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3.1 Introduction

One of the most important control problems is control under heavy un-
certainty conditions. While there are a number of sophisticated methods
like adaptation based on identi�cation and observation, or absolute stability
methods, the most obvious way to withstand the uncertainty is to keep some
constraints by "brutal force". Indeed any strictly kept equality removes one
"uncertainty dimension". The most simple way to keep a constraint is to
react immediately to any deviation of the system stirring it back to the con-
straint by a su�ciently energetic e�ort. Implemented directly, the approach
leads to so-called sliding modes, which became main operation modes in the
variable structure systems (VSS) (Utkin 1992). Having proved their high
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accuracy and robustness with respect to various internal and external distur-
bances, they also reveal their main drawback: the so-called chattering e�ect,
i.e. dangerous high-frequency vibrations of the controlled system. Such an
e�ect was considered as an obvious intrinsic feature of the very idea of imme-
diate powerful reaction to a minutest deviation from the chosen constraint.
Another important feature is proportionality of the maximal deviation from
the constraint to the time interval between the measurements (or to the
switching delay).

To avoid chattering some approaches were proposed (Emelyanov et al.
1981, Slotine 1984). The main idea was to change the dynamics in a small
vicinity of the discontinuity surface in order to avoid real discontinuity and at
the same time to preserve the main properties of the whole system. However,
the ultimate accuracy and robustness of the sliding mode were partially lost.
Recently invented higher order sliding modes (HOSM) generalize the basic
sliding mode idea acting on the higher order time derivatives of the system
deviation from the constraint instead of in
uencing the �rst deviation deriva-
tive like it happens in standard sliding modes. Keeping the main advantages
of the original approach, at the same time they totally remove the chattering
e�ect and provide for even higher accuracy in realization. A number of such
controllers were described in the literature (Emelyanov et al. 1986; Levant
1985, 1993, 1998b; Bartolini et al. 1998a,b).

HOSM is actually a movement on a discontinuity set of a dynamic system
understood in Filippov's sense (Filippov, 1988). The sliding order character-
izes the dynamics smoothness degree in the vicinity of the mode. If the task
is to provide for keeping a constraint given by equality of a smooth function
s to zero, the sliding order is a number of continuous total derivatives of s
(including the zero one) in the vicinity of the sliding mode. Hence, the rth
order sliding mode is determined by the equalities

s = _s = �s = ::: = s(r�1) = 0: (3.1)

forming an r-dimensional condition on the state of the dynamic system. The
words "rth order sliding" are often abridged to "r-sliding".

The standard sliding mode on which most variable structure systems
(VSS) are based is of the �rst order ( _s is discontinuous). While the stan-
dard modes feature �nite time convergence, convergence to HOSM may be
asymptotic as well. r-sliding mode realization may provide for up to the rth
order of sliding precision with respect to the measurement interval (Levant
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1993, 1998b). In that sense r-sliding modes play the same role in sliding
mode control theory as Runge - Kutta methods in numerical integration.
Note that such utmost accuracy is observed only for HOSM with �nite-time
convergence.

Trivial cases of asymptotically stable HOSM are easily found in many
classic VSSs. For example there is an asymptotically stable 2-sliding mode
with respect to the constraint x = 0 at the origin x = _x = 0 (at the one point
only) of a 2-dimensional VSS keeping the constraint x+ _x = 0 in a standard
1-sliding mode. Asymptotically stable or unstable HOSMs inevitably appear
in VSSs with fast actuators (Fridman 1985,1990,1991,1993, Fridman et al.
1996). Stable HOSM reveals itself in that case by spontaneous disappearance
of the chattering e�ect. Thus, examples of asymptotically stable or unstable
sliding modes of any order are well known (Emelyanov et al. 1986, Elmali
et al. 1992, Sira-Ramirez 1993, Levant 1993, Fridman et al. 1996). On the
contrary, examples of r-sliding modes attracting in �nite time are known
for r = 1 (which is trivial), for r = 2 (Levantovsky 1985, Emelyanov et al.
1986, Levant (Levantovsky) 1993, Bartolini et al. 1998a,b) and for r = 3
(Fridman et al. 1996). Arbitrary order sliding controllers with �nite-time
convergence were only recently presented (Levant 1998b). Any new type
of higher-order sliding controller with �nite-time convergence is unique and
requires thorough investigation.

The main problem in implementation of HOSMs is increasing information
demand. Generally speaking, any r-sliding controller keeping s = 0 needs
s; _s; :::; s(r�1) to be available. The only known exclusions are a so-called
"super-twisting" 2-sliding controller (Levant 1993, 1998a) and its 3-sliding
generalization (Levant 1999), which need only measurements of s. First
di�erences of s(r�2) having been used, measurements of s; _s; :::; s(r�2) turned
out to be su�cient, which solves the problem only partially. A recently
published robust exact di�erentiator with �nite-time convergence (Levant,
1998a) allows that problem to be solved in the theoretical way. In practice,
however, the di�erentiation error proves to be proportional to "(2

�k); where
k < r is the di�erentiation order and " is the maximal measurement error
of s. Yet the optimal one is proportional to "(r�k)=r (s(r) is supposed to be
discontinuous, but bounded (Levant 1998a)). Nevertheless, there is another
way to approach HOSM.

It was mentioned above that r-sliding mode realization provides for up
to the rth order of sliding precision with respect to the switching delay � ,
but the opposite is also true (Levant 1993): keeping jsj = O(� r) implies
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js(i)j = O(� r�i); i = 0; 1; :::; r � 1; to be kept, if s(r) is bounded. Thus,
keeping jsj = O(� r) corresponds to approximate r-sliding. An algorithm
providing for ful�llment of such relation in �nite time, independent on � ; is
called rth order real-sliding algorithm (Levant 1993). Few second order real
sliding algorithms (Levant 1993, W.-C. Su et al. 1994) di�er from 2-sliding
controllers with discrete measurements. Almost all rth order real sliding
algorithms known to date require measurements of s; _s; :::; s(r�2) with r > 2:
The only known exceptions are two real-sliding algorithms of the third order
(Bartolini et al. 1999, Levant 1999) which require only measurements of s.

De�nitions of higher order sliding modes (HOSM) and order of sliding
are introduced in Section 3.2 and compared with other known control theory
notions in Section 3.3. Stability of relay control systems with higher sliding
orders is discussed in Section 3.4. The behavior of sliding mode systems with
dynamic actuators is analyzed from the sliding-order viewpoint in Section 3.5.
A number of main 2{sliding controllers with �nite time convergence are listed
in Section 3.6. A family of arbitrary-order sliding controllers with �nite-time
convergence is presented in Section 3.7. The main notions are illustrated by
simulation results.

3.2 De�nitions of higher order sliding modes

Regular sliding mode features few special properties. It is reached in �nite
time, which means that a number of trajectories meet at any sliding point.
In other words, the shift operator along the phase trajectory exists, but is
not invertible in time at any sliding point. Other important features are
that the manifold of sliding motions has a nonzero codimension and that any
sliding motion is performed on a system discontinuity surface and may be
understood only as a limit of motions when switching imperfections vanish
and switching frequency tends to in�nity. Any generalization of the sliding
mode notion has to inherit some of these properties.

Let us recall �rst what Filippov's solutions (Filippov 1960, 1988) are of
a discontinuous di�erential equation

_x = v(x);

where x 2 R
n ; v is a locally bounded measurable (Lebesgue) vector function.

In that case, the equation is replaced by an equivalent di�erential inclusion

_x 2 V(x):
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In the particular case when the vector-�eld v is continuous almost every-
where, the set-valued function V(x) is the convex closure of the set of all
possible limits of v(y) as y ! x, while fyg are continuity points of v. Any
solution of the equation is de�ned as an absolutely continuous function x(t),
satisfying the di�erential inclusion almost everywhere.

The following De�nitions are based on the works by Levantovsky (1985),
Emelyanov et al. (1986a, b, 1990), Levant (1993), Fridman et al. (1996).
Note that the word combinations "rth order sliding" and "r-sliding" are
equivalent.

3.2.1 Sliding modes on manifolds

Let S be a smooth manifold. Set S itself is called the 1-sliding set with
respect to S. The 2-sliding set is de�ned as the set of points x 2 L, where
V(x) lies entirely in tangential space Tx to manifold S at point x (Fig.3.1).

De�nition 1 It is said that there exists a �rst (or second) order sliding mode
on manifold S in a vicinity of a �rst (or second) order sliding point x, if in
this vicinity of point x the �rst (or second) order sliding set is an integral
set, i.e. it consists of Filippov's sense trajectories.

Let S1 = S. Denote by S2 the set of 2-sliding points with respect to
manifold S. Assume that S2 may itself be considered as a su�ciently smooth
manifold. Then the same construction may be considered with respect to S2.
Denote by S3 the corresponding 2-sliding set with respect to S2. S3 is called
the 3-sliding set with respect to manifold S . Continuing the process, achieve
sliding sets of any order.

