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SUMMARY

Sufficient conditions for a robust relay delayed non-local stabilization of linear systems are found, which
relate the upper bound of an uncertainty in a time delay and the maximum of the real part of system
spectrum. Algorithm of delayed relay control gain adaptation for non-local stabilization is suggested. The
proposed algorithm suppresses bounded uncertainties in the time delay: once this relay delayed control law
for the upper bound of uncertainty in the time delay for given system is designed, we ensure non-local
stabilization for all values of the time delay less than the upper bound even in the case of a variable delay.
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1. INTRODUCTION

Relay control systems are widely used due to the following main reasons:

* relay controllers suppress bounded uncertainties (see Reference [1]);
* there are control systems in which only sign of variables is observable (References [2–4]).

Time delay that usually takes place in relay and sliding mode control systems must be taken
into account for system analysis and design (see for example Reference [1]). On the other hand,
time delay does not allow to design the sliding mode control in the space of state variables.
Moreover, in References [5, 6], it was shown that even in the simplest one-dimensional delayed
relay control system only oscillatory solutions can occur. That is why the main directions in
relay delayed control are:

(a) The research of time delay compensation: Pade approximation of delay that reduces the
relay delay output tracking problem to the sliding mode control for non-minimum phase system
was suggested in Reference [7]. Roh and Oh [8] designed the sliding mode control in the space of
predictor variables (see also [9]). This approach allowed to solve eigenvalues assignment
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problem without any restriction on time delay and spectral properties of open-loop system.
However in References [10, 11], it was remarked that sliding mode control design in the space of
predictor variables

* cannot compensate even the matching uncertainties;
* in the simplest case of square systems, if the dimensions of state space and control vector

are the same, sliding mode design in the space of predictor variables can remove the
uncertainties in the space of predictor variables but cannot guarantee compensation of
uncertainties in the space of state variables.

Robustness properties of the Smith predictors with respect to uncertainties in time delay were
studied in a series of papers (see for example References [12, 13]). The conditions of robustness
of Smith predictors with respect to the uncertainty in the time delay are formulated by Furutani
and Araki [13] in terms of stability margins.

(b) Control of amplitudes of oscillations: P.I. control algorithms for amplitude control for one-
dimensional relay system with delay in the input was suggested in Reference [14].

Fridman et al. [5] have shown that any solution to the following equation:

’xxðtÞ ¼ ax� p sign½xðt� hÞ� ð1Þ

with the initial conditions

xðtÞ ¼ jðtÞ; t 2 ½�h; 0�; jjð0Þj5p
2� eah

aeah
¼ r0 ð2Þ

for all t 2 ½T0;1Þ;T0 > 0 is bounded:

jxj5pðeah � 1Þ=a ¼ r1 ð3Þ

whenever stabilization condition

05ah5 ln 2 ð4Þ

holds. It is important to remark that

* Condition (4) is sufficient and necessary condition relay delayed stabilization;
* The size of the domain of stabilization is proportional to the control gain p:

In References [5, 6] the following algorithm for controlling the motion amplitudes was
developed: since after finite time all solutions coincide with the periodic solution, one can
extrapolate the next zero for the periodic solution, and reduce the control gain near to zero of
the periodic solution. This algorithm needs only the knowledge of the sign of state variable with
delay but requires stabilization condition (4). This algorithm is valid for any constant delay
satisfying condition (4) and does not depend on the value of delay. Stabilization condition (4)
and algorithm for stabilization were generalized by Shustin [15] for linear second-order relay
delay systems.

Strygin et al. [16] have generalized stabilization condition (4) for MIMO systems and
proposed a delayed relay control algorithm, allowing to reach local stabilization of oscillations
amplitudes for controllable systems.

In this paper, the algorithm of delayed relay switching of the control gain is suggested using
the knowledge of solutions amplitudes at the delayed time moment. It allows to achieve non-
local stabilization of amplitudes of the oscillations rejecting uncertainty in the time delay.
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2. PROBLEM FORMULATION

Consider a linear system with delayed control and uncertainties of the form

dx

dt
¼ Axþ Buðxðt� hðtÞÞÞ þ f ðx; tÞ ð5Þ

where x 2 Rn is the vector of state space, A;B are real matrices, hðtÞ ð05hðtÞ4h0 for all t 2
½0;1ÞÞ is the continuous function describing an uncertainty in the time delay, u 2 Rm is the relay
control vector bounded in every bounded domain jjxjj4D; x 2 Rn; the function f ðx; tÞ is
continuous on t; smooth on x and corresponds to the presence of an uncertainty in the model of
the plant.

Let us denote as xðtÞ the solution to system (5) with the initial condition:

xðtÞ ¼ jðtÞ; 1 ð�h04t40Þ; jðtÞ 2 C½�h0; 0� ð6Þ

The existence and uniqueness for the solutions to the Cauchy problem (5) and (6) is proved in
Reference [17]. We will consider the problem of nonlocal stabilization for the system (5). As it
was shown in [5], the amplitude of oscillations in relay delay systems is proportional to the relay
control gain. That is why to achieve nonlocal stabilization for system (5) we need to use
sufficiently big initial relay control gain in order to stabilize the solutions of (5) with sufficiently
big initial conditions. Consequently, the desired relay control law should depend on the size of
the initial domain. On the other hand, due to the oscillatory properties of relay delay systems
solutions [5], one can conclude that it is impossible to achieve asymptotic stability for the
solutions to system (5) via relay controllers with a finite number of switches. That is why it is
impossible to ensure semiglobal stabilization in the sense of Isidory [18] via relay delayed control
law with finite number of switching in control gain. In the paper the following modification of
the semiglobal stability notion is used.

Definition 1
The zero solution to system (5) is said to be practically semiglobal stabilizable, if for any
R > e > 0 there are d > 0; D ¼ DðR; eÞ > 0; relay delay control uðt� hðtÞÞ and time moment T > 0;
such that the inequalities jjjð0Þjj5R and jjf ðt; xÞjj5de 8x : jjxjj5D imply the inequality

sup
t2½T ;1Þ

jjxðtÞjj5e

In this paper, relay delayed control law and non-local stability conditions are proposed ensuring
practical semiglobal stabilization for the zero solution to system (5). The proposed control law
requires:

* amplitude of solutions at delayed time moment;
* upper bound of the time delay;
* upper bound of initial conditions;
* size of the desired neighbourhood of the zero solution to system (5).

1The values of relay delayed control for t 2 ½0; hð0Þ� will be defined below through the value of the initial function
jðtÞ; t 2 ½�h0; 0� but for the state variable x only the restriction at the initial point xð0Þ ¼ jð0Þ is necessary.
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The paper is organized as follows. The properties of relay delay control for the simplest scalar
case are introduced in Section 3. In Section 4 a modification of relay control is suggested for
controlled system having two unstable complex conjugate roots. In Section 5 the design
procedure for relay delayed algorithm is described. In Section 6 proposed algorithm is compared
with the linear control algorithm. All proofs are given in the appendix.

