t) 0 </h(t) < hg, for all ¢ € [0, 00).

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 14:15-37



20 L. FRIDMAN, V. STRYGIN AND A. POLYAKOV

Choose 0 <& < R and suppose that 0 < fihy<7n/4 and ohy <M, where

a ! c s<t + a + ph )
= max —=cCo -
(€l0.7/4-Bho] 6+/2 4 ’
Define the constants o/, 0™, N as follows:

(1) o/ € (0,m/4hy — P) : a<o'cos(o'hy + /4 + Bho)/ 6/2.
(2) 0™ = 1/2hg(arccos 6ﬁoc/oc’ — (o' + P)hg — 1/4).
(3) logs(R/e)< N <logy(R/e) + 1.

Assume that there exists such constant  that 6 <™ and o + 6 <o/ /6+/2 cos(ehy + 1/4 +
Pho 4 20hy) ensuring the estimation of the uncertainty:

V200 + f2(x ) <06 for Vax,y s /X2 4 2 <3Vey/2
Now the desired control vector takes the form
<u1(X(t — (1)), y(1 - h(t)))> 1 (COS Bhy —sin ﬂho> (“Rz;(x(t - h(t)))> 1)
ur(xX(1 — h(0)), y(t — h(1))) sin fho  cos Bhy ) \ ur.(y(t — h(1)))
where ug, has been already considered in the previous section

N
ups() = —o'e (1 +2> 3 H (- I)> sign[]

i=1

2

where v, = 3% e,

Theorem 2
For any initial condition ¢(7): ¢%(O)+¢%(O)<R, there exists time moment 7 >0:

VX21) + yi(t)<e, forall 1> T.

Remark 2 ‘ '
Suppose that x+iy = p()e??) and fi(x,y,1) +ifr(x, 1, 1) = q(t)e¥?, where x,y are real
numbers. Then, Equation (14) under control (15) may be written in the form

b = ap) ~ 22 cos(k(t) + B — (o) + (1) cos1) — o(0) (16)
g o)
o0 = = 57 sk () + o — (1) + 20 sin(y() ~ (1) (1)
where
M0 = VBT <0 O S 19 < G B S 18)
arctg(%) if Vn <y([ - h(t)) SVt Vi < X(t - h(t)) SVt
k(t) _ _arCtg(%) if — Vn+1 Sy(l - h([)) < = Vu,Vm <X(l - h(t)) <Vm+1 (19)

T — arctg(%) if v, <y(t—h()<vurt, Vi1 <X(t — h())< — vy,

-7+ arctg(%) if — v <yt — ()< — vy, — Vi1 <x(E— h(2)) < — vy

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 14:15-37



NONLOCAL STABILIZATION 21

Remark 3

(1°). vieer(D) < v/ 2w if V/2v < p(t = WD) <.

(2°). From the definition of ¢(¢) it follows that ¢(¢) € (—00, +00). This means that ¢(f) = ¢. X
(1) + 2nz, — n<@.(t)<m, where z € Z. On the other hand, —n <k(f) <7 and consequently |k x
() — ot — h(0)|<7/4 + 27|z|, z€ Z.

5. CONTROL ALGORITHM FOR MIMO CASE

5.1. Structure of projectors

Assume that the spectrum o(A4) of the matrix 4 has the following structure o(4) =0, U o_,
where o, and o_ are the sets of matrix 4 eigenvalues with the positive and negative real part,
respectively. Then the state space £ = R" could be represented in the form of a direct sum
E=E,. @ E_, where E, and E_ are the invariant subspaces with respect to 4. Consider two
projectors P and Q, transforming P: R" —» E.,Q : R" - E_. Suppose that

(1) dim £, = rank(PB)
() oy = it Uley £ iBj} )y, Ao <L, L =112

T T
0<pi<gpms who<My, M= cos(1+75 + Bih (20)

t
max =« ——
€0, /4—B o] 6\/5
and all the eigenvalues from o, are simple.
Assume that the spectrum ¢, of matrix A satisfies condition (1) and the following
representations hold