De�nition 2 It is said that there exists an r-sliding mode on manifold S in a
vicinity of an r-sliding point x 2 Sr, if in this vicinity of point x the r-sliding
set Sr is an integral set, i.e. it consists of Filippov's sense trajectories.

3.2.2 Sliding modes with respect to constraint func-

tions

Let a constraint be given by an equation s(x) = 0, where s : Rn ! R is a
su�ciently smooth constraint function. It is also supposed that total time
derivatives along the trajectories s; _s; �s; : : : ; s(r�1) exist and are single-valued
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functions of x, which is not trivial for discontinuous dynamic systems. In
other words, this means that discontinuity does not appear in the �rst r� 1
total time derivatives of the constraint function s. Then the rth order sliding
set is determined by the equalities

s = _s = �s = : : : = s(r�1) = 0: (3.2)

Here (3.2) is an r-dimensional condition on the state of the dynamic system.

De�nition 3 Let the r-sliding set (3:2) be non-empty and assume that it is
locally an integral set in Filippov's sense (i.e. it consists of Filippov's trajec-
tories of the discontinuous dynamic system). Then the corresponding motion
satisfying (3:2) is called an r-sliding mode with respect to the constraint func-
tion s (Fig.3.1).

Figure 3.1: Second order sliding mode trajectory

To exhibit the relation with the previous De�nitions, consider a mani-
fold S given by the equation s(x) = 0. Suppose that s; _s; �s; : : : ; s(r�2) are
di�erentiable functions of x and that

rankfrs;r _s; : : : ;rs(r�2)g = r � 1 (3.3)

holds locally ( here rankV is a notation for the rank of vector set V). Then
Sr is determined by (3.2) and all Si; i = 1; : : : ; r � 1 are smooth manifolds.
If in its turn Sr is required to be a di�erentiable manifold, then the latter
condition is extended to

rankfrs;r _s; : : : ;rs(r�1)g = r (3.4)
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Equality (3.4) together with the requirement for the corresponding deriva-
tives of s to be di�erentiable functions of x will be referred to as the sliding
regularity condition, whereas condition (3.3) will be called the weak sliding
regularity condition.

With the weak regularity condition satis�ed and S given by equation
s = 0 De�nition 3 is equivalent to De�nition 2. If regularity condition (3.4)
holds, then new local coordinates may be taken. In these coordinates the
system will take the form

y1 = s; _y1 = y2; : : : ; _yr�1 = yr;

s(r) = _yr = �(y; �);

_� = 	(y; �); � 2 Rn�r:

Proposition 1 Let regularity condition (3:4) be ful�lled and r-sliding mani-
fold (3:2) be non-empty. Then an r-sliding mode with respect to the constraint
function s exists if and only if the intersection of the Filippov vector-set �eld
with the tangential space to manifold (3:2) is not empty for any r-sliding
point.

Proof. The intersection of the Filippov set of admissible velocities with
the tangential space to the sliding manifold (3.2), mentioned in the Proposi-
tion, induces a di�erential inclusion on this manifold. This inclusion satis�es
all the conditions by Filippov, 1960, 1988 for solution existence. Therefore
manifold (3.2) is an integral one.�

Let now s be a smooth vector function, s : Rn ! R
m ; s = (s1; : : : ; sm),

and also r = (r1; : : : ; rm), where ri are natural numbers.

De�nition 4 Assume that the �rst ri successive full time derivatives of si
are smooth functions, and a set given by the equalities

si = _si = �si = : : : = s
(ri�1)
i = 0; i = 1; : : : ; m;

is locally an integral set in Filippov's sense. Then the motion mode existing
on this set is called a sliding mode with vector sliding order r with respect to
the vector constraint function s.



8 CHAPTER 3. HIGHER ORDER SLIDING MODES

The corresponding sliding regularity condition has the form

rankfrsi; : : : ;rs(ri�1)i ji = 1; : : : ; mg = r1 + : : :+ rm:

De�nition 4 corresponds to De�nition 2 in the case when r1 = : : : = rm and
the appropriate weak regularity condition holds.

A sliding mode is called stable if the corresponding integral sliding set is
stable.

Remarks

1. These de�nitions also include trivial cases of an integral manifold in a
smooth system. To exclude them we may, for example, call a sliding mode
"not trivial" if the corresponding Filippov set of admissible velocities V (x)
consists of more than one vector.
2. The above de�nitions are easily extended to include non-autonomous
di�erential equations by introduction of the �ctitious equation _t = 1. Note
that this di�ers slightly from the Filippov de�nition considering time and
space coordinates separately.

3.3 Higher order sliding modes in control sys-

tems

Single out two cases: ideal sliding occurring when the constraint is ideally
kept and real sliding taking place when switching imperfections are taken
into account and the constraint is kept only approximately.

3.3.1 Ideal sliding

All the previous considerations are translated literally to the case of a process
controlled

_x = f(t; x; u); s = s(t; x) 2 R; u = U(t; x) 2 R;

where x 2 R
n , t is time, u is control, and f; s are smooth functions. Control

u is determined here by a feedback u = U(t; x), where U is a discontinuous
function. For simplicity we restrict ourselves to the case when s and u are
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scalars. Nevertheless, all statements below may also be formulated for the
case of vector sliding order.

Standard sliding modes satisfy the condition that the set of possible ve-
locities V does not lie in tangential vector space T to the manifold s = 0, but
intersects with it, and therefore a trajectory exists on the manifold with the
velocity vector lying in T . Such modes are the main operation modes in vari-
able structure systems (Emelyanov 1967, Utkin 1977, 1981, 1992, Itkis 1976,
DeCarlo et al. 1988, Zinober 1990) and according to the above de�nitions
they are of the �rst order. When a switching error is present the trajectory
leaves the manifold at a certain angle. On the other hand, in the case of
second order sliding all possible velocities lie in the tangential space to the
manifold, and even when a switching error is present, the state trajectory is
tangential to the manifold at the time of leaving.

To see connections with some well-known results of control theory, con-
sider at �rst the case when

_x = a(x) + b(x)u; s = s(x) 2 R; u 2 R;

where a; b; s are smooth vector functions. Let the system have a relative
degree r with respect to the output variable s (Isidori 1989) which means that
Lie derivatives Lbs; LbLas; : : : ; LbL

r�2
a s equal zero identically in a vicinity of a

given point and LbL
r�1
a s is not zero at the point. The equality of the relative

degree to r means, in a simpli�ed way, that u �rst appears explicitly only in
the rth total time derivative of s. It is known that in that case s(i) = Li

as
for i = 1; : : : ; r � 1, regularity condition (3.4) is satis�ed automatically and
also @

@u
s(r) = LbL

r�1
a s 6= 0. There is a direct analogy between the relative

degree notion and the sliding regularity condition. Loosely speaking, it may
be said that the sliding regularity condition (3.4) means that the "relative
degree with respect to discontinuity" is not less than r. Similarly, the rth
order sliding mode notion is analogous to the zero-dynamics notion (Isidori
1989).

The relative degree notion was originally introduced for the autonomous
case only. Nevertheless, we will apply this notion to the non-autonomous
case as well. As was already done above, we introduce for the purpose a
�ctitious variable xn+1 = t; _xn+1 = 1. It has to be mentioned that some
results by Isidori will not be correct in that case, but the facts listed in the
previous paragraph will still be true.
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Consider a dynamic system of the form

_x = a(t; x) + b(t; x)u; s = s(t; x); u = U(t; x) 2 R:

Theorem 2 Let the system have relative degree r with respect to the out-
put function s at some r-sliding point (t0; x0). Let, also, the discontinuous
function U take on values from sets [K;1) and (�1;�K] on some sets of
non-zero measure in any vicinity of any r-sliding point near point (t0; x0).
Then it provides, with su�ciently large K, for the existence of r-sliding mode
in some vicinity of point (t0; x0). r-sliding motion satis�es the zero-dynamics
equations.

Proof. This Theorem is an immediate consequence of Proposition 1,
nevertheless, we will detail the proof. Consider some new local coordinates
y = (y1; : : : ; yn), where y1 = s; y2 = _s; : : : ; yr = s(r�1). In these coordinates
manifold Lr is given by the equalities y1 = y2 = : : : = yr = 0 and the
dynamics of the system is as follows:

_y1 = y2; : : : ; _yr�1 = yr;
_yr = h(t; y) + g(t; y)u; g(t; y) 6 =0;
_� = 	1(t; y) + 	2(t; y)u; � = (yr+1; : : : ; yn):

(3.5)

Denote Ueq = �h(t; y)=g(t; y). It is obvious that with initial conditions
being on the r-th order sliding manifold Sr equivalent control u = Ueq(t; y)
provides for keeping the system within manifold Sr. It is also easy to see that
the substitution of all possible values from [�K;K] for u gives us a subset of
values from Filippov's set of the possible velocities. Let jUeqj be less than K0,
then with K > K0 the substitution u = Ueq determines a Filippov's solution
of the discontinuous system which proves the Theorem.�

The trivial control algorithm u = �K sign s satis�es Theorem 2. Usually,
however, such a mode will not be stable. It follows from the proof above that
the equivalent control method (Utkin 1977) is applicable to r-sliding mode
and produces equations coinciding with the zero-dynamics equations for the
corresponding system.