3. SCALAR CASE

To explain the basics of proposed algorithm, let us return first to Equation (1) and conditions
(2) and (4). Let us find conditions ensuring that the magnitude of steady oscillations r1 is less
than the magnitude of the initial conditions r0:

r1=r05
ðeah � 1Þ=a

ð2� eahÞ=ðaeahÞ
51

and

e2ah � eah52� eah; ah51
2
ln 2

Consider the scalar control system with the continuous uncertain time delay hðtÞ; 05hðtÞ5h0
and smooth bounded uncertainty f ðx; tÞ

’xx ¼ axþ uðxðt� hðtÞÞÞ þ f ðx; tÞ ð7Þ

xðtÞ ¼ fðtÞ; t 2 ½�h0; 0� ð8Þ

Suppose that

ah05L ¼
1

2
ln 2 ð9Þ

Now, the idea of the desired control algorithm is the following:

* Consider the amplitude of stabilization domain for each value of relay delayed control
gain as the amplitude of the initial conditions for the next step;

* by decreasing the control gain, enter into a smaller neighbourhood of zero.

Let us choose 05e5R5þ1; and define the constants a0; dmax; g;N as follows:

(1) the interval Iah0 ¼ ðaeah0=ð2� eah0 Þ; a=ðeah0 � 1ÞÞ is not empty due to (9) and we can select

a0 2 Iah0 ð10Þ

(2) dmax ¼ aða0ð2� eah0 Þ=aeah0 � 1Þ:
(3) g ¼ ð1þ ða0 þ dmaxÞ=aÞeah0 � ða0 þ dmaxÞ=a:
(4) log3ðR=eÞ4N5log3ðR=eÞ þ 1:

Suppose that there exists such d > 0 that d5dmax and a0 � d 2 Iah0 ; and

jf ðx; tÞj5de for all x : jxj53Neg ð11Þ
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Consider the system of neighbourhoods of zero: Uk ¼ fx: jjxjj5nkg; nk ¼ 3k�1eg; k ¼ 1; . . . ;N;
where the indicator function

HnkðjxjÞ ¼
1 for jxj > nk

0 for jxj4nk

(
ð12Þ

whose zero value indicates that x 2 Uk: In this case the desired control law takes the form

uðt� hðtÞÞ ¼ uReðxðt� hðtÞÞÞ ¼ �a0e 1þ 2
XN
n¼1

3n�1Hnnðjxðt� hðtÞÞjÞ

 !
sign½xðt� hðtÞÞ� ð13Þ

Remark 1
The radius of neighbourhoods Uk and the control gain increase thrice in such a step. This factor
r can be chosen, for example, as the solution of some optimal problem. However, if r > 3; then
we need to make condition (9) stronger. On the other hand, for r53 the number of relay control
elements grows up.

This control law has the following properties:

18: The set of control values is M ¼ f�a0e;�3a0e; . . . ;�3ka0e; . . . ;�3Na0eg:
28: If nk5jxðt� hðtÞÞj5nkþ1; then, juðxðt� hðtÞÞÞj ¼ 3ka0e:
38: If jxðt� hðtÞÞj5nkþ1; then, juðxðt� hðtÞÞÞj43ka0e ð14k4N � 1Þ:
48: juðxðt� hðtÞÞÞj43Na0e ð8t50Þ:
58: nk53ke 8k 2 f1; 2; . . . ;N þ 1g:
68: nkþ1 � 3keða0 � dÞ=a ¼ 3keðg� ða0 � dÞ=aÞ50 8k 2 f0; 1; 2; . . . ;Ng: It is easy to see that

g�
a0 � d
a

¼ 1þ
a0

a

� �
eah0 þ

eah0

a
dmax � 2

a0

a
þ

d� dmax

a

5 1þ
a0

a

� �
eah0 þ

eah0

a
dmax � 2

a0

a
¼ 0

Theorem 1
For any initial condition fðtÞ : jfð0Þj4R; there exists such time moment T > 0; that for any
t > T we have jxðtÞj5e:

4. STABILIZATION OF SECOND ORDER SYSTEM WITH UNSTABLE COMPLEX
CONJUGATE EIGENVALUES

Consider the system

’xx

’yy

 !
¼

a �b

b a

 !
x

y

 !
þ

u1ðxðt� hðtÞÞ; yðt� hðtÞÞÞ

u2ðxðt� hðtÞÞ; yðt� hðtÞÞÞ

 !
þ

f1ðx; y; tÞ

f2ðx; y; tÞ

 !
ð14Þ

where ðxðtÞ; yðtÞÞT 2 R2 is the state vector, a > 0 and b > 0; ðu1; u2Þ
T 2 R2 is the control vector,

f1ðx; tÞ; f2ðx; tÞ are uncertainties and hðtÞ 05hðtÞ4h0; for all t 2 ½0;1Þ:
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Choose 05e5R and suppose that 05bh05p=4 and ah05M; where

M ¼ max
t2½0;p=4�bh0�

t

6
ffiffiffi
2

p cos tþ
p
4
þ bh0

� �
Define the constants a0; dmax;N as follows:

(1) a0 2 ð0;p=4h0 � bÞ : a5a0cosða0h0 þ p=4þ bh0Þ= 6
ffiffiffi
2

p
:

(2) dmax ¼ 1=2h0ðarccos 6
ffiffiffi
2

p
a=a0 � ða0 þ bÞh0 � p=4Þ:

(3) log3ðR=eÞ4N5log3ðR=eÞ þ 1:

Assume that there exists such constant d that d5dmax and aþ d5a0=6
ffiffiffi
2

p
cosða0h0 þ p=4þ

bh0 þ 2dh0Þ ensuring the estimation of the uncertainty:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 21 ðx; tÞ þ f 22 ðx; tÞ

q
5de for 8x; y :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
53Ne

ffiffiffi
2

p
Now the desired control vector takes the form

u1ðxðt� hðtÞÞ; yðt� hðtÞÞÞ

u2ðxðt� hðtÞÞ; yðt� hðtÞÞÞ

 !
¼

1

2

cos bh0 �sin bh0

sin bh0 cos bh0

 !
uReðxðt� hðtÞÞÞ

uReðyðt� hðtÞÞÞ

 !
ð15Þ

where uRe has been already considered in the previous section

uReð�Þ ¼ �a0e 1þ 2
XN
i¼1

3i�1Hni ðj � jÞ

 !
sign½��

where nk ¼ 3k�1e:

Theorem 2
For any initial condition fðtÞ:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2
1ð0Þ þ f2

2ð0Þ
q

5R; there exists time moment T > 0:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ðtÞ þ y2ðtÞ

p
5e; for all t > T :

Remark 2
Suppose that xþ iy ¼ rðtÞeijðtÞ and f1ðx; y; tÞ þ if2ðx; y; tÞ ¼ qðtÞeicðtÞ; where x; y are real
numbers. Then, Equation (14) under control (15) may be written in the form

