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Stabilization of amplitude of oscillations via relay delay control

L. FRIDMANTt*, V. STRYGIN} and A. POLYAKOV}

Time delay does not allow realizing an ideal sliding mode, but implies oscillations in the state space. It is shown that relay
delay controllers allow us to achieve stabilization for amplitude of oscillations suppressing uncertainties in a time delay
even in the case when the time delay is variable. Sufficient conditions for a relay delay stabilization are found. The
obtained results are illustrated in the example of the relay delay stabilization for the inverted pendulum.

1. Introduction

Relay control systems are widely used due to the
following main reasons:

e relay controllers suppress bounded uncertainties
(see Utkin 1992);

e there are such control systems where only sign of
variables is observable (see Choi and Hedrick
1996, Li and Yurkovich 1999).

Time delay that usually take place in relay and sliding
mode control systems must be taken into account for
system analysis and design (see for example Utkin et al.
1999). On the other hand, time delay does not allow to
design the sliding mode control in the state space.
Moreover, Fridman et al. (2002) have shown that even
in the simplest one-dimensional delayed relay control
system only oscillatory solutions can occur. This is
why the main directions in relay delayed control are as
follows.

1.1. The research of time delay compensation

Pade approximation of delay reducing the relay
delay output tracking problem to the sliding mode con-
trol for nonminimum phase system was suggested by
Shtessel et al. (2002). Roh and Oh (1999) designed the
sliding mode control in the space of predictor variables
(see Gouaisbaut et al. 1999, Richard et al. 2001). This
approach allowed us to solve the eigenvalues assignment
problem without any restriction on time delay and spec-
tral properties of the open loop system. But Sing (2001)
and Fridman et al. (2001) remarked that sliding mode
control design in the predictor variable space:

e cannot compensate even the matching uncertain-
ties;
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e in the simplest case, when the dimensions of the
state space and the control vector are the same,
sliding mode design in the predictor variable space
suppresses the uncertainties in the predictor vari-
able space but cannot guarantee full compensation
of the uncertainties in the state variable space.

Robustness properties of Smith predictors with respect
to uncertainties in the time delay was studied by Palmor
(1980) and Furutani and Araki (1998). The conditions
of robustness of Smith predictors with respect to uncer-
tainties in the time delay are formulated by Furutani
and Araki (1998) in terms of the stability margins.

1.2. Control of amplitudes of oscillations

P.I. delayed relay control algorithm for amplitude of
oscillations control applied to a one-dimensional system
with delay in the input was suggested by Akian et al.
(1997).

Fridman et al. (2002) have shown that any solution
of the equation

x(t) = ax — psign[x(t — h)]
with the initial conditions

_ ah
p(0)] < p>—— (1)

a eah

for all ¢ € [Ty, 00), Ty > 0, is located in the domain of
stabilization

x| < p(e™ = 1)/ (2)
under the stabilization condition
0<ah<In2 (3)

It is important to remark that

e the condition (3) is a sufficient and necessary
condition for the relay delayed stabilization (see
Fridman et al. 2002);

e the size of the domain of stabilization is propor-
tional to the control gain.

Fridman et al. (2002) proposed the following algorithm
for controlling the motion amplitudes: since after finite
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time all solutions coincide with the periodic solution,
one can extrapolate the next zero for the periodic sol-
ution, and reduce the control gain near to the periodic
solution zero. This algorithm needs the knowledge of the
sign of the state variable with delay only but requires
stabilization condition (3) to hold. This algorithm is valid
for any constant delay satisfying condition (3) and does
not depend on the delay value. Stabilization condition (3)
and algorithm for stabilization was generalized by
Shustin et al. (2003) to the case of second-order relay
delay systems.

A relay delay controller proposed in this paper needs
information only about amplitude of oscillations with
delay. Stabilization properties of the proposed algor-
ithm are based on estimations of oscillations amplitude.
Relay control algorithms present with two main advan-
tages:

(a) Robustness with respect to uncertainties in the
time delay.

Proposed relay delay controller suppresses uncertainty
in the time delay in following sense: once being designed
for the upper bound of uncertainty in the time delay for
a given system, this controller ensures the stabilization
of this system for any values of the time delay less than
the upper bound, even in the case when the delay is
variable.