The sliding mode order notion (Chang 1990, Elmali et al. 1992) seems
to be understood in a very close sense (the authors had no possibility to
acquaint themselves with the work by Chang). A number of papers ap-
proach the higher order sliding mode technique in a very general way from
the di�erential-algebraic point of view (Sira-Ram��rez 1992a, b, 1993, Lu et
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al. 1998). In these papers so-called "dynamic sliding modes" are not distin-
guished from the algorithms generating them. Consider that approach.

Let the following equality be ful�lled identically as a consequence of the
dynamic system equations (Sira-Ram��rez 1993):

P (s(r); : : : ; _s; s; x; u(k); : : : ; _u; u) = 0: (3.6)

Equation (3.6) is supposed to be solvable with respect to s(r) and u(k). Func-
tion s may itself depend on u. The rth order sliding mode is considered as
a steady state s � 0 to be achieved by a controller satisfying (3.6). In order
to achieve for s some stable dynamics

� = s(r�1) + a1s
(r�2) + : : :+ ar�1s = 0

the discontinuous dynamics

_� = � sign � (3.7)

is provided. For this purpose the corresponding value of s(r) is evaluated
from (3.7) and substituted into (3.6). The obtained equation is solved for
u(k).

Thus, a dynamic controller is constituted by the obtained di�erential
equation for u which has a discontinuous right hand side. With this controller
successive derivatives s; : : : ; s(r�1) will be smooth functions of closed system
state space variables. The steady state of the resulting system will satisfy at
least (3.2) and under some relevant conditions also the regularity requirement
(3.4), and therefore De�nition 3 will hold.

Hence, it may be said that the relation between our approach and the
approach by Sira-Ram��rez is a classical relation between geometric and alge-
braic approaches in mathematics. Note that there are two di�erent sliding
modes in system (3.6), (3.7): a standard sliding mode of the �rst order which
is kept on the manifold � = 0, and an asymptotically stable r-sliding mode
with respect to the constraint s = 0 which is kept in the points of the r-sliding
manifold s = _s = �s = : : : = s(r�1) = 0.

3.3.2 Real sliding and �nite time convergence

Recall that the objective is synthesis of such a control u that the constraint
s(t; x) = 0 holds. The quality of the control design is closely related to
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the sliding accuracy. In reality, no approaches to this design problem may
provide for ideal keeping of the prescribed constraint. Therefore, there is a
need to introduce some means in order to provide a capability for comparison
of di�erent controllers.

Any ideal sliding mode should be understood as a limit of motions when
switching imperfections vanish and the switching frequency tends to in�nity
(Filippov 1960, 1988). Let " be some measure of these switching imperfec-
tions. Then sliding precision of any sliding mode technique may be featured
by a sliding precision asymptotics with "! 0 (Levant 1993):

De�nition 6. Let (t; x(t; ")) be a family of trajectories, indexed by " 2
R
� , with common initial condition (t0; x(t0)), and let t � t0 (or t 2 [t0; T ]).

Assume that there exists t1 � t0 (or t1 2 [t0; T ]) such that on every segment
[t0; t00], where t0 � t1, (or on [t1; T ]) the function s(t; x(t; ")) tends uniformly
to zero with " tending to zero. In that case we call such a family a real-sliding
family on the constraint s = 0. We call the motion on the interval [t0; t1] a
transient process, and the motion on the interval [t1;1) (or [t1; T ]) a steady
state process.

De�nition 7. A control algorithm, dependent on a parameter " 2 R
� ,

is called a real-sliding algorithm on the constraint s = 0 if, with " ! 0, it
forms a real-sliding family for any initial condition.

De�nition 8. Let 
(") be a real-valued function such that 
(")! 0 as
"! 0. A real-sliding algorithm on the constraint s = 0 is said to be of order
r (r > 0) with respect to 
(") if for any compact set of initial conditions and
for any time interval [T1; T2] there exists a constant C, such that the steady
state process for t 2 [T1; T2] satis�es

js(t; x(t; "))j � Cj
(")jr:

In the particular case when 
(") is the smallest time interval of control
smoothness, the words "with respect to 
" may be omitted. This is the case
when real sliding appears as a result of switching discretization.

As follows from (Levant 1993), with the r-sliding regularity condition sat-
is�ed, in order to get the rth order of real sliding with discrete switching it
is necessary to get at least the rth order in ideal sliding (provided by in�nite
switching frequency). Thus, the real sliding order does not exceed the corre-
sponding sliding mode order. The standard sliding modes provide, therefore,
for the �rst order real sliding only. The second order of real sliding was re-
ally achieved by discrete switching modi�cations of the second order sliding
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algorithms (Levantovsky 1985, Emelyanov et al. 1986a, b, c, 1990, Levant
1993). Any arbitrary order of real sliding can be achieved by discretization of
the same order sliding algorithms from (Levantovsky 1998b, 1999, see 3.7).

Real sliding may also be achieved in a way di�erent from the discrete
switching realization of sliding mode. For example, high gain feedback sys-
tems (Saksena et al. 1984, Young et al. 1977) constitute real sliding algo-
rithms of the �rst order with respect to k�1, where k is a large gain. A special
discrete-switching algorithm providing for the second order real sliding were
constructed by Su et al. (1994), another example of a second order real slid-
ing controller is the drift algorithm (Emelyanov et al. 1986c, Levant 1993).
A third order real-sliding controller exploiting only measurements of s was
recently presented by Bartolini et al. (1999).

It is true that in practice the �nal sliding accuracy is always achieved
in �nite time. Nevertheless, besides the pure theoretical interest there are
also some practical reasons to search for sliding modes attracting in �nite
time. Consider a system with an r-sliding mode. Assume that with minimal
switching interval � the maximal r-th order of real sliding is provided. That
means that the corresponding sliding precision jsj � � r is kept, if the r-th
order sliding condition holds at the initial moment. Suppose that the r-
sliding mode in the continuous switching system is asymptotically stable and
does not attract the trajectories in �nite time. It is reasonable to conclude
in that case that with � ! 0 the transient process time for �xed general case
initial conditions will tend to in�nity. If, for example, the sliding mode were
exponentially stable, the transient process time would be proportional to
r ln(��1). Therefore, it is impossible to observe such an accuracy in practice,
if the sliding mode is only asymptotically stable. At the same time, the
time of the transient process will not change drastically if it was �nite from
the very beginning. It has to be mentioned, also, that the authors are not
aware of a case when a higher real-sliding order is achieved with in�nite-time
convergence.

3.4 Higher order sliding stability in relay sys-

tems

In this section we present classical results by Tsypkin (1984) (published in
Russian in 1956) and Anosov (1959). They investigated the stability of relay
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control systems of the form

_y1 = y2; : : : ; _yl�1 = yl;
_yl =

Pn
j=1 al;jyj + k sign y1;

_yi =
Pn

j=1 ai;jyj; i = l + 1; : : : ; n
(3.8)

where ai;j = const; k 6 =0; and y1 = y2 = : : : = yl = 0 is the lth order sliding
set.

The main result is as follows:

� for stability of equilibrium point of relay control system (3.8) with sec-
ond order sliding (l = 2) three main cases are singled out: exponentially
stable, stable and unstable;

� it is shown that the equilibrium point of the system (3.8) is always
unstable with l � 3. Consequently, all higher order sliding modes
arriving in the relay control systems are unstable with order of sliding
more than 2.

Consider the ideas of the proof.

3.4.1 2-sliding stability in relay systems

Consider a simple example of a second order dynamic system

_y1 = y2; _y2 = ay1 + by2 + k sign y1: (3.9)

The 2-sliding set is given here by y1 = y2 = 0. At �rst, let k < 0: Consider
the Lyapunov function

E =
y22
2
� a

y21
2
+ jkjjy1j � b

2
y1y2: (3.10)

Function E is an energy integral of system (3.9). Computing the derivative
of function E achieve

_E =
b

2
y22 +

b

2
jy1j(jkj � ajy1j � by2 sign y1):

It is obvious that for some positive �1 � �2, �1 � �2

�1jy1j+ �1y
2
2 � E � �2jy1j+ �2y

2
2:
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Thus, the inequalities �
2E � _E � �
1E or 
1E � _E � 
2E hold for b < 0
or b > 0 respectively, in a small vicinity of the origin with some 
2 � 
1 > 0.

Let now k > 0. It is easy to see in that case that trajectories cannot
leave the set y1 > 0, y2 = _y1 > 0 if a � 0. The same is true with y1 < k=jaj
if a < 0. Starting with in�nitisimally small y1 > 0, y2 > 0, any trajectory
inevitably leaves some �xed origin vicinity.