Ahy = A, (i =T,0)
and
Ahpyojr = wihigi1 — il
Ahyo; = B + ojhisay, (j=1,v)

Consider the conjugate matrix 4* and suppose that fi, /5, ..., fm, m = 2v + [ are the following
eigenvectors:

A*fi = Lfi, (= 1,1)
and
A¥frigj1 = oyfiiojo1 + Bifivays Aoy = —Bifivajo1 + wfiy (G =1,)
Then, the above projectors can be written in the following form:

szz (x, g)hi, Ox =x— Px, gi:”fﬁ, (i=1L1)
i—1 ot

grraj-1 = vz + Cafivy

Qo = S + nfiva, (GG=T1,v)

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 14:15-37



22 L. FRIDMAN, V. STRYGIN AND A. POLYAKOV

where

|I/(1+2_/||2

P ) 3
et Wre2fll® — Fraaj1,f1527)

J
‘=

(Fr2j-15142))

21 — 2 2 2
W2 all™ - Wrsaill™ = i1 f1427)

chy =

2

B (15271l
22 — 2 g 2 g g 2
Wz 2i— 117 Wil = Fraaj15f1427)

Suppose that e; = (a1, %, . . ., ocj,,)T is some basis in R" space such that e; = i; (j = 1,m). Let us
introduce the new basis into R” in the form

e = h, (i = l,m), ém+j = Cm+tj — P€m+ja (] =1l,n— Wl)

The matrix of transition from the canonical basis to the new basis {e;} has the form

o1 021ttt Ol Ol 1 — Z:il o (emi1s&i)
A 02 vt O Oyi2 — Pory ip(€mst,8i)
G=(e,...,ey) =
Oin G2 = Oun Umln — Z:n:l (xin(eerla gl)
and
AT 0
J=G'4G=| 0 4

In this case, the following representation holds

B+
G 'B=

where BT =m x m, B~ =n—m x m and rank(B*) = m.
Denoting z = (z,22)" = G~ 'x, one can rewrite system (5) as follows:

Z1=A 'z + Btu+g(z,1)

(21)
H=A zn+ B u+glzi)

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 14:15-37



NONLOCAL STABILIZATION 23

where g(z, 1) = (€1(z, 1), &2(2, 1)) = G™'f(1,G2),

A0 e e e 0
A+: 0 0 OCl _ﬁl 0 0
0 0 p o 0 0
0 v i e e 0 o, —f,
0 0 B o

5.2. Control design

Algorithm of practical semiglobal stabilization
(1) Fix R>0and ¢>0
(2) Choose o/ > 0 and 0;"** > 0 such that

. 2 — ¢k
o' € Ly, 5;“‘"‘:1,-(0(/ _ V—l), i=1,...,D)

/L,’C;"

where

/ )&t A
Aiho =\ 5 aihe® giihe — |

(3) Define o4, > 0 and 6} > 0 such that

!
%i+j

. n
o € [O:r}m B ﬂ/] S < 6\/§COS (Z oo + ﬁlﬂho)

V2,

max

5] = 210<arccos

(4) Matrix A~ is stable. Consequently, there exists x>0 and C > 0 such that ||e24/|| < Ce .
Put A™* = max 6™, Ry = ||G~||R and & € (0,¢V’), where

. 1 u
min , -

{2||G|| 4lGlcdle]] - 1B~

a_/ = ((xl/’ ceny O(],, al-‘-l,’ a]-l—l/’ ey al-‘-v,: al+l’/)T' .

(5) Define v = 7,3" g, where y; = (1 + (& + ")/ 2;)e""0 — (o + 6™ /A i=1,...,1 and
Vi = 3 le, G=1,...,2v).

(6) logs(Ro/e0) < N <logs(Ro /o) + 1.