(b) Design of relay delay controllers for the multi-
input multi-output (MIMO) case.

The proposed relay delay algorithm does not use the
periodicity of solutions. It allows us to generalize the
stabilization condition (3) and to design the relay
delay controller for unstable MIMO systems.

The paper is organized as follows. The properties of
the relay delay controller for the simplest scalar case are
introduced in §2. In §3 a modification of the control
algorithm is suggested for systems having two unstable
complex conjugate roots. In §4 a notion of ¢ stabiliz-
ation specifying the properties of the relay delay con-
trollers for the general case is introduced. The algorithm
for e stabilization for single-input single-output (SISO)
systems with unstable eigenvalue is suggested in§5. In § 6
this algorithm is generalized for MIMO systems having
real unstable eigenvalues. This algorithm is generalized
for arbitrary controllable MIMO system. In §8 the
proposed algorithm is used for the relay delay control
of inverted pendulum.

2. Scalar case

Consider the problem of the oscillations stabilization
for the scalar unstable system

X=M+f(x,1)+u

with the help of the relay delayed control u =
—psign[x(¢ — h(r))], where h(¢) is a continuous bounded
time delay function satisfying the inequality 0 < A(z) <
hy for all +>0, and 0 < My < L=1n2. Then the
equation describing the behaviour of the control system
has the form

X =Ax+f(x,1) — psign[x(z — h(r))] (4)
with the initial conditions
x(1) = (1), € Cl=hy,0] (5)

Fridman et al. (2002) have shown that in such a system
there exists a countable set of periodic solutions and all
other solutions to (4) and (5) after a finite time will
coincide with one of the periodic solutions. This means
that the stabilization in the usual sense cannot be
achieved. Let us describe a special type of stabilization
taking place in the relay delayed systems.
Choose and fix £ > 0.

Problem statement: Try to find 6 > 0,p > 0 such that
for all
o(1): [p(0)] < 6
the solution x(z) of the Cauchy problem (4) and (5)
satisfies the inequality |x(7)| < e, (0 < 1 < 00).
When the solution of this problem exists we will

say the system (4) is e-stable and we have achieved e-
stabilization of system (4).

Algorithm of g-stabilization:

(1) Choose and fix € > 0.

(2) Suppose that f(x, ) is an uncertainty and we can
find K > 0 such that |f(x,7)| < Ke forall |x| <e.

(3) Let

. { 1 2)\+4K}
hy < min

A+ KN A 4K
(4) Let 6 =e((2 —eM0)/2eM), p = (A + K)e.
The e-stabilization of the trivial solution to the

system (4) for this choice of parameters is proved in
§A.1 of the Appendix.

3. Two-dimensional system with unstable complex
conjugate eigenvalues

Consider the case, when the control system is of
second order and has unstable complex eigenvalues. In
this case the system is of the form

)'c:ax—ﬁy—i—ul +fl(x7y7l)}
y=ay+px+u+fr(x,p,1)

where x(7), y(f) € R, a, § are real numbers, u, u, are the
real controls, fi(x,y,1), fa(x,y,f) are uncertainties,
B#£0,a>0.

(6)
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Let
uy = —py signlx (1 — h(1)) cos(Bhy) — y(1 — h(t)) sin(Bh)]
and
uy = —pysignlx (s — h(1)) sin(Bho) + y(1 — h(1)) cos(Bhy)]

Now the behaviour of system (6) is described by Cauchy
problem

X = ax — By — p; sign|x(t — h(t)) cos(Bhy)
= y(t = h(1)) sin(Bho)] + f1(x, », 1)
¥ = ay + Bx — pysign|[x(t — h(t)) sin(Bhy)
+ y(t = h(1)) cos(Bho)] + f2(x, 1)
x(1) = xo(1), y(1) = yo(1), —hy <1<0. (8)

Our goal is to find the parameters p; and p,, such that

from the inequality /x3(7) + y3(¢) < /2 it follows that

VX)) <e

Algorithm of &-stabilization:

(1) Choose and fix € > 0.
(2) Suppose that there exists K > 0 such that

(7)

(0<1< ) 9)

VIR ) + £ e, y.0) < Ke
for all x,y:/x*> +)? < e.