It allows three main cases to be singled out for investigation of stability
of system (3.9).

� Exponentially stable case. Under the conditions

b < 0; k < 0 (3.11)

the equilibrium point y1 = y2 = 0 is exponentially stable.

� Unstable case. Under the condition

k > 0 or b > 0

the equilibrium point y1 = y2 = 0 is unstable.

� Critical case.
k � 0; b � 0; bk = 0:

With b = 0; k < 0 the equilibrium point y1 = y2 = 0 is stable.

It is easy to show that if the matrix A consisting of ai;j; i; j > 2 is Hurvitz
and conditions a2;2 < 0; k < 0 are true, the equilibrium point of system (3.8)
is exponentially stable.

3.4.2 Relay system instability with sliding order more

than 2

Let us illustrate the idea of the proof on an example of a simple third order
system

_y1 = y2; _y2 = y3; _y3 = a31y1 + a32y2 + a33y3 � k sign y1; k > 0: (3.12)

Consider the Lyapunov function1

V = y1y3 � 1

2
y22:

1this function was suggested by V.I. Utkin in private communications
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Plant

Relay Controller

Actuator

�s

6u

-z

Figure 3.2: Control system with actuator

Thus,
_V = �kjy1j+ y1(a31y1 + a32y2 + a33y3);

and _V is negative at least in a small neighbourhood of origin (0; 0; 0): That
means that the zero solution of system (3.12) is unstable.

On the other hand, in relay control systems with order of sliding more
than 2 a stable periodic solution can occur (Neimark 1973, Johanson et al.
1999).

3.5 Sliding order and dynamic actuators

Let the constraint be given by the equality of some constraint function s to
zero and let the sliding mode s � 0 be provided by a relay control. Taking
into account an actuator conducting a control signal to the process controlled,
we achieve more complicated dynamics. In that case the relay control u
enters the actuator and continuous output variables of the actuator z are
transmitted to the plant input ( Fig. 3.2). As a result discontinuous switching
is hidden now in the higher derivatives of the constraint function (Utkin 1981,
1992, Fridman 1985, 1986, 1990, 1991, 1993, Bogatyrev et al. 1992).

3.5.1 Stability of 2-sliding modes in systems with fast

actuators

Condition (3.11) is used in works by Fridman (1990, 1991, 1993), Bogatyrev
et al. (1992) for analysis of sliding mode systems with fast dynamic actua-
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tors. Here is a simple outline of these reasonings. One of the actuator output
variables is formally replaced by _s after application of some coordinate trans-
formation. Let the system under consideration be rewritten in the following
form:

� _z = Az +B� +D1x;
� _� = Cz + b� +D2x + k sign s;
_s = �;
_x = F (z; �; s; x);

(3.13)

where z 2 R
m ; x 2 R

n ; �; s 2 R.
With (3.11) ful�lled and Re SpecA < 0 system (3.13) has an exponentially

stable integral manifold of slow motions being a subset of the second order
sliding manifold and given by the equations

z = H(�; x) = �A�1D1x+O(�); s = � = 0:

Function H may be evaluated with any desired precision with respect to the
small parameter � .

Therefore, according to Fridman (1990, 1991, 1993), Bogatyrev et al.
(1992) under the conditions

Re SpecA < 0; b < 0; k < 0 (3.14)

the motions in such a system with a fast actuator of relative degree 1 consist of
fast oscillations, vanishing exponentially, and slow motions on a submanifold
of the second order sliding manifold.

Thus, if conditions (3.14) of chattering absence hold, the presence of a
fast actuator of relative degree 1 does not lead to chattering in sliding mode
control systems.

Remark

The stability of the fast actuator and of the second order sliding mode in
(3.13) still does not guarantee absence of chattering if dim z > 0 and @F

@z
6= 0,

for in that case fast oscillations may still remain in the 2-sliding mode itself.
Indeed, the stability of a fast actuator corresponds to the stability of the fast
actuator matrix

Re Spec

�
A B
C b

�
< 0:
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Consider the system

� _z1 = z1 + z2 + � +D1x;
� _z2 = 2z2 + z3 +D2x;
� _� = 24z1 � 60z2 � 9� +D3x+ k sign s;
_s = �;
_x = F (z1; z2; �; s; x);

where z1; z2; �; s are scalars. It is easy to check that the spectrum of the
matrix is f�1;�2;�3g and condition (3.11) holds for this system. On the
other hand the motions in the second order sliding mode are described by
the system

� _z1 = z1 + z2 +D1x;
� _z2 = 2z2 +D2x;
_x = F (z1; z2; 0; 0; x):

The fast motions in this system are unstable and the absence of chattering
in the original system cannot be guaranteed.

Example

Without loss of generality we illustrate the approach by some simple exam-
ples. Consider, for instance, sliding mode usage for the tracking purpose. Let
the process be described by the equation _x = u; x; u 2 R, and the sliding
variable be

s = x� f(t); f : R ! R ,

so that the problem is to track a signal f(t) given in real time, where
jf j; j _f j; j �f j < 0:5. Only values of x; f; u are available.

The problem is successfully solved by the controller u = � sign s, keeping
s = 0 in a 1-sliding mode. In practice, however, there is always some actuator
between the plant and the controller, which inserts some additional dynamics
and removes the discontinuity from the real system. With respect to Fig. 3.2
let the system be described by the equation

_x = v;

where v 2 R is an output of some dynamic actuator. Assume that the
actuator has some fast �rst order dynamics. For example

� _v = u� v
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The input u of the actuator is the relay control

u = � sign s:

where � is a small positive number. The second order sliding manifold S2 is
given here by the equations

s = x� f(t) = 0; _s = v � _f(t) = 0:

The equality

�s =
1

�
(u� v)� �f(t)

shows that the relative degree here equals 2 and, according to Theorem 2, a
2-sliding mode exists, provided � < 1. The motion in this mode is described
by the equivalent control method or by zero-dynamics, which is the same:
from s = _s = �s = 0 achieve u = � �f(t) + v, v = _f(t) and therefore

x = f(t); v = _f(t); u = � �f(t) + v:

It is easy to prove that the 2-sliding mode is stable here with � small enough.
Note that the latter equality describes the equivalent control (Utkin 1977,
1992) and is kept actually only in the average, while the former two are kept
accurately in the 2-sliding mode.

Let

f(t) = 0:08 sin t + 0:12 cos 0:3t ; x(0) = 0; v(0) = 0 :

The plots of x(t) and f(t) with � = 0:2 are shown in Fig. 3.3, whereas the
plot of v(t) is demonstrated in Fig. 3.4.

3.5.2 Systems with fast actuators of relative degree 3

and higher

The equilibrium point of any relay system with relative degree � 3 is al-
ways unstable (Anosov (1959), Tsypkin (1984), section 3.4.2). That leads
to an important conclusion: even being stable, higher order actuators do
not suppress chattering in the closed-loop relay systems. For investigation
of chattering phenomena in such systems the averaging technique was used
(Fridman 1990,1999). Higher-order actuators may give rise to high-frequency
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Figure 3.3: Asymptotically stable second order sliding mode in a system with
a fast actuator. Tracking: x(t) and f(t).
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Figure 3.4: Asymptotically stable second order sliding mode in a system with
a fast actuator: actuator output v(t).
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periodic solutions. The general model of sliding mode control systems with
fast actuators has the form (see [10])

_x = h(x; s; �; z; u(s)); _s = �;

� _� = g2(x; s; �; z); � _z = g1(x; s; �; z; u(s)); (3.15)

where z 2 Rm; �; s 2 R; x 2 X � Rn, u(s) = sign s, and g1; g2; h are
smooth functions of their arguments. Variables s; x may be considered as
the state coordinates of the plant, �; z being the fast-actuator coordinates,
and � being the actuator time constant.

Suppose that following conditions are true:
1. The fast-motion system

ds

d�
= �;

d�

d�
= g2(x; 0; �; z);

dz

d�
= g1(x; 0; �; z; u(s)); (3.16)

has a T (x)-periodic solution (s0(� ; x); �0(� ; x); z0(� ; x)) for any x 2 X. Sys-
tem (3.16) generates a point mapping 	(x; �; z) of the switching surface
s = 0 into itself which has a �xed point (��(x); z�(x)), 	(x; ��(x); z�(x)) =
(��(x); z�(x)): Moreover, the Frechet derivative of 	(x; �; z) with respect to
variables (�; z) calculated at (��(x); z�(x)) is a contractive matrix for any
x 2 �X .

2. The averaged system

_x = �h(x) =
1

T (x)

Z T (x)

0

h(x; 0; �0(� ; x); z0(� ; x); u(s0(� ; x)))d� (3.17)

has an unique equilibrium point x = x0: This equilibrium point is exponen-
tially stable.