Suppose that

T .
_(u1/+ﬁ])h0_z> ]:1,...,V

V =

511+ A”‘“>}

Il (x, l)||<”G T x:lxl|<D (22)

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 14:15-37



24 L. FRIDMAN, V. STRYGIN AND A. POLYAKOV

where &, <0, (k=1,...,14+v) and o/ + &; € Ly, (i=1,.,0), o+ 1, <oy /61/2cos
(w'ho + 1 /4 + Piho + 2015h0), (j=1,...,v)and D = (7/4 + 3/2C)3Ve.
Design the delayed switching surface o;(y;(t — i())) in the form

N
ai(i(t — h(1)) = —d/'e; (1 +23 3 Ho(lyit — h(t))|)> sign[y;(t — h(1))]
n=1

where i = 1,2,...,m =1+ 2v.
Define the switching surface vector such as

a(zi(1 = h(1) = (@1(z01(1 = h(D)), 02(212(1 = (D)), -, T(Z1m(t = H(D))'

where z = (z1,22)" = G~'x. Then, the desired control vector in the form

I 0 - 0
0 S - 0

ux(—ho) =[BT oGt hay) (23)
o --- 0 §

where I is the identity / x / matrix and

1/ cosp; —sinf;

sinf8;  cos f;

Theorem 3
If conditions (1) and (2) hold, then system (5) is practically semiglobally stabilizable.

Remark 4

Condition (1) is more restrictive than the usual conditions of stabilization. To satisfy (1) it is
necessary that the vector control has the same dimension as the number of unstable poles in the
open-loop system. On the other hand condition (1) needs sometimes less than controllability of

the pair (4, b).
Y
X = X+ u (24)
1 2 1

._—10 0 55
x—12x+1u (25)

It is easy to see that system (24) is controllable, since rank [4b, b] = 2. However, the stability
condition dim £, = dim(Pb) is not satisfied, since dim £, = dim R> = 2 #rank(Pbh) = 1. At the
same time, system (25) is uncontrolled, but condition (1) is true, since dim (£, ) = 1 = rank(Pb).
Moreover, it is easy to see that for SISO systems, when the matrix 4 has only one simple
unstable root, condition (1) is equivalent to the controlability of the pair {4, b}.

Consider two simple examples:

and

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 14:15-37



NONLOCAL STABILIZATION 25

6. NUMERICAL EXAMPLE

Consider the following unstable system:

—7.1869 —2.0400 —6.4796 —4.2994 1 00
_ 3.8908 1.1200  3.4189 22182 . 2 0 Wl — MO+ (D) (26)
0.3914  0.0066  0.2752  0.1754 3 2
1.2945  0.5000  1.7170  1.1516 4 3 2
where A(f) = 0.5 4+ 0.5 sin(307), (0<A(t)<hg = 1),
£(x(), 1) = (0.0130 sin(z), —0.0063 sin(7), —0.0602 sin(7), 0.0557 sin(z))" (27)

The open-loop system has the following eigenvalues 4; = 0.34, 2,3 = 0.01 + 0.1/, 44 = —5. We
will consider solution to system (26) with the initial condition

$(1) = (cos(1), cos(21), sin(37), sin(41))" (28)

6.1. Relay control design
Let us design the relay delayed control law for system (26). Put R =2.5, ¢ =0.1. Let us

choose
/116;“' Al
r_
o = 0.83 ¢ (2 ook — 1)

i o’ i
"=o3' =034€ |0,——0.1] : 0.0l <——= - "+0.1
= =034 0,50 01 <55t o)
k

=3y, Wh =k =381

where & = 0.01 € (0,¢V7) (see (4) in Section 5.2), y =24 =(1+ (' + ST/ Aner — (o +
O™ /21 and 6™ = 2y (2y'(2 — € /A1€*) — 1). In this case the desired relay delay control can be
designed as follows:

14930 15137  —0.4382\ [ o1(yi(t — h(1)))
u(t — h(n)) = | —4.0657 —3.8731  0.9320 || o2(3a(t — h(1))) (29)
34226 2.8463  —0.5022 ) \ o3(n3(t — h(1)))

where o:(yi(1 — h(1) = —0.010,/(1 +2 30—, 3" Hou(lyilt — h(1))signlyi(r — h(1)],
0.3852 0 2.3115 1.5410
(- () —0.1877 0.0816 —2.5958 —0.3673 (= (D)
t—n(tr)) = x(t — n(t
Y —1,7713  —=2.7264 —1.7632 —1.1346

1.6388 0.4682 1.4047 —0.9364

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 14:15-37



26 L. FRIDMAN, V. STRYGIN AND A. POLYAKOV

6.2. Linear control
The pair {4, b;} is controllable. From Ackermann’s formula it follows

uy =[0,0,0, 1][b1, Ab1, A*by, Ab1] (A4 — LI*)A — LI*YA — KI*)A — L I*)x(t — h(?))