(3) Suppose that iy < 7/4(2K + ). Let us denote as
M= ltcos(t+ (2K h 4
te[O,ﬂ/EEiZ)I((Jrﬂ)ho]z cos(t + (2K + Bl + m/4)

Assume that iy < M /(a+ K).

(4) Choose 6=¢/2 and p, =p, = (V2/4)e,
where o € (0,(w/4hy) —2K — B): a+K <
o cos(a'hy + (2K + B)hy + 7/4) /2.

The e-stabilization of the trivial solution to the

system (6) for this choice of parameters 8, p; and p, is
proved in § A.2 of the Appendix.

Remark 1: Let @(¥)(—oc0 <3 <o) be the 27-
periodic piece-wise constant function determined in the
interval [0,27) as

™t for0 <4 < 7/2
BT form2 <<
(V) = iseja 2<v
e for m <1 < 3w/2
™™ for3w/2 <4 < 2m
Suppose that z = x + iy, where x,y are real numbers.

Then equation (6) may be rewritten in the form

!/

2= (a+if)z = S P(B+arg(z(t — (1)) +/(z,1)
(10)

where

z4+ZzZ z—2Z o f(z+Z z—2Z
f(Z,[)—fi( 2 9 2l 7l>+lf2( 2 ) . 7’)

Here we have used
cos(argz(z — h(z)))

)
= x(t = h(0)[x* (1 = h(0) + 7 (¢t = h(2))] 7/
sin(argz(z — h(1)))

= (1 — h(0)[¥*(t = h(1)) + y*(t = h(1))] "7
exp™4 =272 4 72

4. Problem statement

Consider the system

dx
ds

where x € R",u € R", A, B are real matrices, A(f),0 <
h(t) < hy is a continuous function describing uncertain-
ties in the time delay, u € R™ is the relay control vector,
and f(x,?) is continuous on ¢ and smooth on x corre-
sponding to the presence of an uncertainty in the model
of the plant. Suppose that the system (11) consists of an
input or output time delay and the matrix 4 has char-
acteristic roots with positive real part.

In this paper we will find the relay controller of the
form

= Ax+ Bu(t — h(t)) + f(x, 1) (11)

u(t — h(t)) = F(sign Sy (x(t — h(t)),. ..,
sign Si(x(2 = h(1)))),
S=(S1,8,...,8)"
and the pair (S, F) belongs to the class of smooth func-
tions O transforming S: R — R*, F: R* — R™. Let us

denote as x(7) the solution to the system (11) with initial
conditions

x(t) = (),

Definition 1: The zero solution to the system (11) is
said to be e-stabilizable, if for any ¢ > 0 there exist
6> 0 and the relay delay control u(z — A(¢)) such that
from the inequality ||¢(0)|| < 6 it follows that

(=hg <1<0)

sup [lx(1)]| <e
1€[0,00]

Remark 2: It is necessary to note that S and F could
not depend on € > 0.
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5. &-Stabilization of SISO systems
Consider a SISO system of the form

X =Ax+bu+f(x,1) (12)

where b= (b, b, ...
f(x, 1) is uncertainty.
Suppose that

(1) f(x,7) is the
f(xv l) = bg(xa l),

(2) the pair {4, b} is controllable, and consequently
the vectors {h, Ab,..., A" '} are linearly inde-
pendent.

T .
,b,)", u is a scalar control and

matching uncertainty and

Denote by ¢4(A) = X' + ay A" + -+ + @, the char-
acteristic polynomial of the matrix 4. Let us introduce
the controllability basis into R" as

e = An_lb —+ O[lAn_zb + -4 Oénflb
€y = A’172b + OélAn73b + cee + an,zb

€,_1 = Ab + Oélb
e, =b

System (12) in this basis takes the form

Y=
V2 =3
(13)
J}n = —QpY — Oy 1)2 — )y
+u(t—h(t)) + g(x, 1)

and it is possible to rewrite the systems (12) and (13) in
the form of the nth order equation

(n—1)

(ln) + ap

y +o oy =utg(x,t) (14)

Assume that (i) the characteristic equation of the matrix
A: ¢,4(A) =0 has only one positive root A; € (0,In2),
and the other roots of this equation have negative real
part.