Theorem 3 (Fridman 1999). Under conditions 1,2 system (3.15) has an
isolated orbitally asymptotically stable periodic solution with the period �(T (x0)+
O(�)) near the closed curve

(x0; �s0(t=�; x0); �0(t=�; x0); z0(t=�; x0)):

Example

Consider a mathematical model of a control system with actuator and the
overall relative degree 3

_x = �x� u; _s = z1; (3.18)
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� _z1 = z2; � _z2 = �2z1 � 3z2 � u: (3.19)

Here z1; z2; s; x 2 R, u(s) = sign s, � is the actuator time constant. The fast
motions taking place in (3.18),(3.19) are described by the system

d�

d�
= z1;

dz1
d�

= z2;

dz2
d�

= �2z1 � 3z2 � u; u = sign �: (3.20)

Then the solution of system (3.20) for � > 0 with initial condition �(0) =
0; z1(0) = z10; z2(0) = z20 is as follows

�(� ) =
3

2
z10�2z10e��+1

2
z10e

�2�+
1

2
z20�z20e��+1

2
z20e

�2��1

2
�+

3

4
�e��+1

4
e�2� ;

z1(�) = 2z10e
�� � z10e

�2� + z20e
�� � z20e

�2� � 1

2
+ e�� � 1

2
e�2� ;

z2(�) = 2z10e
�2� � 2z10e

�� � z20e
�� + 2z20e

�2� � e�� + e�2� :

Consider the point mapping �(z1; z2) of the domain z1 > 0; z2 > 0 on the
switching surface � = 0 into the domain z1 < 0; z2 < 0 with sign � > 0 made
by system (3.20). Then

�(z1; z2) = (�1(z1; z2);�2(z1; z2));

�1(z1; z2) = 2z1e
�T � z1e

�2T + z2e
�T � z2e

�2T ��1

2
+ e�T � 1

2
e�2T ;

�2(z1; z2) = 2z1e
�2T � 2z1e

�T � z2e
�T + 2z2e

�2T � e�T + e�2T ;

where T (z1; z2) is the smallest root of equation

�(T (z1; z2)) =

3

2
z1�2z1e

�T +
1

2
z1e

�2T +
1

2
z2�z2e�T + 1

2
z2e

�2T � 1

2
T +

3

4
�e�T + 1

4
e�2T = 0:

System (3.20) is symmetric with respect to the point � = z1 = z2 = 0:
Thus, the initial condition (0; z�1; z

�
2) and the semi-period T � = T (z�1 ; z

�
2) for

the periodic solution of (3.20) are determined by the equations �(z�1 ; z
�
2) =

�(z�1 ; z�2); �(T (z�1 ; z�2)) = 0 and consequently

3

2
z�1�2z�1e�T

�

+
1

2
z�1e

�2T �+
1

2
z�2�z�2e�T

�

+
1

2
z�2e

�2T ��1

2
T �+

3

4
�e�T �+1

4
e�2T

�

= 0:
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2z�1e
�T � � z�1e

�2T � + z�2e
�T � � z�2e

�2T � � 1

2
+ e�T � 1

2
e�2T = �z�1 ;

2z�1e
�2T � � 2z�1e

�T � � z�2e
�T � + 2z�2e

�2T � � e�T
�

+ e�2T
�

= �z�2 ; (3.21)

Expressing z�1 ; z
�
2 from the latter two equations of (3.21), achieve

T �(eT
�

+ e3T
�

+ 1 + e2T
�

)� 5eT
� � 3e3T

�

+ 3 + 5e2T
�

= 0: (3.22)

Equations (3.22) and (3.21) have positive solution

T � � 2:2755; z�1 � 0:3241; z�2 � 0:1654;

corresponding to the existence of a 2T �-periodic solution in system (3.20).
Thus

(
@T

@z1
;
@T

@z2
) =

(�
3
2
� 2e�T + 1

2
e�2T

(2z1 + z2 + 1)e�T � (z1 + z2 +
1
2
)e�2T � 1

2

;

�
1
2
� e�T + 1

2
e�2T

(2z1 + z2 + 1)e�T � (z1 + z2 +
1
2
)e�2T � 1

2

)

and

@�1

@z1
= 2e�T � e�2T + [e�2T (2z1 + 2z2 + 1)� e�T (2z1 + z2 + 1)]

@T

@z1
;

@�1

@z2
= e�T � e�2T + [e�2T (2z1 + 2z2 + 1)� e�T (2z1 + z2 + 1)]

@T

@z2
;

@�2

@z1
= 2e�2T � 2e�T � [(e�T (2z1 + z2 + 1)� 2e�2T (2z1 + 2z2 + 1)]

@T

@z1
;

@�2

@z2
= 2e�2T � e�T � [(e�T (2z1 + z2 + 1)� 2e�2T (2z1 + 2z2 + 1)]

@T

@z2
:

Calculating the value of Frechet derivative @�
@z

at (z�1 ; z
�
2), using the found

value of T �, achieve

@�

@z
(z�1 ; z

�
2) = J =

� �0:4686 �0:1133
0:3954 0:0979

�
:
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The eigenvalues of matrix J are �0:3736 and 0:0029: That implies existence
and asymptotic stability of the periodic solution of (3.20). The averaged
equation for system (3.18),(3.19) is

_x = �x;

and it has the asymptotically stable equilibrium point x = 0. Hence, system
(3.18),(3.19) has an orbitally asymptotically stable periodic solution which
lies in the O(�)-neighbourhood of the switching surface.

3.6 2-sliding controllers

We follow here Levant (1997, 1993), Bartolini et al.( 1998c).

3.6.1 2-sliding dynamics

Return to the system

_x = f(t; x; u); s = s(t; x) 2 R; u = U(t; x) 2 R; (3.23)

where x 2 Rn, t is time, u is control, and f; s are smooth functions. The
control task is to keep output s � 0.

Di�erentiating successively the output variable s achieve functions _s; �s; :::
Depending on the relative degree (Isidori, 1989) of the system di�erent cases
should be considered

a) relative degree r = 1, i.e., @
@u
_s 6= 0;

b) relative degree r � 2, i.e., @
@u
s(i) = 0 (i = 1; 2; : : : ; r � 1), @

@u
s(r) 6= 0.

In case a) the classical VSS approach solves the control problem by means
of 1{sliding mode control, nevertheless 2{sliding mode control can also be
used in order to avoid chattering. For that purpose u is to become an output
of some �rst order dynamic system (Levant 1993). For example, the time
derivative of the plant control _u(t) may be considered as the actual control
variable. A discontinuous control _u steers the sliding variable s to zero,
keeping s = 0 in a 2{sliding mode, so that the plant control u is continuous
and the chattering is avoided (Levant 1993, Bartolini et al. 1998b). In case b)
the p{sliding mode approach, with p � r, is the control technique of choice.
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Chattering avoidance: the generalized constraint ful�llment prob-
lem

When considering classical VSS the control variable u(t) is a feedback-designed
relay output. The most direct application of 2{sliding mode control is that
of attaining sliding motion on the sliding manifold by means of a continu-
ous bounded input u(t) being a continuous output of a suitable �rst{order
dynamical system driven by a proper discontinuous signal. Such �rst{order
dynamics can be either inherent to the control device or specially introduced
for chattering elimination purposes.

Assume that f and s are respectively C1 and C2 functions, and that the
only available current information consists of the current values of t, u(t),
s(t; x) and, possibly, of the sign of the time derivative of s. Di�erentiating
the sliding variable s twice, the following relations are derived:

_s =
@

@t
s(t; x) +

@

@x
s(t; x)f(t; x; u); (3.24)

�s(t) =
@

@t
_s(t; x; u) +

@

@x
_s(t; x; u)f(t; x; u) +

@

@u
_s(t; x; u) _u(t): (3.25)

The control goal for a 2{sliding mode controller is that of steering s to
zero in �nite time by means of control u(t) continuously dependent on time.
In order to state a rigorous control problem the following conditions are
assumed:

1) Control values belong to the set U = fu : juj � UMg, where UM > 1 is
a real constant; furthermore the solution of the system is well de�ned
for all t, provided u(t) is continuous and 8t u(t) 2 U .

2) There exists u1 2 (0; 1) such that for any continuous function u(t) with
ju(t)j > u1, there is t1, such that s(t)u(t) > 0 for each t > t1. Hence,
the control u(t) = �sign[s(t0)], where t0 is the initial value of time,
provides hitting the manifold s = 0 in �nite time.

3) Let _s(t; x; u) be the total time derivative of the sliding variable s(t; x).
There are positive constants s0, u0 < 1, �m, �M such that if js(t; x)j <
s0 then

0 < �m � @

@u
_s(t; x; u) � �M ; 8u 2 U ; x 2 X (3.26)

and the inequality juj > u0 entails _su > 0.
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4) There is a positive constant � such that within the region jsj < s0 the
following inequality holds 8t; x 2 X ; u 2 U���� @@t _s(t; x; u) + @

@x
_s(t; x; u)f(t; x; u)

���� � � (3.27)

The above condition 2 means that starting from any point of the state
space it is possible to de�ne a proper control u(t) steering the sliding variable
within a set such that the boundedness conditions on the sliding dynamics
de�ned by conditions 3 and 4 are satis�ed. In particular they state that the
second time derivative of the sliding variable s, evaluated with �xed values
of the control u, is uniformly bounded in a bounded domain.