For /; = -0.7, L =—-0.8, 5 = —0.9, [y = —1 the linear control vector has the form
0.4 0.7316 0.5423 —0.2492
u(t—nh)=1 0 0 0 0 x(t — h(1)) (30)
0 0 0 0

Figure 1 shows the x;(f) co-ordinate of the solution to system (26), driven by a linear controller,
leaving the ¢ = 0.1 vicinity of zero but at the same time the corresponding solution to system
(26), driven by relay delay controller, oscillating inside the desired neighbourhood of zero.
Moreover, the simulation results show that if we increase the parameters /; the stability
neighbourhood will grow. On the other hand, decreasing the parameters /; results in system
unstability. The simulation results show that the linear control algorithm does not allow to
achieve the desired ¢-neighbourhood of zero. Increasing the parameters /; implies increasing of
the stability neighborhood. Decreasing the parameters /; implies system instability.

6.3. System with nonlinear uncertainty

Consider system (26) with the nonlinear uncertainty

Fix), 1) = (o 0130<X1()> 0. 0063(“?) , —00602(’”(0) 00557(’”(’)) > G1)

The designed relay delayed control ensures a practically semiglobal stabilization of system (26).
System (26) with uncertainties (31) under linear control is unstable (see Figure 2).

Figure 1. System state x4(f) (dotted and continuous lines describe the solutions for linear controller and
relay delayed control law, respectively).

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 14:15-37
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”””” 5
| | |

7777777 gy Ry (R
| | | | |
20 30 40 50 60

Figure 2. x;(¢) co-ordinate of system (26) solution with nonlinear uncertainty (31) (dotted and continuous
lines describe x(7) for linear controller and relay delayed control law, respectively).

7. CONCLUSION

An algorithm of delayed relay control gain adaptation for the practical semiglobal stabilization
is suggested that requires delayed information about amplitude of oscillations and upper bound
of the time delay. The proposed algorithm rejects bounded uncertainties in time delay: once we
have designed the control law for the upper bound of the uncertainty in the time delay for a
given system, we can ensure the practical semiglobal stabilization of zero solution for any values
of the time delay less than the upper bound, even in the case where the delay is variable.
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APPENDIX A

A.l. Proofs for the scalar case
(1) Staying in the neighbourhood

Lemma Al
If for ke {0,1,..., N — 1} there exists 7 >0 such that |x(¢)|<vi.; for all e [T — hy, T] and
|x(T)| < 3Ke, then |x(£)| <viyy forall t>T.

Proof

Suppose by contradiction that there exists 7> T such that |x(T")| > vi,1. Then, from the
condition |x(7")| <3¢ it follows that there exists such ¢* > T : |x(¢¥)] = 3*¢ and |x(¢)| > 3Ke, for
all ¢ e (+*, T"], and moreover there exists 7% > 1* : |x(T*)| = vi1 and |x(0)| <visi, Vit € [F, T*).
Now we can suppose that x(7”) > vy, 1. Then x(¢¥) = 3%e and x(T*) = v,.
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Let us show that 7% — ¥ hy estimates the upper bound of x(¢) for ¢ € [t*, T*]. Taking into
account that |x(f)] <vi, for t [T — ho, T] and |x(f)|<viy1 for t € [T, T*], one has |u(t — h x
(1) <o/3ke for t € [T, T*]. Then

x<ox + (o + )3k

x(t*) = 3%¢

/ /
x(0) < 3k ( (1 + #) R “_M)

o

and

For t = T* one has
. / 5maX ! 5max
X(T*): Vsl :3k8<(1 +O( + )eah_a + )
o

oy ( (1 LA 5) iremy O 5)
o

04

which yields T* — t* > hy. Let us note that in this case from x(¢) > 3¥¢ > v; for ¢ € [t*, T'] one has
sign[x( — h(1))] = 1 and H, (|x(t — h(2)))) = 1 for n = 1,k, t € [t* + hy, T"], which means

u()= —3%de, Vre[t* + hy, T'] (A1)