In such a case the polynomial ¢ 4(\) becomes

Pa(A) = (A= A)Y(A),
where the polynomial
YO) =X B N By

has only roots with negative real part. Then for equation
(14) one has the differential equation

(%_M)w(%)yl —utglx,)

Suppose that

20 =03, )

n—1 n—2
= WO+ BT+ B ()
For z(¢) we will have the scalar equation
d
‘= Az +u+g(x, 1),

From §2 it follows that the trivial solution of the equa-
tion z = A,z is e-stabilizable with control

u= —psignz(t— h(1))

The corresponding control law for equation (14) has the
form

A € (0,1n2)

u= —psign{Y}

where ¥ = "V (c = h(1) + 3,0\ (0 = h(0)) + -+
Biv1(t — h(r)). Returning to the state variables yq,ys,
.., ¥, we obtain

Y=
Y2a=»
J;n = —QpY] — Q1Y) — T Q) +g(x7 t)
— psign{ Y}
where

Yy = Biyi(t — h(1t) + Boya(t = h(1))
+ -+ anlynfl(t - h([)) +yn([ - h(t))
Let us denote as P the matrix used to transform the
basis {/;} = (0,...,1,...,0) into the basis {e,...,e,}.
Then for the initial variables x = P~'y one has
x = Ax — pbsign{~y " x(t — h(1))} + f(x, 1)
Where Y= P*ﬁa ﬂT = (ﬂhﬂ% s 7ﬂn71’ 1)

Theorem 1: The zero solution of system (12) under as-
sumption (i) is € stabilizable with the control law

u = —psign(~y, x(t — h(1)))

The algorithm for e-stabilization will be defined in
the next section for one more general case.

6. e-stabilization of MIMO systems in real case

Consider the initial system (11) in the general case
ueR", l<m<n, B=(b,by,...,b,), (bjeR")
Suppose that:

(1) f(x,1) = Bg(x, 1) and

g(xv t) = (gl(xa t)7g2(xv t)a ce 7gm(x7 t))T



774 L. Fridman et al.

(2) the pair {4, B} is controllable,
(3) for every j=1,2,...,m the vectors b;, Ab;,
.,A”/_]bj7 are linearly independent, and
vectors A"b; are linear combination of the
vectors
b.

]

ni—1
Ab;, ... AV b;
Then the space

E; = Span{b;, Ab;, ..., A" 'b;}

is the invariant space for the matrix 4, and the pair
{4,b;} is controllable into the E;. Suppose that
E,NE =@ (i #J), and

R”:El@Ez@...@Em

Let us denote by ¢;(\) = N7 +ay\"' + -+ a, the
characteristic polynomial of matrlx A; = A| £ Suppose
that for 4; and ¢; assumption (i) is true This means that
in each E we can choose the canonical basis in the form

€1j = All/_lbj —+ Oélen/_zbj + -4 (e jbj

enfj = bj

Then for the pair {4;,b;} into the E; one has

0 1 0 0 e 0
0 0 1 0 0
A; =
70[}1/] 705n/71j 7an,‘72j 70[)1/73]' T Ty,
b; = (0, .,0,1)". The matrix 4 in such case has the

block dlagonal form A = diag{4,,A4,,...,4,,}, and
= (b}, b5,...,b), ) The system (11) has the following
block form

V=D Y2y = V3o Vu—1j = Yy

.)'}n/»j = 70‘}1/»jy1j - al_/yil/_/ + uj + gj(X’ t)

Taking into account that ); is a root of the polynomial
©;(A), one can suppose that

e = A= NN BN+ B, ] (15)

a =By — A ap = Bp—NBi, .- (16)
W1 = Binj—1 = NiBjm—2, QG = =Xy,
Substituting (16) into (15), we obtain
Yij = Yo V2 = Vs Vn1j = Vuyj (17)
Vnj = )‘j[ﬂjn/—lylj + B —2yyy + o F yn,ﬂ

o Bt up g, 1)

Multiplying the first equation of the system (17)
by B, -1, the second equation by f;, »,... and the