’rr ¼ arðtÞ �
a0rðtÞ
2

e cosðkðtÞ þ bh0 � jðtÞÞ þ qðtÞ cosðcðtÞ � jðtÞÞ ð16Þ

’jjðtÞ ¼ b�
a0rðtÞ
2rðtÞ

sinðkðtÞ þ bh0 � jðtÞÞ þ
qðtÞ
rðtÞ

sinðcðtÞ � jðtÞÞ ð17Þ

where

rðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32n þ 32m

p
if nn5jyðt� hðtÞÞj4nnþ1; nm5jxðt� hðtÞÞj4nmþ1 ð18Þ

kðtÞ ¼

arctgð3
n

3m
Þ if nn5yðt� hðtÞÞ4nnþ1; nm5xðt� hðtÞÞ4nmþ1

�arctgð3
n

3m
Þ if � nnþ14yðt� hðtÞÞ5� nn; nm5xðt� hðtÞÞ4nmþ1

p� arctgð3
n

3m
Þ if nn5yðt� hðtÞÞ4nnþ1;�nmþ14xðt� hðtÞÞ5� nm

�pþ arctgð3
n

3mÞ if � nnþ14yðt� hðtÞÞ5� nn;�nmþ14xðt� hðtÞÞ5� nm

8>>>>><
>>>>>:

ð19Þ
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Remark 3
ð18Þ: nk4erðtÞ4

ffiffiffi
2

p
nk if

ffiffiffi
2

p
nk5rðt� hðtÞÞ5nkþ1:

ð28Þ: From the definition of jðtÞ it follows that jðtÞ 2 ð�1;þ1Þ: This means that jðtÞ ¼ jz �
ðtÞ þ 2pz; � p5jzðtÞ5p; where z 2 Z: On the other hand, �p5kðtÞ5p and consequently jk�
ðtÞ � jðt� hðtÞÞj4p=4þ 2pjzj; z 2 Z:

5. CONTROL ALGORITHM FOR MIMO CASE

5.1. Structure of projectors

Assume that the spectrum sðAÞ of the matrix A has the following structure sðAÞ ¼ sþ [ s�;
where sþ and s� are the sets of matrix A eigenvalues with the positive and negative real part,
respectively. Then the state space E ¼ Rn could be represented in the form of a direct sum
E ¼ Eþ � E�; where Eþ and E� are the invariant subspaces with respect to A: Consider two
projectors P and Q; transforming P : Rn ! Eþ;Q : Rn ! E�: Suppose that

(1) dim Eþ ¼ rankðPBÞ
(2) sþ ¼ flig

l
i¼1

S
faj � ibjg

n
j¼1; lih05L;L ¼ 1

2
ln 2

05bi5
p
4h0

; aih05Mj ; Mj ¼ max
t2½0;p=4�bjh0�

t

6
ffiffiffi
2

p cos tþ
p
4
þ bih0

� �
ð20Þ

and all the eigenvalues from sþ are simple.
Assume that the spectrum sþ of matrix A satisfies condition (1) and the following

representations hold

Ahi ¼ lihi; ði ¼ 1; lÞ

and

Ahlþ2j�1 ¼ ajhlþ2j�1 � bjhlþ2j

Ahlþ2j ¼ bjhlþ2j�1 þ ajhlþ2j ; ð j ¼ 1; nÞ

Consider the conjugate matrix An and suppose that f1; f2; . . . ; fm; m ¼ 2nþ l are the following
eigenvectors:

Anfi ¼ lifi; ði ¼ 1; lÞ

and

Anflþ2j�1 ¼ aj flþ2j�1 þ bj flþ2j ; Anflþ2j ¼ �bj flþ2j�1 þ aj flþ2j ðj ¼ 1; nÞ

Then, the above projectors can be written in the following form:

Px ¼
Xm
i¼1

ðx; giÞhi; Qx ¼ x� Px; gi ¼
fi

jj fi jj
; ði ¼ 1; lÞ

glþ2j�1 ¼ cj11flþ2j�1 þ cj12flþ2j

glþ2j ¼ cj21 flþ2j�1 þ cj22flþ2j ; ðj ¼ 1; nÞ
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where

cj11 ¼
jjflþ2j jj

2

jjflþ2j�1jj2 � jjflþ2j jj2 � ðflþ2j�1; flþ2jÞ
2

cj12 ¼ cj21 ¼
ðflþ2j�1; flþ2jÞ

jjflþ2j�1jj2 � jjflþ2j jj2 � ðflþ2j�1; flþ2jÞ
2

cj22 ¼
jjflþ2j�1jj

2

jjflþ2j�1jj
2 � jjflþ2j jj

2 � ðflþ2j�1; flþ2jÞ
2

Suppose that ej ¼ ðaj1; aj2; . . . ; ajnÞ
T is some basis in Rn space such that ej ¼ hj ðj ¼ 1;mÞ: Let us

introduce the new basis into Rn in the form

%eei ¼ hi; ði ¼ 1;mÞ; %eemþj ¼ emþj � Pemþj ; ðj ¼ 1; n�mÞ

The matrix of transition from the canonical basis to the new basis f %eeig has the form

G ¼ ð %ee1; . . . ; %eenÞ ¼

a11 a21 � � � am1 amþ1 1 �
Pm

i¼1 ai1ðemþ1; giÞ � � �

a12 a22 � � � am2 amþ1 2 �
Pm

i¼1 ai2ðemþ1; giÞ � � �

..

. ..
. ..

. ..
.

a1n a2n � � � amn amþ1 n �
Pm

i¼1 ainðemþ1; giÞ � � �

0
BBBBBBBBB@

1
CCCCCCCCCA

and

J ¼ G�1AG ¼

Aþ 0

0 A�

0
BB@

1
CCA

In this case, the following representation holds

G�1B ¼
Bþ

B�

 !

where Bþ ¼ m�m; B� ¼ n�m�m and rankðBþÞ ¼ m:
Denoting z ¼ ðz1; z2Þ

T ¼ G�1x; one can rewrite system (5) as follows:

’zz1 ¼ Aþz1 þ Bþuþ g1ðz; tÞ

’zz2 ¼ A�z2 þ B�uþ g2ðz; tÞ
ð21Þ
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where gðz; tÞ ¼ ðg1ðz; tÞ; g2ðz; tÞÞ
T ¼ G�1f ðt;GzÞ;