Now
X(T*)<avey1 — 350 — 9)e<0 (A2)

This means that at = T* the function x(¢) is decreasing on [T*, T"], and x(7") <vi41. This is a
contradiction in the initial assumption. []
Corollary Al

Proof
If [x(0)| <R, then
Ix(0)| <vyir =3Vey Vi=0

It is obvious, that condition |x(¢)|<vis; for te€[T —hy,T] and ke {l,...,N—1} is
equivalent to |u(t)|<«'3%e Vte [T, T + hy]. Lemma Al is true even for k = N. Taking into
account that N > log; R/e, one has |x(0)| < R<3Ve. [

(2) Existence of the next zero

Lemma A2
If |x(0)|< R, then for all £>0 there exists 7> : x(T) = 0.

Proof
Suppose in contradiction that there exists /* such that for all />0 x(1)#0. Consider the case
when x(7) > 0. Then, for ¢ > * + hy we will have sign [x(¢ — h(¢))] = 1. Equation (7) takes the form

N
x=oax—ds (1 +2> 3 H,, (x( - h(t))|)> + £ (x, 1)
n=1
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Now
x<ax — (o — d)e (A3)

Let us show that x(¢) > v, for all >¢* + hy. Suppose that it is not true and 3¢! > ¥ + hg : x x
(t')<v,. Then inequality (A3) yields

x(1) < (w - @) e 4 @ = (1)

Taking into account that the first coefficient before the exponent in the last equation is negative,
one can conclude that »(7) is a decreasing function and there exists 9 : v(1°) = 0, then x(1°) <0,
which contradicts with condition x(z) > 0. This means that x(¢) > v;. Analogously, we can
prove that x(7) >v,, etc. Finally, we will have the inequality x(¢) > vy, which contradicts
Corollary Al. [

(3) Reduction of the amplitude of oscillations

Lemma A3
If |x(2)] <viy1, then for all 1> T, there exists 71, such that for all 1> T)
[x() < v
Proof
(1) Consider the case
o + 6 glL
3erh — 1

Then, from condition (3) and 5° it follows that x<ax + (o 4+ 6)e3*. Suppose that x x
(t*Y=0, t*> T + hy for all t>T + hy. Then

() <(oc’ + 0)e3" Q1) _ (o + 6)e3k
o

o
At t = t¥ + hy we will have
B 3k(a 4 d)e

o

36/1(]

k(!
X+ o)< 3 (oca+ 5)8e

| o e -1

1
k _
DT e
For t € [t*, t* + hy] one has |x(¢)| <3 'e<v; and x(¢* + hy) <35 .
From Lemma Al it follows that for all > * x(¢) <v.. Analogously, we can have x(£)> — vy.
(2) Consider the case

=3kg(o + 9)

1 o
/
8 +5>§e“”0—1

Let 1 = t* is the zero of the solution x(f) such that
ST+ 20— (14— (A4)
- 7y 3(o + 9)
Then for 1> t* one has

x(1)<

k k
O o LD,
o

o
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Consequently, the function is increasing on v(z) on [t*,¢'] for some ¢! >¢*: and w(¢') = 35 le.
From the definition of function v(¢) it follows:
(o + 8)e3k o7 (o + 8)e3k
o o
wea(ﬂ—r*) _ @9 !
o o 3

_ 3k_18

and
o

oL
r—t _aln<1+3(a/+5)> (AS5)

Consider now two cases

(@) [x(1)| < v for t € [T + hy, t¥], then taking into account (A4) and (A5), one has 1! — T'>2h,
which means that for te[T + ho, '], |x(¢)]<v, |x(')|<3*'e, and one can conclude that
Lemma A3 follows from Lemma Al.