- {ﬂj"ffzyzj +

(n; — 1)th equation by 3;, and adding the result, to
the last one, we obtain

z; = Nz +u; + gi(x, 1)

where z; = 3;, 1 y1; + Bjn2Voj + -+ + V-
Now it is possible to rewrite the system (17) in the
form

y = Apy + bz(1), z; = Nzj+u; + gi(x, 1)
0 1 0o - 0
0 0 1 0
A =
0 o o -- 1
P 1

where 5= (0,0,..., I)T,
matrix A4, is stable.
Returning to initial system (15), we will have

—pi sign(P* By, x(t — h(t)))
—pa sign(P* B, x(t — h(t)))

u; = —p;signz;(t —1). The

X=Ax+ B +f(x,1)
—Pm Sign(P*ﬂma x(t - h([)))
0
B 0
Bi2
B
: B
pr = 51n171 ) By = : yee
0 :
/32112—1
0
0
0

where 3;, are the coefficients of ¢;()\) and P is the matrix
used to transform the basis {/;} = (0,...,1,...,0) into
the basis {e;}.
Theorem 2: Suppose that the matrix A has the simple
eigenvalues with positive

)\1,)\2,...,)\1€(O,L), L:1n(2)
The remaining eigenvalues of matrix A have negative real

part.
Then the zero solution of system (11) is e-stabilizable.

Algorithm of &-stabilization:

(1) Choose and fix € > 0.

(2) Let there exist K > 0: ||g(x,7)|| < Ke for all
x]l <.
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(3) Let C;,~; be such that
e < Cpe

(4) Assume that

€ [y
i < T P ) Ki=Ke/e;
: ||P-1|mmm{2 3c,} €/

(5) Suppose that

I < min L 1 n2/\,»+4Ki
0 N+KXN N +4K,
(6) Let
2 _ )\,-/10
b< ¢ and p=(\+K)g;

5.4
"2 et

7. &-Stabilization of MIMO system in general case

Assume that the spectrum o(A4) of the matrix 4 con-
sists of two parts

o(Ad)=0,Uo_

where o, and o_ are the sets of eigenvalues of the matrix
A with positive and negative real part respectively. Then
the state space £ = R" could be represented in the form
E=E @®E_,where E, and E_ are the invariant sub-
spaces with respect to A. Consider two projectors P and
0, transforming

P:R'— E_, O:R'"— E_

Denoting y = Px, z = Qx one can rewrite system (11) in
the form

y:A+y+B+u+f1(x,l)} (18)

z=A"z+ B u+fr(x,1)

where y€ E,,z € E_, A" = PA, A~ = QA, B" = PB =
(b1+7b2+= s 7b;)r B~ = 0B, fl(x7 l) = Pf(x7 [)s f2(x7 Z) =
Of (x,1).

Suppose that rank B® = dim E* = k. This means
that the vectors {b;" }(j = 1,k) are linearly independent,
and that following representation holds

Ahy = Nhis by = syby +s3by + -+ sbl,  i=1,1
AT hyygj1 = iy — Bihyoy,
ATy = Bilia1 = gy
hisyjy = Sll+2j—leL + 521+2]>1bz+ +eeet Skl+2j71blt

_ + + ! +
hiop = s142i01 + 2112107 + -+ -+ Skl
j=1Lv

where / + 2v = k. Let us design the control u as

= (5 o)

where the matrix S, consisting of {s;} coefficients
that represents the eigenvectors of the matrix A" in
the basis b{,...,b}. The function o = (olgry(t — h(1))),
o (y(t = h(1)),...,00(¥(t = h(1))),0,...,0)"  will be
defined below. Denote by B'Sy,= (h, h,,..., h,
0,...,0) = (T,0). Substituting the variables v=T""y
into (18), we will have

v=D"v+ (I"0)o+ T (x,1) (19)
z=A"z+ B u+f(x,1)
where

A0 0
0 A0 0

D+ _ 0 0 g _ﬁl 0 0
0 -~ 0 B |« 0O --- 0
0 -+« o v o 0 a, -0,
0 -+ oo v o 0 B, a,

Let us design o(v(¢ — h(¢))) in the form
o;(v(t = h(1))) = —p;sign(v;(1 — (1)),
i=1,2,...,1 (20)