It follows from the theorem on implicit function that there is a function
ueq(t; x) which can be considered as equivalent control (Utkin, 1992) satis-
fying the equation _s = 0. Once s = 0 is attained, the control u = ueq(t; x)
would provide for the exact constraint ful�llment. Conditions 3 and 4 mean
that jsj < s0 implies jueqj < u0 < 1, and that the velocity of the ueq changing
is bounded. This provides for a possibility to approximate ueq by a Lips-
chitzian control.

Note that the unit upper bound for u0 and u1 can be considered as a
scaling factor. Note also that linear dependence on control u is not required
here. The usual form of the uncertain systems dealt with by the VSS theory,
i.e., systems a�ne in u and maybe in x, are a special case of the considered
system and the corresponding constraint ful�llment problem may be reduced
to the considered one (Levant, 1993, Emelyanov et al. 1993).

Relative degree two. In case of relative degree two the control problem
statement could be derived from the above by considering the variable u as a
state variable and _u as the actual control. Indeed, let the controlled system
be

f(t; x; u) = a(t; x) + b(t; x)u(t); (3.28)

where a : Rn+1 ! R
n and b : Rn+1 ! R

n are su�ciently smooth uncertain
vector functions, [ @

@x
s(t; x)]b(t; x) � 0. Calculating achieve that

�s = '(t; x) + 
(t; x)u: (3.29)

It is assumed that j'j � �; 0 < �m � 
 � �M ;� > 0.
Thus in a small vicinity of the manifold s = 0 the system is described by

(3.28), (3.29) if the relative degree is 2 or by (3.23) and
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�s = '(t; x) + 
(t; x) _u; (3.30)

if the relative degree is 1.

3.6.2 Twisting algorithm

Let relative degree be 1. Consider local coordinates y1 = s and y2 = _s,
then after a proper initialization phase, the second order sliding mode control
problem is equivalent to the �nite time stabilization problem for the uncertain
second order system with j'j � �; 0 < �m � 
 � �M ;� > 0.�

_y1 = y2
_y2 = '(t; x) + 
(t; x) _u

(3.31)

with y2(t) immeasurable but with a possibly known sign, and '(t; x) and

(t; x) uncertain functions with

� > 0; j'j � �; 0 < �m � 
 � �M : (3.32)

That controller features twisting around the origin of the 2{sliding plane
y1Oy2 (Fig.3.5). The trajectories perform an in�nite number of rotations
while converging in �nite time to the origin. The vibration magnitudes along
the axes as well as the rotation times decrease in geometric progression.
The control derivative value commutes at each axis crossing, which requires
availability of the sign of the sliding-variable time-derivative y2.

The control algorithm is de�ned by the following control law (Levant,
1985, 1993, Emelyanov et al. 1986b, 1993), in which the condition on juj
provides for juj � 1:

_u(t) =

8<
:
�u if juj > 1;
�Vmsign(y1) if y1y2 � 0; juj � 1;
�VM sign(y1) if y1y2 > 0; juj � 1:

(3.33)

The corresponding su�cient conditions for the �nite time convergence to the
sliding manifold are (Levant, 1993)

VM > Vm
Vm > 4�M

s0

Vm > �
�m

�mVM � � > �MVm + �:

(3.34)
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Figure 3.5: Twisting algorithm phase trajectory

The similar controller

u(t) =

� �Vmsign(y1) if y1y2 � 0
�VM sign(y1) if y1y2 > 0

is to be used in order to control system (3.28) when the relative degree is 2.
By taking into account the di�erent limit trajectories arising from the

uncertain dynamics of (3.29) and evaluating time intervals between successive
crossings of the abscissa axis, it is possible to de�ne the following upper bound
for the convergence time (Bartolini et al., 1998c)

ttw1 � tM1
+�tw

1

1� �tw

q
jy1M1

j: (3.35)

Here y1M1
is the value of the y1 variable at the �rst abscissa crossing in the

y1Oy2 plane, tM1
the corresponding time instant and

�tw =
p
2 �mVM+�MVm
(�mVM��)

p
�MVm+�

�tw =
q

�MVm+�
�mVM�� :

In practice when y2 is immeasurable, its sign can be estimated by the sign
of the �rst di�erence of the available sliding variable y1 in a time interval � ,
i.e., sign[y2(t)] is estimated by sign[y1(t) � y1(t � �)]. In that case the 2{
sliding precision with respect to the measurement time interval is provided,
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and the size of the boundary layer of the sliding manifold is � � O(� 2)
(Levant 1993). Recall that it is the best possible accuracy asymptotics with
discontinuous _y2 = �s.

3.6.3 Sub{optimal algorithm

That 2{sliding controller was developed as a sub{optimal feedback imple-
mentation of a classical time-optimal control for a double integrator. Let the
relative degree be 2. The auxiliary system is

�
_y1 = y2
_y2 = '(t; x) + 
(t; x)u:

(3.36)

The trajectories on the y1Oy2 plane are con�ned within limit parabolic arcs
which include the origin, so that both twisting and jumping (in which y1
and y2 do not change sign) behaviors are possible (Fig.3.6). Also here the
coordinates of the trajectory intersections with axis y1 decrease in geometric
progression. After an initialization phase the algorithm is de�ned by the

Figure 3.6: Sub{Optimal algorithm phase trajectories

following control law (Bartolini et al. 1998a, Bartolini et al. 1998b, Bartolini
et al. 1998c):

v(t) = ��(t)VMsign(y1(t)� 1
2
y1M );

�(t) =

�
�� if [y1(t)� 1

2
y1M ][y1M � y1(t)] > 0

1 if [y1(t)� 1
2
y1M ][y1M � y1(t)] � 0

;
(3.37)
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where y1M is the latter singular value of the function y1(t), i.e. the latter
value corresponding to the zero value of y2 = _y1. The corresponding su�-
cient conditions for the �nite-time convergence to the sliding manifold are as
follows (Bartolini et al. 1998a):

�� 2 (0; 1] \ (0; 3�m
�M

);

VM > max
�

�
���m

; 4�
3�m����M

�
:

(3.38)

Also in that case an upper bound for the convergence time can be deter-
mined (Bartolini et al. 1998a)

topt1 � tM1
+�opt

1

1� �opt

q
jy1M1

j: (3.39)

Here y1M1
and tM1

are de�ned as for the twisting algorithm, and

�opt =
(�m+���M )VM

(�mVM��)
p
���MVM+�

;

�opt =
q

���M��m)VM+2�
2(�mVM��) :

The e�ectiveness of the above algorithm was extended to larger classes
of uncertain systems (Bartolini et al., 1998c). It was proved (Bartolini et
al., 1998b) that in case of unit gain function the control law (3.37) can be
simpli�ed by setting � = 1 and choosing VM > 2�.

The sub{optimal algorithm requires some device in order to detect the
singular values of the available sliding variable y1 = s. In the most practical
case y1M can be estimated by checking the sign of the quantity D(t) =
[y1(t� �)� y1(t)] y1(t) in which �

2
is the estimation delay. In that case the

control amplitude VM has to belong to an interval instead of a half-line:

VM 2
�
max

�
�

���m
; VM1

(� ; y1M )

�
; VM2

(� ; y1M )

�
(3.40)

Here VM1
< VM2

are the solutions of the second order algebraic equation�
(3�m � ���M)

VMi

�
� 4

�
y1M
��2

� VMi

8�
[�m + �M (2� ��)]

�
�M

VMi

�
+ 1

�
= 0

In the case of approximated evaluation of y1M the second order real sliding
mode is achieved, and the size of the boundary layer of the sliding manifold
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is � � O(� 2). It can be minimized by choosing VM as follows (Bartolini et
al. 1998c):

VM =
4�

3�m � ���M

"
1 +

r
1 +

3�m � ���M
4�M

#

An extension of the sub{optimal 2{sliding controller to a class of sampled
data systems such that the gain function in (3.29 ) is constant, i.e., 
(�) = 1,
was recently presented by Bartolini et al. (1998c).

3.6.4 Super{twisting algorithm

That algorithm has been developed to control systems with relative degree
one in order to avoid chattering in VSC. Also in that case the trajectories on
the 2{sliding plane are characterized by twisting around the origin (Fig.3.7),
but the continuous control law u(t) is constituted by two terms. The �rst
is de�ned by means of its discontinuous time derivative, while the other is a
continuous function of the available sliding variable.