(B) Suppose that there exists # € [T, t¥] : x(f) > v;. Then from the continuity of x(¢) it follows
that 37> T : x(¢*) = vy and x(1) < vy, for all 1 € [/, 1¥].

Consequently, |x(1)|<vk, V¢e [, t']. Let us estimate the lower band of x(7) for ¢ e [£, t¥].
Then the differential inequality x> ax — (o 4 8)e3¥ with the initial conditions x(#*) = vy, implies
that
G 5)83k) 1) (o + 9)e3*

o o

x(1)= (vk

Let us rewrite this inequality at 1 = * in the form

k P

Then
0= (31 ((a + o +8)e™ —of —§) — (& + 8)e3)e™ ™) & (o + §)e3k
and
0> (o + of + )e™ — 4@ + 5))e™™ ) 4 3(o/ + 5)

Q@ + &) + (2 — e)(of + ) — ae™)e ™) =3(o/ + §)
Now from (10) it follows that (2 — e*)(« + &) — ae* >0 and
NPT P )
o (4 —eh)(o 4 ) — ae*o
Taking into account the last inequality, one has
==t
/
> ;ln(l +3®c’a—&-5)) +éln 4 - 6“3)((26(’4—1_—55)) — oe?
1 3 +90)+ o

2 (=)ol + 0) — e

t
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It is easy to show that

1 /!

L 3/ +90)+a > ho
a (4 —eo)(a + ) — oo

Then ¢ — 2> hy.
(4) Proof of Theorem 1 [

(1) Let us show that there exists such time moment ¢ = 7}, that for all t1=>T) |x(?)|<v;.
Following, Corollary Al one has |x(z)|<vyy; for 1=0. Lemma A3 yields that there exists such
time moment that ¢ = ¢! that |x(¢)|<vy Y¢>t'. Analogously for Nth step for all 1>¢" one has

()< (A6)

(2) Inequality (A2) holds only if for 7= ¢" + hy one has |u(?)| < o'e. Moreover, from Lemma A2
it follows that 37 >¢" + hy : x(T) = 0. Let us show that |x(7)|<e, V= T. Suppose in contra-
diction that, if 3r>T : x(f) > ¢, then AT*>T : x(T*) = 0, and x(¢) >0Vt e (T*,7]. Let us find
the upper bound of x(¢) for ¢ € [T*, {]. Then the inequality

x<ox 4 (of 4+ 8)e, x(T*) =0
implies that s s
x(t)s(a + )sel(”*) B (of 4+ 0)e
o o
and for the time moment T* + / the last inequality takes the form

|
<

X(T* 4+ hy) < e(of + 0) <e

(o + d)e ot (o +0)e
o o o
This means that there exists the time moment 7% + A

X =ox — (o« —d)e
but x(T* + hy) <e<v;. Consequently, from (6°) it follows:
X(T* + hy)<ovy — (o — 9)e<0

This means that for 1> T* + hy the solution x(z) will decrease until the next switching moment.
Now one can conclude that at some time moment x(z,) = 0. This equality contradicts with
condition x(¢) >0 Vt e (T*,1].

A.2. Proofs for the second-order system with unstable complex eigenvalues

(1) Staying in the neighbourhood

Lemma A4
If there exists such time moment 7" > 0 that p(¢) <vy for all t € [T — hy, T], then p(¢) <v; for all
t>T.

Proof
Let us suppose in contradiction that there exists 77> T : p(T") = v;. Then there are two cases

(1) \/Evk,l <p(t)<vi for all te[T,T']. Let us denote t¥ = T — hy. It is easy to see that
T — t* > hy.
(2) There exists % > T : p(t¥) = \/2vi_; and /2vi_1 < p()<vy for all ¢ e (¢¥, T'].
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Let us show that in this case the inequality 77 — ¢* > g is correct.