O 1 (V(t = h(1))) = —prioj—1 sign(v o1 (1 = h(1)) cos §;

— Vi40i(t — (1)) sin 3;) (21)
0142j(v(t = h(1))) = —prya;sign(viyo;1(t — h(1)) sin 5;
T hD)eosg)  (22)
j=12,...v

Now one can conclude that the system (19) is e-stabiliz-
able and finally we will have

X = Ax + B(io g>a(Px(t —h(1))+f(x,1) (23)

Remark 3: Let us write the projectors as

k

Px = Z(Xagi)hi

where iy, h,, .., b, are the eigenvectors of the matrix A
and g; are found in Appendix A.3.
Let us have the basis

o T =1
e/_(a/haﬂava/n) y J= L0
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in R". Let us introduce the new basis into R" as

(i=1k)

(jzlan_k)

€ = e,
€y = Qery,

The matrix transforming the old basis {4;} into the
new basis {¢;} has the form

k
Qpy11 — Zle i (es1,8)

Qo Qg o O
k
G=| @12 QO - QU Ogyi2 i1 cn(erin, &)
k
Qyp, Qo 0 Oy Qg — Z[:l ain(e/c+1 7gi)

and

D" 0
J=G'4G = g
0 4

In this case the following representation holds

(PB)_ B\ [(By Bf
oB) \B )] \B, B
where By —kxk, Bl —kxm—k, By —n—kxk,

By —n—k xm—k and det(By) # 0. Then system (23)
can be rewritten

X Ax+ B< [Bgo]_l g)a(Px(t — (1)) + £ (x,1)
(24)

Algorithm of e-stabilization:
(1) Choose and fix € > 0.

(2) Let there exists K > 0: || f(x,7)|| < Ke for all x:
x|l <e.

(3) Let

€ k= Klgill - 1]
201+ 2v) ||kl ! 2(1 4 2v)
(4) Assume that

Ei<

1,/

{ 1 2)\i+4Ki} .
hy < min , I=

L
,—In
AN+ KN N +4K;
Y
42K 2 + )’
Moreover suppose that for

(L cos(t+ (2K, o + Bi)ho +7/4))

/’10< ]:m

M,— = max
’ 0<r<m/4— (2K 12;+5)ho

the inequality iy < M;/(c+ K} ,5;), j = 1, v holds.
(5) Let

£i(2 — M)
2|lgilleXe

and p; = (N + K))e; for i = 1, k.

o<

(6) Let 6 < &/45;/2 and
a2

Pioj-1 = Prv2j = ]TEIJij
i ™
o € \ O gpy = 2Ky =y )0y + Ko
< ajcos(ajhy + Ko + Bho + 7/4) /2, j=1v
(7) Let C,~ > 0 be such that both

le || < Ce™

and
Cin- +1-1 _
y>4—(IBo| -I[By] Il 2l + [GIIK) max_||e|
c Jj=k+1,n
p= P02 7pk)T hold.

8. Relay delay control inverted pendulum

Consider the problem of an inverted pendulum
stabilization via relay delayed control. The model of
the pendulum has the form

0+ k6 — psin(0) = u(t — h(1)) +£(0,6, 1) (25)

where 6 is an inclination angle, k is a friction coefficient,
p =g/, where [ is a length of pendulum, A(7) is time
delay, f(6, 6, t) is an uncertainty. Linearizing (25) we
will have

0+ k0 — po = u(r — h(1)) + g(8, 61)

The characteristic equation has two real roots of oppo-
site signs

Assume that 0 < A\;hy < In2. In this case the equation
(25) can be rewritten in the form

(%_ Al) (%_ )\2)0 = u(t — (1)) + g(0.6.1)

Denoting z = § — \,0 we will have
z=XMNz+u(t—h(r))+g(0,1)
Let us design the controller in the form
u = —qsign[z(z — h(1)]
Returning to the original system (25), we will have
0+ kf — psin(6)
— —gsign[d( — h(1)) = Bt — h(1))]