Figure 3.7: Super{Twisting algorithm phase trajectory

The control algorithm is de�ned by the following control law (Levant,
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1993):
u(t) = u1(t) + u2(t)

_u1(t) =

� �u if juj > 1
�W sign(y1) if juj � 1

u2(t) =

� ��js0j�sign(y1) if jy1j > s0
��jy1j�sign(y1) if jy1j � s0

(3.41)

and the corresponding su�cient conditions for the �nite time convergence to
the sliding manifold are (Levant, 1993)

W > �
�m

�2 � 4�
�2m

�M (W+�)
�m(W��)

0 < � � 0:5

(3.42)

That controller may be simpli�ed when controlled systems (3.28) are
linearly dependent on control, u does not need to be bounded and s0 =1:

u = ��jsj�sign(y1) + u1;
_u1 = �W sign(y1):

The super-twisting algorithm does not need any information on the time
derivative of the sliding variable. An exponentially stable 2{sliding mode
arrives if the control law (3.41) with � = 1 is used. The choice � = 0:5
assures that the maximal possible for 2{sliding realization real-sliding order
2 is achieved. Being extremely robust, that controller is successfully used for
real-time robust exact di�erentiation (Levant 1998a, see further).

3.6.5 Drift algorithm

The idea of the controller is to steer the trajectory to the 2-sliding mode
s = 0 while keeping _s relatively small, i.e. to cause "drift" towards the
origin along axis y1. When using the drift algorithm, the phase trajectories
on the 2-sliding plane are characterized by loops with constant sign of the
sliding variable y1 (Fig.3.8). That controller intentionally yields real 2-sliding
and uses sampled values of the available signal y1 with sampling period � .
The control algorithm is de�ned by the following control law (Levant 1993,
Emelyanov et al. 1986a, 1986c, relative degree is 1):

_u =

8<
:
�u if juj > 1
�Vmsign(�y1i) if y1�y1i � 0; juj � 1
�VM sign(�y1i) if y1�y1i > 0; juj � 1

(3.43)
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Figure 3.8: Drift algorithm phase trajectories

where Vm and VM are proper positive constants such that Vm < VM and
VM
Vm

is su�ciently large, and �y1i = y1(ti) � y1(ti � �), t 2 [ti; ti+1). The
corresponding su�cient conditions for the convergence to the sliding manifold
are rather cumbersome (Emelyanov et al. 1986c) and are omitted here for
the sake of simplicity. Also here a similar controller corresponds to relative
degree 2:

_u =

� �Vmsign(�y1i) if y1�y1i � 0
�VM sign(�y1i) if y1�y1i > 0

After substituting y2 for �y1i a �rst order sliding mode on y2 = 0 would
be achieved. That implies y1 = const, but since an arti�cial switching time
delay appears, we ensure a real sliding on y2 with most of time spent in the
region y1y2 < 0. Therefore, y1 ! 0. The accuracy of the real sliding on
y2 = 0 is proportional to the sampling time interval � ; hence, the duration
of the transient process is proportional to ��1.

Such an algorithm does not satisfy the de�nition of a real sliding algorithm
(Section 3.3) requiring the convergence time to be uniformly bounded with
respect to � . Consider a variable sampling time � i+1[y1(ti)] = ti+1 � ti,
i = 0; 1; 2; : : : with � = max(�M ;min(�m; �jy1(ti)j�)), where 0:5 � � � 1,
�M > �m > 0, � > 0. Then with �, Vm

VM
su�ciently small and Vm su�ciently

large the drift algorithm constitutes a second order real sliding algorithm
with respect to � ! 0. That algorithm has no overshoot if the parameters
are chosen properly (Emelyanov et al. 1986c).
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3.6.6 Algorithm with a prescribed convergence law

That class of sliding controllers features the possibility of choosing a transient
process trajectory: the switching of _u depends on a suitable function of s.

Figure 3.9: Phase trajectories for the algorithm with prescribed law of vari-
ation of s

The general formulation of such a class of 2{sliding control algorithms is
as follows :

_u =

� �u if juj > 1
�VMsign(y2 � g(y1)) if juj � 1

(3.44)

Here VM is a positive constant and the continuous function g(y1) is smooth
everywhere but in y1 = 0. A controller for the relative degree 2 is formed in
an obvious way:

_u = �VMsign(y2 � g(y1)):

Function g must be chosen in such a way that all solutions of the equation
_y1 = g(y1) vanish in �nite time and the function g0 � g be bounded. For
example, the following function can be used

g(y1) = ��1jy1j�sign(y1); � > 0 ; 0:5 � � < 1:

The su�cient condition for the �nite time convergence to the sliding
manifold is de�ned by the following inequality

VM >
� + sup(g0(y1)g(y1))

�m
; (3.45)
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and the convergence time depends on the function g (Emelyanov et al., 1986,
Levant, 1993, Man et al., 1994).

That algorithm needs y2 to be available, which is not always the case. The
substitution of the �rst di�erence of y1for y2 i.e. sign[�y1i � � ig(y1)] instead
of sign[y2 � g(y1)] (t 2 [ti; ti+1); � i = ti � ti�1), turns the algorithm into a
real sliding algorithm. The real sliding order equals two if g(�) is chosen as
in the above example with � = 0:5 (Levant, 1993).

Important remark. All the above-listed discretized 2-sliding controllers,
except for the super-twisting one, are sensitive to the choice of the mea-
surement interval � . Indeed, given any measurement error magnitude, any
information signi�cance of the �rst di�erence �y1i is eliminated with su�-
ciently small � , and the algorithm convergence is disturbed. That problem
was shown to be solved (Levant 1998c, 2000a) by a special feedback determi-
nating � as a function of the real-time measured value of y1. In particular, it
was shown that the feedback � = max(�M ;min(�m; �jy1(ti)j�)), 0:5 � � � 1,
�M > �m > 0, � > 0, makes the twisting controller robust with respect to
measurements errors. Moreover, the choice � = 1=2 is proved to be the best
one. It provides for keeping the second order real-sliding accuracy s = O(� 2)
in the absence of measurement errors and for sliding accuracy proportion-
al to the maximal error magnitude otherwise. Note that the super-twisting
controller is robust due to its own nature and does not need such auxiliary
constructions.

3.6.7 Examples

Practical implementation of 2-sliding controllers is described in (Levant et
al., 2000). Continue the example series 3.5.1, 3.5.2. The process is given by

_x = u; x; u 2 R; s = x� f(t); f : R ! R ;

so that the problem is to track a signal f(t) given in real time, where
jf j; j _f j; j �f j < 0:5. Only values of x; f; u are available. Following is the
appropriate discretized twisting controller:

_u =

8<
:
�u(ti); ju(ti)j > 1;
�5 sign s(ti); s(ti)�si > 0; ju(ti)j � 1;
� sign s(ti); s(ti)�si � 0; ju(ti)j � 1:

Here ti � t < ti+1. Let function f be chosen like in examples 3.5.1, 3.5.2:

f(t) = 0:08 sin t + 0:12 cos 0:3t ; x(0) = 0; v(0) = 0 :
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Figure 3.10: Twisting 2-sliding algorithm. Tracking: x(t) and f(t).

The corresponding simulation results are shown in Fig. 3.6.7, 3.6.7.
The discretized super-twisting controller (Emelyanov et al. 1990, Levant

1993a) serving the same goal is the algorithm

u = �2
p
js(ti)j sign s(ti) + u1; _u1 =

� �u(ti); ju(ti)j > 1;
� sign s(ti); ju(ti)j � 1;

Its simulation results are shown in Fig. 3.6.7, 3.6.7.

3.7 Arbitrary-order sliding controllers

We follow here Levant (1998b, 1999).

3.7.1 The problem statement

Consider a dynamic system of the form

_x = a(t; x) + b(t; x)u; s = s(t; x); (3.46)

where x 2 R
n ; a; b; s are smooth functions, u 2 R: The relative degree r of the

system is assumed to be constant and known. That means, in a simpli�ed
way, that u �rst appears explicitly only in the r-th total derivative of s and
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Figure 3.11: Twisting 2-sliding algorithm. Control u(t).
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Figure 3.12: Super-twisting 2-sliding controller. Tracking: x(t) and f(t).
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Figure 3.13: Super-twisting 2-sliding controller. Control u(t).

d
du
s(r) 6= 0 at the given point. The task is to ful�ll the constraint s(t; x) = 0

in �nite time and to keep it exactly by discontinuous feedback control. Since
s; _s; :::; s(r�1) are continuous functions of t and x, the corresponding motion
will correspond to an r-sliding mode.

Introduce new local coordinates y = (y1; :::; yn); where y1 = s; y2 =
_s; :::; yr = s(r�1): Then

s(r) = h(t; y) + g(t; y)u; g(t; y) 6= 0;

� = �(t; s; _s; :::; s(r�1); �) + 
(t; s; _s; :::; s(r�1); �)u; � = (yr+1; :::; yn): (3.47)

Let a trivial controller u = �K sign s be chosen with K > sup jueqj, ueq =
�h(t; y)=g(t; y) (equivalent control Utkin 1992). Then the substitution u =
ueq de�nes a di�erential equation on the r-sliding manifold of (3.46). Its
solution provides for the r-sliding motion. Usually, however, such a mode is
not stable.