Since er(f) </ 2vi_1 for p(t — h(1)) : \/2vie1 < p(t — (1)) <vi (see (1°), Remark 2) then for
t>t* we have
(o +20)vi

OC/Vk,l up +
V2 T
.D(t*) = \/Ekal

Then
/ /
AT = i< [ V2w + E 2t ) armmy @ H 200
\/EOC \/EOC

Hence, we have T' — t* > h.
To study the term

cos[k(t) + Bho — p(1)]

on the right-hand side of (16) we should integrate Equation (17) on the interval [ — & X
(1), 1], t € [t* + ho, T']. It is easy to see that

o(1) = ot — h(e) + BH(H) — o/ &0) + 70 (A7)
where
=3 [ DS silko+ oo (A8)
26 = / ¢@p~ () sinfy(x) — (D] d (A9)
t—h(r)
Obviously,

|E(D)| <% h(t)y<hy and |[y(¢)]<20ho

Now substituting (A7) into (16) we have

pl=op— ot )a’COS[k(l) — o(t = h(1)) + Blho — h(1)) + o &(0) + 1(D] + g(t)cos(P (1) — (1)) (A10)

From (2°) we obtain
cos[k(r) — @(t — h(t)) + Blho — h(2)) + o' E(t) + (1)) =cos(c' hg + 20hg + Pho + m/4)  (All)
Hence, for ¢ € [t* + hy, T']

p < ap — 20 cos(ohy + 20ho + Bho + 1/4) + e
/
<vloto— %cos(oc’ho 4 20hy + fho + 1/4)| <0
That is why equality p(T") = v, cannot be achieved.

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 14:15-37



NONLOCAL STABILIZATION 33

(2) Transition into the smaller neighbourhood

Lemma A5
If p(t) <vy for all 1> T and there exists a time moment * > T + hg such that p(r*) = vk_l/\/i
then, p(f)<vi_; for all > t*.

Proof
Suppose in contradiction that there exists 77 > ¢* : p(T") = v;_;. In this case

) o + 20)vi_

pap 4 EF 2OV

V2
p(t*) = vi_1 /V/2
Then
"+ 20 ' "+ 20)vi
ve = p(T< [ vt/ V2 + (@ + 20)vit eUT'—1%) _ (& + 201
V2 V2

Hence

e b 2040 26
T —t">-hnh————
o o+of +20

If p(t)<vi_ for all t € [T, ¢*], then T" — T > hy. From Lemma A4 it follows that p(¢) <v;_; for
all t> T + hy. This means that there exists a time moment 7 > 7 such that p(7y) = v;_; and
p(t)< v, for all t e (Ty, t*].

(o +20)ve

N

p=ap p(To) = vy

This means that

! /
sV = pl1)> ( B %) g @20

V24 V24
Consequently,
g To>lln o +20—o
o o 420 — \/Eoc
Finally,
\/50(—}—0(’—&-25- o +20—a -
a+o/ +20 o 425 — /20

1
T —To=T —t*+*—Ty>~In ho
o

Let us prove the last inequality
ahyg 1
V20 + (ol +20)(V/2 — 1)% (4257250

ahg
V2 +(a'+25)(a(ﬁ— ne*l —(oc+2é)) >0

e(xho _ l
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Now
ocho
a2 - 1) = 1 o> o+ 20

It is easy to see that
exh() +1
o) = otho 5

is an increasing function of o and consequently min,epo,ar/n,) #() = 2. Then

oho(v/2 — >2(ﬁ— ) >n/4>ho(odl +20) O

(3) Reduction of the amplitudes of oscillations

Lemma A6
If p(¢)<vi for all 1 > T then there exists a time moment 77 > T + hy, such that p(f) <v,_; for all
t>T.

Proof
Suppose in contradiction that for any ¢ > T + hq there exists t* > ¢ : p(t*)=v;_;.