Consider the case when

04 2.96 — 0.3sin(0) = u(r — h(z)) + 0.003sin(r) (26)

u= —qsign(6(t — h(1)) + 36(1 — h(z))
0(1) = 0.01sin(z) (27)

+7(0,6,1)
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6(1) = 0.01cos(r) for 1 € [—hy, 0] (28)
If the upper bound of the time delay is y = 5, then for
the system (26)—(28) conditions of the Theorem 1 hold.
The relay delayed control law ensuring ¢ of the inverted
pendulum (26)—(28) takes the form

u=—13esign(8(r — h(t)) +30(t — h(1)))  (29)

Figures 1-3 are illustrating the results of implementation
of delayed relay control law (29) in the system (26)—(28)

T AV NS NS

-0.0z5

-0.05

-0.a7s

Ll Z0 a0 &0 &0 oo

Figure 1. Inclination angle 6 (h(¢) = 5).

-0.0z5

-0.05

-0.a7s

Ll Z0 a0 &0 &0 oo

Figure 2. Angular speed 8 (h(t) = 5).

Ll Z0 40 &0 &0 oo

Figure 3. Relay control law u (h(f) = 5).

for constant delay A(f) =5 and € =0.1. Figures 4-6
show the behaviour of the pendulum (26)—(28) for
h(t) = 3+ 2sin(70¢). This confirms the main property
of delayed relay controller: once being designed for the
upper bound of uncertainty in the time delay i(r) = 5
for a given system, this controller ensures the stabiliz-

Ll za 40 &0 &0 loa

Figure 4. Inclination angle 6 (h(r) = 3 4 2sin(70¢)).

-0.025

=0.05

-0.035

0 20 40 &0 80 160

Figure 5. Angular speed 6 (h(r) = 3 + 2sin(707)).

Ll Z0 40 &0 &0 loa

Figure 6. Relay control law u (h(f) = 3 + 2sin(70¢)).
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ation of this system for the variable delay #h(r) =
3 + 2sin(701).

9. Conclusions

In this paper the possibilities of stabilization for
unstable control system via relay delay control are dis-
cussed. The concept of ¢ stabilization characterizing
specific features of relay delay systems is formulated. A
sufficient condition for such a kind of relay delayed
stabilization are found relating the upper bound of uncer-
tainty in the time delay and the maximum of the real part
of the system spectrum. The algorithm of the relay delay
control allowing to achieve ¢ stabilization is suggested.
Obtained results are illustrated on the example of the
relay delay stabilization for the inverted pendulum.

This allows us to conclude the following:

1. Time delay does not allow us to realize the ideal
sliding mode, but implies oscillations in the space
of state variables. Nevertheless, relay delay con-
trollers allow us to achieve stabilization of the
amplitude of oscillations, and suppress uncertain-
ties in the time delay in the following sense: once
being designed for the upper bound of an uncer-
tainty in the time delay for a given system this relay
delayed control law ensures stabilization for any
values of the time delay less than the upper bound
even in the case when the delay is variable.

2. Proposed algorithm allows to achieve only /ocal
stabilization and should be extended in order to
achieve non-local or semiglobal stabilization.

Appendix
A.1. Proof of e-stabilization for the scalar case

Let us show that choosing p and /, we ensuring the
e-stabilization for system (4). Let us suppose by contra-
diction that it is not true. Then there exists such 7 > 0
that |x(7)| = ¢, but |x(¢)| <e for all € [0, 7). In this
case there exists a time moment ¢ € (0,7) such that
x(f)=6and § < |x(¢)] <eforall t € (¢, T).

Let x(r") =6 and x(T)=e. Let us show that
T—1t>h

X< Ax+f(x,0)+p<Ax+p+Ke
x()y =46

Then

K . K

Hence, the inequality

AT—1") A+pe+K S Mo

© Ao/e) +pe+ K

implies the inequality 7 —¢ > hy. Now for all
t €[t + hy, T) we have sign[x(t — i(7))] = 1 and

X)) <X —p+f(x,t) <A+ K)e—p=0

Hence, x(z) is decreasing function in the interval
[t + hy, T]. This means that equality x(7)=-¢ will
never achieved.

Another case could be proved analogously.