Aþ ¼

l1 0 � � � � � � � � � � � � � � � 0

� � � � � � � � � � � � � � � � � � � � � � � �

0 � � � ll 0 � � � � � � � � � 0

0 � � � 0 a1 �b1 0 � � � 0

0 � � � 0 b1 a1 0 � � � 0

� � � � � � � � � � � � � � � � � � � � � � � �

0 � � � � � � � � � � � � 0 an �bn

0 � � � � � � � � � � � � 0 bn an

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

5.2. Control design

Algorithm of practical semiglobal stabilization

(1) Fix R > 0 and e > 0
(2) Choose ai 0 > 0 and dmax

i > 0 such that

ai 0 2 Ilih0 ; dmax
i ¼ li ai 0

2� eli

lieli
� 1

� �
; ði ¼ 1; . . . ; lÞ

where

Ilih0 ¼
lielih0

2� elih0
;

li
elih0 � 1

� �

(3) Define alþj
0 > 0 and dmax

lþj > 0 such that

alþj
0 2 0;

p
4h0

� bj

� �
: aj5

alþj
0

6
ffiffiffi
2

p cos
p
4
þ alþj

0h0 þ blþjh0

� �

dmax
j ¼

1

2h0
arccos

6
ffiffiffi
2

p
aj

aj 0
� ðaj 0 þ bjÞh0 �

p
4

 !
j ¼ 1; . . . ; n

(4) Matrix A� is stable. Consequently, there exists m > 0 and C > 0 such that jjeQAtjj4Ce�mt:
Put Dmax ¼ max dmax

i ; R0 ¼ jjG�1jjR and e0 2 ð0; eVÞ; where

V ¼ min
1

2jjGjj
;

m

4jjGjjCðjj%aa0jj � jjB�½Bþ��1jj þ DmaxÞ

� 	

%aa0 ¼ ða10; . . . ; al 0; alþ1
0; alþ1

0; . . . ; alþn
0; alþn

0ÞT:
(5) Define nni ¼ gi3

n�1e0; where gi ¼ ð1þ ðai 0 þ dmax
i Þ=liÞelih0 � ðai 0 þ dmax

i Þ=li; i ¼ 1; . . . ; l and
nnlþj ¼ 3n�1e0; ðj ¼ 1; . . . ; 2nÞ:

(6) log3ðR0=e0Þ4N5log3ðR0=e0Þ þ 1:

Suppose that

jjf ðx; tÞjj5
dke0
jjG�1jj

8x : jjxjj5D ð22Þ
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where dk5dmax
k ; ðk ¼ 1; . . . ; l þ nÞ and ai 0 � di 2 Ilih0 ; ði ¼ 1; ::; lÞ; aj þ dlþj5alþj

0=6
ffiffiffi
2

p
cos

ðalþj
0h0 þ p=4þ bjh0 þ 2dlþjh0Þ; ð j ¼ 1; . . . ; nÞ and D ¼ ð7=4þ 3=2CÞ3Ne:

Design the delayed switching surface siðyiðt� hðtÞÞÞ in the form

siðyiðt� hðtÞÞÞ ¼ �%aai 0ei 1þ 2
XN
n¼1

3n�1Hnn
i
ðjyiðt� hðtÞÞjÞ

 !
sign½yiðt� hðtÞÞ�

where i ¼ 1; 2; . . . ;m ¼ l þ 2n:
Define the switching surface vector such as

sðz1ðt� hðtÞÞÞ ¼ ðs1ðz11ðt� hðtÞÞÞ; s2ðz12ðt� hðtÞÞÞ; . . . ;smðz1mðt� hðtÞÞÞÞT

where z ¼ ðz1; z2Þ
T ¼ G�1x: Then, the desired control vector in the form

uðxðt� hðtÞÞÞ ¼ ½Bþ��1

I l 0 � � � 0

0 S1 � � � 0

..

. ..
.

� � � ..
.

0 � � � 0 Sn

0
BBBBBB@

1
CCCCCCA
sðG�1xðt� hðtÞÞ ð23Þ

where I l is the identity l � l matrix and

Sj ¼
1

2

cos bj �sin bj

sin bj cos bj

 !
; j ¼ 1; . . . ; n

Theorem 3
If conditions (1) and (2) hold, then system (5) is practically semiglobally stabilizable.

Remark 4
Condition (1) is more restrictive than the usual conditions of stabilization. To satisfy (1) it is
necessary that the vector control has the same dimension as the number of unstable poles in the
open-loop system. On the other hand condition (1) needs sometimes less than controllability of
the pair ðA; bÞ:

Consider two simple examples:

’xx ¼
0 �1

1 2

 !
xþ

0

1

 !
u ð24Þ

and

’xx ¼
�1 0

1 2

 !
xþ

0

1

 !
u ð25Þ

It is easy to see that system (24) is controllable, since rank ½Ab; b� ¼ 2: However, the stability
condition dim Eþ ¼ dimðPbÞ is not satisfied, since dim Eþ ¼ dimR2 ¼ 2=rankðPbÞ ¼ 1: At the
same time, system (25) is uncontrolled, but condition (1) is true, since dim ðEþÞ ¼ 1 ¼ rankðPbÞ:
Moreover, it is easy to see that for SISO systems, when the matrix A has only one simple
unstable root, condition (1) is equivalent to the controlability of the pair fA; bg:
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6. NUMERICAL EXAMPLE

Consider the following unstable system:

’xx ¼

�7:1869 �2:0400 �6:4796 �4:2994

3:8908 1:1200 3:4189 2:2182

0:3914 0:0066 0:2752 0:1754

1:2945 0:5000 1:7170 1:1516

0
BBBBB@

1
CCCCCAxþ

1 0 0

2 1 0

3 2 1

4 3 2

0
BBBBB@

1
CCCCCAuðxðt� hðtÞÞÞ þ f ðx; tÞ ð26Þ

where hðtÞ ¼ 0:5þ 0:5 sinð30tÞ; ð04hðtÞ4h0 ¼ 1Þ;

f ðxðtÞ; tÞ ¼ ð0:0130 sinðtÞ;�0:0063 sinðtÞ;�0:0602 sinðtÞ; 0:0557 sinðtÞÞT ð27Þ

The open-loop system has the following eigenvalues l1 ¼ 0:34; l2;3 ¼ 0:01� 0:1i; l4 ¼ �5: We
will consider solution to system (26) with the initial condition

fðtÞ ¼ ðcosðtÞ; cosð2tÞ; sinð3tÞ; sinð4tÞÞT ð28Þ

6.1. Relay control design

Let us design the relay delayed control law for system (26). Put R ¼ 2:5; e ¼ 0:1: Let us
choose

a10 ¼ 0:83 2
l1el1

2� el1
;

l1
el1 � 1

� �

a20 ¼ a30 ¼ 0:34 2 0;
p
4h0

� 0:1

� �
: 0:015

a20

6
ffiffiffi
2

p cos
p
4
þ a20 þ 0:1

� �

nk1 ¼ 3k�1e0g; nk2 ¼ nk3 ¼ 3k�1e0

where e0 ¼ 0:01 2 ð0; eViÞ (see (4) in Section 5.2), g ¼ 2:4 ¼ ð1þ ða10 þ dmax
1 Þ=l1Þel1 � ða10 þ

dmax
1 Þ=l1 and dmax ¼ l1ða10ð2� el1=l1el1Þ � 1Þ: In this case the desired relay delay control can be

designed as follows:

uðt� hðtÞÞ ¼

1:4930 1:5137 �0:4382

�4:0657 �3:8731 0:9320

3:4226 2:8463 �0:5022

0
BB@

1
CCA

s1ðy1ðt� hðtÞÞÞ

s2ðy2ðt� hðtÞÞÞ

s3ðy3ðt� hðtÞÞÞ

0
BB@

1
CCA ð29Þ

where siðyiðt� hðtÞÞ ¼ �0:01ai 0ð1þ 2
P6

k¼1 3k�1Hnk
i
ðjyiðt� hðtÞÞjÞÞsign½yiðt� hðtÞÞ�;

yðt� hðtÞÞ ¼

0:3852 0 2:3115 1:5410

�0:1877 0:0816 �2:5958 �0:3673

�1; 7713 �2:7264 �1:7632 �1:1346

1:6388 0:4682 1:4047 �0:9364

0
BBBBB@

1
CCCCCAxðt� hðtÞÞ
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6.2. Linear control

The pair fA; b1g is controllable. From Ackermann’s formula it follows

u1 ¼ ½0; 0; 0; 1�½b1;Ab1;A2b1;A
3b1��1ðA� l1I

4ÞðA� l2I
4ÞðA� l3I

4ÞðA� l4I
4Þxðt� hðtÞÞ

For l1 ¼ �0:7; l2 ¼ �0:8; l3 ¼ �0:9; l4 ¼ �1 the linear control vector has the form

uðt� hðtÞÞ ¼

0:4 0:7316 0:5423 �0:2492

0 0 0 0

0 0 0 0

0
BB@

1
CCAxðt� hðtÞÞ ð30Þ

Figure 1 shows the x1ðtÞ co-ordinate of the solution to system (26), driven by a linear controller,
leaving the e ¼ 0:1 vicinity of zero but at the same time the corresponding solution to system
(26), driven by relay delay controller, oscillating inside the desired neighbourhood of zero.
Moreover, the simulation results show that if we increase the parameters li the stability
neighbourhood will grow. On the other hand, decreasing the parameters li results in system
unstability. The simulation results show that the linear control algorithm does not allow to
achieve the desired e-neighbourhood of zero. Increasing the parameters li implies increasing of
the stability neighborhood. Decreasing the parameters li implies system instability.

6.3. System with nonlinear uncertainty

Consider system (26) with the nonlinear uncertainty

f1ðxðtÞ; tÞ ¼ 0:0130
x1ðtÞ
5

� �3

;�0:0063
x1ðtÞ
5

� �3

; � 0:0602
x1ðtÞ
5

� �3

; 0:0557
x1ðtÞ
5

� �3
 !T

ð31Þ

The designed relay delayed control ensures a practically semiglobal stabilization of system (26).
System (26) with uncertainties (31) under linear control is unstable (see Figure 2).

Figure 1. System state x4ðtÞ (dotted and continuous lines describe the solutions for linear controller and
relay delayed control law, respectively).
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7. CONCLUSION

An algorithm of delayed relay control gain adaptation for the practical semiglobal stabilization
is suggested that requires delayed information about amplitude of oscillations and upper bound
of the time delay. The proposed algorithm rejects bounded uncertainties in time delay: once we
have designed the control law for the upper bound of the uncertainty in the time delay for a
given system, we can ensure the practical semiglobal stabilization of zero solution for any values
of the time delay less than the upper bound, even in the case where the delay is variable.
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APPENDIX A

A.1. Proofs for the scalar case

(1) Staying in the neighbourhood

Lemma A1
If for k 2 f0; 1; . . . ;N � 1g there exists T50 such that jxðtÞj5nkþ1 for all t 2 ½T � h0;T � and
jxðTÞj43ke; then jxðtÞj4nkþ1 for all t5T :

Proof
Suppose by contradiction that there exists T 05T such that jxðT 0Þj > nkþ1: Then, from the
condition jxðTÞj43ke it follows that there exists such tn > T : jxðtnÞj ¼ 3ke and jxðtÞj > 3ke; for
all t 2 ðtn;T 0�; and moreover there exists T n > tn : jxðT nÞj ¼ nkþ1 and jxðtÞj5nkþ1;8t 2 ½tn;T nÞ:
Now we can suppose that xðT 0Þ > nkþ1: Then xðtnÞ ¼ 3ke and xðT nÞ ¼ nkþ1:

Figure 2. x1ðtÞ co-ordinate of system (26) solution with nonlinear uncertainty (31) (dotted and continuous
lines describe x1ðtÞ for linear controller and relay delayed control law, respectively).
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Let us show that T n � tn5h0 estimates the upper bound of xðtÞ for t 2 ½tn;T n�: Taking into
account that jxðtÞj5nkþ1 for t 2 ½T � h0;T � and jxðtÞj5nkþ1 for t 2 ½T ;T n�; one has juðt� h�
ðtÞÞj5a03ke for t 2 ½T ;T n�: Then

’xx4axþ ða0 þ dÞ3ke

xðtnÞ ¼ 3ke

and

xðtÞ43ke 1þ
a0 þ d
a

� �
eaðt�t nÞ �

a0 þ d
a

� �

For t ¼ T n one has

xðT nÞ ¼ nkþ1 ¼ 3ke 1þ
a0 þ dmax

a

� �
eah �

a0 þ dmax

a

� �

4 3ke 1þ
a0 þ d
a

� �
eaðT

n�t nÞ �
a0 þ d
a

� �

which yields T n � tn5h0: Let us note that in this case from xðtÞ > 3ke > nk for t 2 ½tn;T 0� one has
sign½xðt� hðtÞÞ� ¼ 1 and Hnnðjxðt� hðtÞÞjÞ ¼ 1 for n ¼ 1; k; t 2 ½tn þ h0;T 0�; which means

uðtÞ5� 3ka0e; 8t 2 ½tn þ h0;T
0� ðA1Þ

Now
’xxðT nÞ4ankþ1 � 3kða0 � dÞe50 ðA2Þ

This means that at t ¼ T n the function xðtÞ is decreasing on ½T n;T 0�; and xðT 0Þ5nkþ1: This is a
contradiction in the initial assumption. &

Corollary A1

Proof
If jxð0Þj4R; then

jxðtÞj4nNþ1 ¼ 3Neg 8t50

It is obvious, that condition jxðtÞj4nkþ1 for t 2 ½T � h0;T � and k 2 f1; . . . ;N � 1g is
equivalent to juðtÞj4a03ke 8t 2 ½T ;T þ h0�: Lemma A1 is true even for k ¼ N: Taking into
account that N5 log3 R=e; one has jxð0Þj4R43Ne: &

(2) Existence of the next zero

Lemma A2
If jxð0Þj4R; then for all t50 there exists T5t : xðTÞ ¼ 0:

Proof
Suppose in contradiction that there exists tn such that for all t50 xðtÞ=0: Consider the case
when xðtÞ > 0: Then, for t > tn þ h0 we will have sign ½xðt� hðtÞÞ� ¼ 1: Equation (7) takes the form