Let us show that there exists * > T + hy: p(t*) = vy_1/ \/5 Suppose in contradiction that:
Vi 1/\/§<p(t)<vk for all 1> T + hy. In this case

@(1) = @(t — (D)) + Bh(t) — o' &) + 1(1), (V1> T + ho)

where
[E(O)|<hy and |y(2)|<20hg
Then
p<ap — L2 cos(olhy + 25hy + Pho + 7/4) + dvi
It is easy to see that if p(7) < \/'v/& 1, then p<0 and there exists t* > T + hy: p(t*) = v l/f

So we have p(f) > \/—vk | for all #> T + h. However, in this case er(f) > v /+/2 and

/
<+ Wi — 2N cos(ol g + 20y + Bho + 1/4) <0

This means that there exists 1% > T + hy such that p(t¥) = v_1/v/2. O

A.3. Proof of Theorem 2

(1) Let us show that there exists p(7) < \/—VN+1 for all 1> 0.
It is easy to see that er(f) < va for any p(¢) (see Remark 2).

p<ap + (o +26)vy
V2
p(0) = vy
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Then

/ !
i) < (wﬂ G +5)VN)e“” O

\/Eoc \/Eoc
/+ 5eoch0 —1
=VN+1 (eaho + rre 5 < \/EVNH

32

(2) Let us show that there exists a time moment 77 > 0 such that p(f)<vy. for all t> T.
Suppose the opposite. In this case, p(1) > vyi1/ \/5 for all > 0. Otherwise, we can find time
moment 7 (see Lemma AS).

Let us integrate Equation (17) over the interval [ — A(?), f] for ¢ > hy

@(1) = @(t — h(1)) + Ph(r) — o &(1) + x(1)
where
lx(O)|<hyg, and [E(1)|<20hy
Then

/
p< (o + OV 2vns1 — % cos(n /4 + o' hy + 25hy + Bhy) <0

(3) Now from Lemma A6 we have p(f)<vy etc. On the Nth step we will have p(7)<v; = .

A.A4. Practical semiglobal stabilization of system via designed control

Suppose that the control vector u(z — h(t)) was designed in accordance with the algorithm
described in Section 5.

Since f(z, x) satisfies Condition (22) and |z;(0)|< R; then from Theorems 1 and 2 one can
conclude that there exists 7; > 0 such that |zy;(¢)| <&y, (i =1,m).

Let us denote 7™# = max 7;. Then according to the control property (3°) we have |o;(y; x
(t — h(0)|<oe for any ¢ > T™* 4 ). In Section 5.2 it was proposed that

le@4)| < e

Consequently, for all > 7™ + hy from (21) we have
z2(Dl] < Ce™ T 0|2y (T 4 )| + € %ﬂ — e M) (A12)
where M is a positive constant. Then, there exists time moment 77 > T™# + }, such that
O

It is easy to see that
M <eo (Il&]] - [|B7[BT]"|| + A™)

=/ / / / / ! NT max __ . max
where o = (o, ..., 0/ 01, 0up1’s o0, ouyy) T, and AT = max 6.
Since the parameter ¢, has been chosen such that
€
& a

< / _ +1—1 max
4ClGII e - 1B - I[By 1 + A™)
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we have
ue
4C|Gl|

M<

Then, for all > T'
XDl =Gz <G| 1z1 (DI + lIz2(D)ID)

M &
<G e +2c2) <E 4 <
I 2 2

Let us show that
X(t) € Unax, V>0

where Unax = {x € R" : ||x||<D = (7/4 + 3/2C)e3"}. From Corollary 1 and Theorem 2 (see
Section A.3) we have

|21 (O <3Vegy, <3V ley (i=1,...,])
and
21 ikl <3Veo /2 <3V ey (k=1,...,2v)

Taking into account (A12) one has

Mo,
l|z2(0)]| < Ce™#||z2(0)]] + c% (1= e )

where
- _ _ el
Momax <3Veo (18] - [|B7[BF]7Y| + A™) < 3V ,
max <3Veo (171 1BTBT | 4+ 4™ <3Y 1 S
Then
XN < G DI + 122D <IGIGY eg + CRo + CMinax /1)
& 1
< ||G]I <3N+1 — 4+ O3V + e3N)
26l 4/I6]
=3Ve(3/2+3/2C +1/4)<(7/4+3/20)3"e =D
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