A.2. Proof of e-stabilization for the complex case
Proof: Let us introduce the polar coordinates in the
equation (10) by formula z = p(#) exp ip(¢). Then
o e iy (1)p(1) e
= (a+iB)p(1) ™) — 3o/ d(Bho + (1 - h(1)))
+f(z,0) (30)

where

D(Bhy + (1 = h(1))) = ? (signfcos(p(z — (1)) + Bho)]

+ isign[sin(o(t — h(2)) + Bhy)])

_ The function @ has only four values: /4 BT/
e/ "% Moreover, the value of D (Bhy+ (1t — h(1)))

depends from Shy + ¢(¢ — h(¢)) only. Denote

D(Bho + o(t = h(1))) = ") (31)
where
—m/4 427l < k(1) — @(t — h(t)) — Bhy < w/4+ 27l
(32)

[ is the integer number. Substituting (30) into (7) we get

o +igp=(a+ iB)p — %o/ e/k(D—¢(0) 4 q(1) P00

(33)
where f(z, 1) = q(1) e,
In other words we have
p = ap—ged cos(k(r) — (1))
+¢(1) cos(4(1) — (1)) (34)
¢ =0 —3p" sin(k(r) — (1))
+q(0)p™" sin(y(1) — (1)) (35)

Let us show that this choice of initial conditions ensure
the e-stabilization for the system (6). Suppose that it is
not true. Then there exists the smallest positive root
t = T of the equation p(T') = €. The inequality

lz(t)| = r(t) <e/2 (=h<t<0)
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implies existence such the last time moment /= ¢ > 0
that p(1") =¢/2 and hence, we have p(7) > ¢/2 (1" <
t<T)or
' <1 (F<t<T) (36)
Further
P <ap+de/2, p(t)=¢/2 (F<t<T) (37)

Hence

o1
p(T)=¢ < (1+a/a’1)e”(ﬂ”—§a/“1€, (F<t<T)

| ™

This implies

2a+o/> (38)

* * 1
7~ >t (7
« o+«
Since o < a(2 -
that 7° — ¢ > hy.
To study the term cos[k(z) — ¢(¢)] in the right hand

side of (35) we should integrate the equation (35) on the
interval [r — h(t), 1], 1 € [t" + hy, T]. It is easy to see that

() = ot = h(1)) + Bh(r) — a/&(t) + x(r)  (39)

where

ey (e — 1)~ it is easy to show

Obviously
(1) < hy and  [x(1)] < 2Khg (42)
Now substituting (39) into (34) we have

§ = ap—3a coslk(r) = (1 — h(1)) — Gh(2)

+a'€(1) + x(0)] + q(r) cos(yp(t) — (1)) (43)
From (32) and (42) we obtain
cosk(t) — o(t = h(1)) — Bhy + Bho — h(1)) + /(1)
+x(1)] > cos((a/ + 2K + B)hy + 7/4)  (44)
Hence, for t € [* + hy, T

o <ap— a'%cos((a’ + 2K + B)hy + 7/4) + Ke
< e[a +K —%cos((o/ + 2K + B)hy +w/4)| <0

That is why equality p(7") = ¢ cannot be achieved for
t = T because t = T is the smallest positive root of this
equation. O

A.3. Structure of projectors

Consider the conjugate matrix A" and suppose that
fi:fas .-, fi are the eigenvectors of A4”

and
Ao = S + Bifiy
A fri2p = = Bifivaj1 + @i fiia)
Let us introduce the vectors g;

g = J:
i

_J 7 J oy
Q2j1 = ) Jivaj—1 + o fiia

(=10

_ J 7 Jof
g1 = Oy fieaj—1 + i)

(j=TLvw)
where
2
i | Sl
‘= 2 2 2
I frv2i—t I frai I = (frrzjm1ofivay)
o (freaj-1:/142)
Cp =061 = 2 2 2
I frv2i—t I frai I = (frraj1ofigay)
2
o iz

= 2 2 2
||fl+2j71|| '||f/+2j|| - (fl+2j717fl+2j)

Now it is easy to show that the projector P could be
rewritten in the form

Px = Zk(x7gi)hi
i=1

where /iy, hy, ..., h, are eigenvectors of the matrix 4.
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