’xx ¼ ax� a0e 1þ 2
XN
n¼1

3n�1Hnn ðjxðt� hðtÞÞjÞ

 !
þ f ðx; tÞ
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Now
’xx4ax� ða0 � dÞe ðA3Þ

Let us show that xðtÞ > n1 for all t5tn þ h0: Suppose that it is not true and 9t15tn þ h0 : x�
ðt1Þ4n1: Then inequality (A3) yields

xðtÞ4 n1 �
ða0 � dÞe

a

� �
eaðt�t1Þ þ

ða0 � dÞe
a

¼ vðtÞ

Taking into account that the first coefficient before the exponent in the last equation is negative,
one can conclude that vðtÞ is a decreasing function and there exists t0 : vðt0Þ ¼ 0; then xðt0Þ40;
which contradicts with condition xðtÞ > 0: This means that xðtÞ > n1: Analogously, we can
prove that xðtÞ > n2; etc. Finally, we will have the inequality xðtÞ > nNþ1; which contradicts
Corollary A1. &

(3) Reduction of the amplitude of oscillations

Lemma A3
If jxðtÞj4nkþ1; then for all t5T ; there exists T1; such that for all t5T1

jxðtÞj4nk

Proof
(1) Consider the case

a0 þ d4
1

3

a
eah0 � 1

Then, from condition (3) and 58 it follows that ’xx4axþ ða0 þ dÞe3k: Suppose that x�
ðtnÞ ¼ 0; tn > T þ h0 for all t5T þ h0: Then

xðtÞ4
ða0 þ dÞe3k

a
eaðt�t nÞ �

ða0 þ dÞe3k

a

At t ¼ tn þ h0 we will have

xðtn þ h0Þ4
3kða0 þ dÞe

a
eah0 �

3kða0 þ dÞe
a

¼ 3keða0 þ dÞ
eah0 � 1

a
43ke

1

3

a
eah0 � 1

eah0 � 1

a
¼ 3k�1e

For t 2 ½tn; tn þ h0� one has jxðtÞj43k�1e4nk and xðtn þ h0Þ43k�1e:
From Lemma A1 it follows that for all t5tn xðtÞ4nk: Analogously, we can have xðtÞ5� nk:
(2) Consider the case

a0 þ d >
1

3

a
eah0 � 1

Let t ¼ tn is the zero of the solution xðtÞ such that

tn5T þ 2h0 �
1

a
ln 1þ

a
3ða0 þ dÞ

� �
ðA4Þ

Then for t5tn one has

xðtÞ4
ða0 þ dÞe3k

a
eaðt�t nÞ �

ða0 þ dÞe3k

a
¼ vðtÞ
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Consequently, the function is increasing on vðtÞ on ½tn; t1� for some t15tn: and vðt1Þ ¼ 3k�1e:
From the definition of function vðtÞ it follows:

ða0 þ dÞe3k

a
eaðt

1�t nÞ �
ða0 þ dÞe3k

a
¼ 3k�1e

a0 þ d
a

eaðt
1�t nÞ �

a0 þ d
a

¼
1

3

and

t1 � tn ¼
1

a
ln 1þ

a
3ða0 þ dÞ

� �
ðA5Þ

Consider now two cases
ðaÞ jxðtÞj4nk for t 2 ½T þ h0; tn�; then taking into account (A4) and (A5), one has t1 � T52h0;

which means that for t 2 ½T þ h0; t1�; jxðtÞj5nk; jxðt1Þj43k�1e; and one can conclude that
Lemma A3 follows from Lemma A1.

ðbÞ Suppose that there exists %tt 2 ½T ; tn� : xð%ttÞ > nk: Then from the continuity of xðtÞ it follows
that 9t25T : xðt2Þ ¼ nk and xðtÞ4nk; for all t 2 ½t2; tn�:

Consequently, jxðtÞj5nk; 8t 2 ½t2; t1�: Let us estimate the lower band of xðtÞ for t 2 ½t2; tn�:
Then the differential inequality ’xx5ax� ða0 þ dÞe3k with the initial conditions xðt2Þ ¼ nk; implies
that

xðtÞ5 nk �
ða0 þ dÞe3k

a

� �
eaðt�t2Þ þ

ða0 þ dÞe3k

a

Let us rewrite this inequality at t ¼ tn in the form

05 nk �
ða0 þ dÞe3k

a

� �
eaðt

n�t2Þ þ
ða0 þ dÞe3k

a

Then

05ðe3k�1ððaþ a0 þ dÞeah0 � a0 � dÞ � ða0 þ dÞe3kÞeaðt
n�t2Þ þ ða0 þ dÞe3k

and

05ððaþ a0 þ dÞeah0 � 4ða0 þ dÞÞeaðt
n�t2Þ þ 3ða0 þ dÞ

ð2ða0 þ dÞ þ ð2� eah0 Þða0 þ dÞ � aeah0Þeaðt
n�t2Þ53ða0 þ dÞ

Now from (10) it follows that ð2� eah0Þða0 þ dÞ � aeah0 > 0 and

tn � t25
1

a
ln

3ða0 þ dÞ
ð4� eah0Þða0 þ dÞ � aeah0

Taking into account the last inequality, one has

t1 � t2 ¼ t1 � tn þ tn � t2

5
1

a
ln 1þ

a
3ða0 þ dÞ

� �
þ

1

a
ln

3ða0 þ dÞ
ð4� eaÞða0 þ dÞ � aea

¼
1

a
ln

3ða0 þ dÞ þ a
ð4� eaÞða0 þ dÞ � aea
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It is easy to show that

1

a
ln

3ða0 þ dÞ þ a
ð4� eah0 Þða0 þ dÞ � aeah0

5h0

Then t1 � t25h0:
(4) Proof of Theorem 1 &

(1) Let us show that there exists such time moment t ¼ T1; that for all t5T1 jxðtÞj5n1:
Following, Corollary A1 one has jxðtÞj4nNþ1 for t50: Lemma A3 yields that there exists such
time moment that t ¼ t1 that jxðtÞj4nN 8t5t1: Analogously for Nth step for all t5tn one has

jxðtÞj4n1 ðA6Þ

(2) Inequality (A2) holds only if for t5tn þ h0 one has juðtÞj4a0e: Moreover, from Lemma A2
it follows that 9T5tn þ h0 : xðTÞ ¼ 0: Let us show that jxðtÞj4e; 8t5T : Suppose in contra-
diction that, if 9%tt5T : xð%ttÞ > e; then 9T n5T : xðT nÞ ¼ 0; and xðtÞ > 0 8t 2 ðT n; %tt�: Let us find
the upper bound of xðtÞ for t 2 ½T n; %tt�: Then the inequality

’xx4axþ ða0 þ dÞe;xðT nÞ ¼ 0

implies that

xðtÞ4
ða0 þ dÞe

a
eaðt�T nÞ �

ða0 þ dÞe
a

and for the time moment T n þ h0 the last inequality takes the form

xðT n þ h0Þ4
ða0 þ dÞe

a
eah0 �

ða0 þ dÞe
a

¼ eða0 þ dÞ
eah0 � 1

a
4e

This means that there exists the time moment T n þ h0

’xx ¼ ax� ða0 � dÞe

but xðT n þ h0Þ4e4n1: Consequently, from ð68Þ it follows:

’xxðT n þ h0Þ4an1 � ða0 � dÞe50

This means that for t5T n þ h0 the solution xðtÞ will decrease until the next switching moment.
Now one can conclude that at some time moment xðt

*
Þ ¼ 0: This equality contradicts with

condition xðtÞ > 0 8t 2 ðT n; %tt�:

A.2. Proofs for the second-order system with unstable complex eigenvalues

(1) Staying in the neighbourhood

Lemma A4
If there exists such time moment T > 0 that rðtÞ4nk for all t 2 ½T � h0;T �; then rðtÞ5nk for all
t > T :

Proof
Let us suppose in contradiction that there exists T 0 > T : rðT 0Þ ¼ nk: Then there are two cases

(1)
ffiffiffi
2

p
nk�15rðtÞ4nk for all t 2 ½T ;T 0�: Let us denote tn ¼ T � h0: It is easy to see that

T 0 � tn > h0:
(2) There exists tn > T : rðtnÞ ¼

ffiffiffi
2

p
nk�1 and

ffiffiffi
2

p
nk�15rðtÞ4nk for all t 2 ðtn;T 0�:
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Let us show that in this case the inequality T 0 � tn > h0 is correct.
Since erðtÞ4

ffiffiffi
2

p
nk�1 for rðt� hðtÞÞ :

ffiffiffi
2

p
nk�15rðt� hðtÞÞ4nk (see ð18Þ; Remark 2) then for

t > tn we have

’rr4arþ
a0nk�1ffiffiffi

2
p þ de5arþ

ða0 þ 2dÞnk�1ffiffiffi
2

p
rðtnÞ ¼

ffiffiffi
2

p
nk�1

Then

rðT 0Þ ¼ nk4
ffiffiffi
2

p
nk�1 þ

ða0 þ 2dÞnk�1ffiffiffi
2

p
a

 !
eaðT

0�t nÞ �
ða0 þ 2dÞnk�1ffiffiffi

2
p

a

Hence, we have T 0 � tn > h0:
To study the term

cos½kðtÞ þ bh0 � jðtÞ�

on the right-hand side of (16) we should integrate Equation (17) on the interval ½t� h�
ðtÞ; t�; t 2 ½tn þ h0;T 0�: It is easy to see that

jðtÞ ¼ jðt� hðtÞÞ þ bhðtÞ � a0xðtÞ þ wðtÞ ðA7Þ

where

xðtÞ ¼
1

2

Z t

t�hðtÞ

rðtÞ
rðtÞ

sin½kðtÞ þ b� jðtÞ� dt ðA8Þ

wðtÞ ¼
Z t

t�hðtÞ
qðtÞr�1ðtÞ sin½cðtÞ � jðtÞ� dt ðA9Þ

Obviously,

jxðtÞj5
1

2
hðtÞ5h0 and jwðtÞj52dh0

Now substituting (A7) into (16) we have

r0 ¼ ar�
erðtÞ
2

a0cos½kðtÞ � jðt� hðtÞÞ þ bðh0 � hðtÞÞ þ a0xðtÞ þ wðtÞ� þ qðtÞcosðcðtÞ � jðtÞÞ ðA10Þ

From ð28Þ we obtain

cos½kðtÞ � jðt� hðtÞÞ þ bðh0 � hðtÞÞ þ a0xðtÞ þ wðtÞ�5cosða0h0 þ 2dh0 þ bh0 þ p=4Þ ðA11Þ

Hence, for t 2 ½tn þ h0;T 0�

r04ar�
a0nk�1

2
cosða0h0 þ 2dh0 þ bh0 þ p=4Þ þ de

4nk aþ d�
a0

6
cosða0h0 þ 2dh0 þ bh0 þ p=4Þ

� �
50

That is why equality rðT 0Þ ¼ nk cannot be achieved.
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(2) Transition into the smaller neighbourhood

Lemma A5
If rðtÞ5nk for all t > T and there exists a time moment tn > T þ h0 such that rðtnÞ ¼ nk�1=

ffiffiffi
2

p
;

then, rðtÞ5nk�1 for all t > tn:

Proof
Suppose in contradiction that there exists T 0 > tn : rðT 0Þ ¼ nk�1: In this case

’rr5arþ
ða0 þ 2dÞnk�1ffiffiffi

2
p

rðtnÞ ¼ nk�1=
ffiffiffi
2

p
Then

nk ¼ rðT 0Þ4 nk�1=
ffiffiffi
2

p
þ

ða0 þ 2dÞnk�1ffiffiffi
2

p
 !

eaðT
0�t nÞ �

ða0 þ 2dÞnk�1ffiffiffi
2

p
Hence

T 0 � tn >
1

a
ln

ffiffiffi
2

p
aþ a0 þ 2d

aþ a0 þ 2d

If rðtÞ5nk�1 for all t 2 ½T ; tn�; then T 0 � T > h0: From Lemma A4 it follows that rðtÞ5nk�1 for
all t > T þ h0: This means that there exists a time moment T0 > T such that rðT0Þ ¼ nk�1 and
rðtÞ5nk�1 for all t 2 ðT0; tn�:

’rr5ar�
ða0 þ 2dÞnk�1ffiffiffi

2
p ; rðT0Þ ¼ nk�1

This means that

nk�1=
ffiffiffi
2

p
¼ rðtnÞ5 nk�1 �

ða0 þ 2dÞnk�1ffiffiffi
2

p
a

 !
eaðT

0�t nÞ þ
ða0 þ 2dÞnk�1ffiffiffi

2
p

a

Consequently,

tn � T0 >
1

a
ln

a0 þ 2d� a

a0 þ 2d�
ffiffiffi
2

p
a

Finally,

T 0 � T0 ¼ T 0 � tn þ tn � T0 >
1

a
ln

ffiffiffi
2

p
aþ a0 þ 2d

aþ a0 þ 2d
�

a0 þ 2d� a

a0 þ 2d�
ffiffiffi
2

p
a
> h0

Let us prove the last inequalityffiffiffi
2

p
a2 þ aða0 þ 2dÞð

ffiffiffi
2

p
� 1Þ

eah0 þ 1

eah0 � 1
� ðaþ 2dÞ2 > 0

ffiffiffi
2

p
a2 þ ða0 þ 2dÞ að

ffiffiffi
2

p
� 1Þ

eah0 þ 1

eah0 � 1
� ðaþ 2dÞ

� �
> 0

Copyright # 2003 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 14:15–37

NONLOCAL STABILIZATION 33



Now

að
ffiffiffi
2

p
� 1Þ

eah0 þ 1

eah0 � 1
> aþ 2d

It is easy to see that

mðaÞ ¼ ah0
eah0 þ 1

eah0 � 1

is an increasing function of a and consequently mina2½0;M=h0� mðaÞ ¼ 2: Then

ah0ð
ffiffiffi
2

p
� 1Þ

eah0 þ 1

eah0 � 1
52ð

ffiffiffi
2

p
� 1Þ > p=4 > h0ða0 þ 2dÞ &

(3) Reduction of the amplitudes of oscillations

Lemma A6
If rðtÞ5nk for all t > T then there exists a time moment T 0 > T þ h0; such that rðtÞ5nk�1 for all
t > T 0:

Proof
Suppose in contradiction that for any t > T þ h0 there exists tn > t : rðtnÞ5nk�1:

Let us show that there exists tn > T þ h0: rðtnÞ ¼ nk�1=
ffiffiffi
2

p
: Suppose in contradiction that:

nk�1=
ffiffiffi
2

p
5rðtÞ4nk for all t > T þ h0: In this case

jðtÞ ¼ jðt� hðtÞÞ þ bhðtÞ � a0xðtÞ þ wðtÞ; ð8t > T þ h0Þ

where

jxðtÞj5h0 and jwðtÞj52dh0

Then

’rr4ar�
a0nk�2

2
cosða0h0 þ 2dh0 þ bh0 þ p=4Þ þ dnk�1

It is easy to see that if rðtÞ4
ffiffiffi
2

p
nk�1; then ’rr50 and there exists tn > T þ h0: rðtnÞ ¼ nk�1=

ffiffiffi
2

p
:

So we have rðtÞ5
ffiffiffi
2

p
nk�1 for all t > T þ h: However, in this case erðtÞ > nk�1=

ffiffiffi
2

p
and

’rr5ðaþ dÞnk �
a0nk�1

2
cosða0h0 þ 2dh0 þ bh0 þ p=4Þ50

This means that there exists tn > T þ h0 such that rðtnÞ ¼ nk�1=
ffiffiffi
2

p
: &

A.3. Proof of Theorem 2

(1) Let us show that there exists rðtÞ5
ffiffiffi
2

p
nNþ1 for all t > 0:

It is easy to see that erðtÞ4
ffiffiffi
2

p
nN for any rðtÞ (see Remark 2).

’rr4arþ
ða0 þ 2dÞnNffiffiffi

2
p

rð0Þ ¼ nNþ1
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Then

rðhÞ5 nNþ1 þ
ða0 þ dÞnNffiffiffi

2
p

a

 !
eah �

ða0 þ dÞnNffiffiffi
2

p
a

¼ nNþ1 eah0 þ
a0 þ d

3
ffiffiffi
2

p eah0 � 1

a

 !
5

ffiffiffi
2

p
nNþ1

(2) Let us show that there exists a time moment T1 > 0 such that rðtÞ5nNþ1 for all t > T1:
Suppose the opposite. In this case, rðtÞ > nNþ1=

ffiffiffi
2

p
for all t > 0: Otherwise, we can find time

moment T1 (see Lemma A5).
Let us integrate Equation (17) over the interval ½t� hðtÞ; t� for t > h0

jðtÞ ¼ jðt� hðtÞÞ þ bhðtÞ � a0xðtÞ þ wðtÞ

where

jwðtÞj5h0; and jxðtÞj52dh0

Then

’rr5ðaþ dÞ
ffiffiffi
2

p
nNþ1 �

a0nN
2

cosðp=4þ a0h0 þ 2dh0 þ bh0Þ50

(3) Now from Lemma A6 we have rðtÞ5nN etc. On the Nth step we will have rðtÞ5n1 ¼ e:

A.4. Practical semiglobal stabilization of system via designed control

Suppose that the control vector uðt� hðtÞÞ was designed in accordance with the algorithm
described in Section 5.

Since f ðt;xÞ satisfies Condition (22) and jzið0Þj5Ri then from Theorems 1 and 2 one can
conclude that there exists Ti > 0 such that jz1iðtÞj5e0; ði ¼ 1;mÞ:

Let us denote Tmax ¼ max Ti: Then according to the control property ð38Þ we have jsiðyi �
ðt� hðtÞÞÞj4ai 0e0 for any t > Tmax þ h0: In Section 5.2 it was proposed that

jjeQAtjj4Ce�mt

Consequently, for all t > Tmax þ h0 from (21) we have

jjz2ðtÞjj4Ce�mðt�Tmax�h0Þjjz2ðTmax þ h0Þjj þ C
M

m
ð1� e�mðt�Tmax�h0ÞÞ ðA12Þ

where M is a positive constant. Then, there exists time moment T 0 > Tmax þ h0 such that

jjz2ðtÞjj52C
M

m

It is easy to see that

M4e0 ðjj%aa0jj � jjB�½Bþ��1jj þ DmaxÞ

where %aa0 ¼ ða01; . . . ; al
0; alþ1

0; alþ1
0; . . . ; alþn

0; alþn
0ÞT; and Dmax ¼ max dmax

i :
Since the parameter e0 has been chosen such that

e05
em

4CjjGjjðjja0jj � jjB�jj � jj½Bþ
0 �

�1 þ DmaxÞ
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we have

M5
me

4CjjGjj

Then, for all t > T 0

jjxðtÞjj ¼ jjGzðtÞjj4jjGjjðjjz1ðtÞjj þ jjz2ðtÞjjÞ

5 jjGjj e0 þ 2C
M

m

� �
5

e
2
þ

e
2
5e

Let us show that

xðtÞ 2 Umax; 8t > 0

where Umax ¼ fx 2 Rn : jjxjj5D ¼ ð7=4þ 3=2CÞe3Ng: From Corollary 1 and Theorem 2 (see
Section A.3) we have

jz1 iðtÞj53Ne0gi53Nþ1e0 ði ¼ 1; . . . ; lÞ

and

jz1 lþkj53Ne0
ffiffiffi
2

p
53Nþ1e0 ðk ¼ 1; . . . ; 2nÞ

Taking into account (A12) one has

jjz2ðtÞjj4Ce�mtjjz2ð0Þjj þ C
Mmax

m
ð1� e�mtÞ

where

Mmax43Ne0 ðjj%aa0jj � jjB�½Bþ��1jj þ DmaxÞ53N
em

4jjGjjC
; t > 0

Then

jjxðtÞjj4 jjGjjðjjz1ðtÞjj þ jjz2ðtÞjjÞ4jjGjjð3Nþ1e0 þ CR0 þ CMmax=mÞ

5 jjGjj 3Nþ1 e
2jjGjj

þ C3Nþ1e0 þ
1

4jjGjj
e3N

� �

¼ 3Neð3=2þ 3=2C þ 1=4Þ5ð7=4þ 3=2CÞ3Ne ¼ D
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