It is easy to check that g = LbL
r�1
a s = d

du
s(r): Obviously, h = Lr

as is the
rth total time derivative of s calculated with u = 0: In other words, func-
tions h and g may be de�ned in terms of input-output relations. Therefore,
dynamic system (3.46) may be considered as a "black box".

The problem is to �nd a discontinuous feedback u = U(t; x) causing �nite-
time convergence to an r- sliding mode. That controller has to generalize the
1-sliding relay controller u = �K sign s: Hence, g(t; y) and h(t; y) in (3.47)
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are to be bounded, h > 0: Thus, we require that for some Km; KM ; C > 0

0 < Km � @

@u
s(r) � KM ; jLr

asj � C: (3.48)

3.7.2 Controller construction

Let p be a positive number. Denote

N1;r = jsj(r�1)=r;

Ni;r = (jsjp=r + j _sjp=(r�1) + :::+ js(i�1)jp=(r�i+1))(r�i)=p; i = 1; :::; r � 1;

Nr�1;r = (jsjp=r + j _sjp=(r�1) + :::+ js(r�2)jp=2)1=p:
 0;r = s;

 1;r = _s+ �1N1;r sign(s);

 i;r = s(i) + �iNi;r sign( i�1;r); i = 1; :::; r � 1;

where �1; :::; �r�1 are positive numbers.

Theorem 4 Let system (3.46) have relative degree r with respect to the out-
put function s and (3.48) be ful�lled. Then with properly chosen positive
parameters �1; :::; �r�1 controller

u = �� sign( r�1;r(s; _s; :::; s
(r�1))): (3.49)

provides for the appearance of r-sliding mode s � 0 attracting trajectories in
�nite time.

The positive parameters �1; :::; �r�1 are to be chosen su�ciently large in
the index order. Each choice determines a controller family applicable to all
systems (3.46) of relative degree r. Parameter � > 0 is to be chosen speci�-
cally for any �xed C;Km; KM : The proposed controller is easily generalized:
coe�cients of Ni;r may be any positive numbers etc. Obviously, � is to be
negative with @

@u
s(r) < 0:

Certainly, the number of choices of �i is in�nite. Here are a few examples
with �i tested for r � 4; p being the least common multiple of 1; 2; :::; r: The
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Figure 3.14: The idea of r-sliding controller

�rst is the relay controller, the second is listed in section 3.6.

1:u = �� sign s
2:u = �� sign(s+ jsj1=2 sign s);
3:u = �� sign(�s+ 2(j _sj3 + jsj2)1=6 sign( _s+ jsj2=3 sign s);
4:u = �� signfs(3) + 3(�s6 + _s4 + jsj3)1=12 sign[�s+
( _s4 + jsj3)1=6 sign( _s+ 0:5jsj3=4 sign s)]g;
5:u = �� sign(s(4) + �4(jsj12 + j�sj15 + jsj20+
js(3)j30)1=60 sign(s(3) + �3(jsj12 + j _sj15 + j�sj20)1=30 sign(�s
+�2(jsj12 + j _sj15)1=20 sign( _s+ �1jsj4=5 sign s))))

The idea of the controller is that a 1-sliding mode is established on the
smooth parts of the discontinuity set � of (3.49) (Fig.3.14). That sliding
mode is described by the di�erential equation  r�1;r = 0 providing in its
turn for the existence of a 1-sliding mode  r�1;r = 0. But the primary sliding
mode disappears at the moment when the secondary one is to appear. The
resulting movement takes place in some vicinity of the subset of � satisfying
 r�2;r = 0, transfers in �nite time into some vicinity of the subset satisfying
 r�3;r = 0 and so on. While the trajectory approaches the r-sliding set, set

� retracts to the origin in the coordinates s; _s; :::; s(r�1): Set � with r = 3 is
shown in Fig. 3.15.

An interesting controller, so-called \terminal sliding mode controller",
was proposed by Wu et al. (1998). In the 2-dimensional case it coincides
with a particular case of the 2-sliding controller with given convergence law
(Section 3.6). In the r-dimensional case a mode is produced at the origin
similar to the r-sliding mode. The problem is that a closed-loop system with
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Figure 3.15: The discontinuity set of the 3-sliding controller

terminal sliding mode does not satisfy the Filippov conditions (Filippov,
1988) for the solution existence with r > 2. Indeed, the control in
uence is
unbounded in vicinities of a number of hyper-surfaces intersecting at the ori-
gin. The corresponding Filippov velocity sets are unbounded as well. Thus,
some special solution de�nition is to be elaborated, the stability of the corre-
sponding quasi-sliding mode at the origin and the very existence of solutions
are to be shown.

Controller (3.49) requires the availability of s; _s; :::; s(r�1): The needed
information may be reduced if the measurements are carried out at times ti
with constant step � > 0: Consider the controller

u(t) = �� sign(�s(r�2)i +�r�1�Nr�1;r(si; _si; :::; s
(r�2)
i ) sign( r�2;r(si; _si; :::; s

(r�2)
i ))

(3.50)

Theorem 5 Under conditions of Theorem 4 with discrete measurements both
algorithms (3.49) and (3.50) provide in �nite time for some positive constants
a0; a1; :::; ar�1 for ful�llment of inequalities

jsj < a0�
r; j _sj < a1�

r�1; :::; js(r�1)j < ar�1� :

That is the best possible accuracy attainable with discontinuous s(r):
Convergence time may be reduced by changing coe�cients �j: Another way

is to substitute ��js(j) for s(j); �r� for � and �� for � in (3.49) and (3.50),
� > 0; causing convergence time to be diminished approximately by � times.
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Implementation of r-sliding controller when the relative degree is less than
r. Introducing successive time derivatives u; _u; :::; u(r�k�1) as new auxiliary
variables and u(r�k) as a new control, achieve di�erent modi�cations of each
r-sliding controller intended to control systems with relative degrees k =
1; 2; :::; r: The resulting control is (r � k � 1)-smooth function of time with
k < r; a Lipschitz function with k = r� 1 and a bounded "in�nite-frequency
switching" function with k = r:

Chattering removal. The same trick removes the chattering e�ect. For
example, substituting u(r�1) for u in (3.50), receive a local r - sliding controller
to be used instead of the relay controller u = � sign s and attain rth order
sliding precision with respect to � by means of (r � 2)-smooth control with
Lipschitz (r � 2)th time derivative. It has to be modi�ed for global usage.

Controlling systems nonlinear on control. Consider a system _x = f(t; x; u)
nonlinear on control. Let @

@u
s(i)(t; x; u) = 0 for i = 1; :::; r�1; @

@u
s(r)(t; x; u) >

0: It is easy to check that

s(r+1) = �r+1
u s +

@

@u
s(r) _u; �u(�) = @

@t
(�) + @

@x
(�)f(t; x; u):

The problem is now reduced to that considered above with relative degree
r + 1 by introducing a new auxiliary variable u and a new control v = _u:

Discontinuity regularization. The complicated discontinuity structure of
the above-listed controllers may be smoothed by replacing the discontinu-
ities under the sign-function with their �nite-slope approximations. As a
result, the transient process becomes smoother. Consider, for example, the
above-listed 3-sliding controller. The function sign( _s + jsj2=3 sign s) may be
replaced by the function max[�1;min(1; jsj�2=3( _s+ jsj2=3 sign s)=")] for some
su�ciently small " > 0: For " = 0:1 the resulting tested controller is

u = �� sign(�s+ 2(j _sj3 + jsj2)1=6max[�1;min(1; 10jsj�2=3( _s+ jsj2=3 sign s))]):
(3.51)

Controller (3.51) provides for the existence of a standard 1-sliding mode on
the corresponding continuous piece-wise smooth surface.

Theorem 6 Theorems 4, 5 remain valid for controller (3.51).

Real-time control of output variables.

The implementation of the above-listed r-sliding controllers requires real-time
observation of the successive derivatives s; _s; :::; s(r�1): Thus, theoretically no
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model of the controlled process needs to be known. Only the relative degree
and 3 constants are needed in order to adjust the controller. Unfortunately,
the problem of successive real-time exact di�erentiation is usually considered
to be practically unsolvable. Nevertheless, under some assumptions the real-
time exact robust di�erentiation is possible. Indeed, let input signal �(t) be
a Lebesgue-measurable locally bounded function de�ned on [0;1) and let it
consist of a base signal �0(t) having a derivative with Lipschitz's constant
C > 0 and a bounded measurable noise N(t): Then the following system
realizes a real-time di�erentiator (Levant, 1998a):

_� = v; v = �1 � �j� � �(t)j1=2 sign(� � �(t)); _�1 = �� sign(� � �(t))

where �; � > 0: Here v(t) is the output of the di�erentiator. Solutions of
the system are understood in the Filippov sense. Parameters may be chosen
in the form � = 1:1C; � = 1:5C1=2; for example (it is only one of possible
choices). That di�erentiator provides for �nite-time convergence to the exact
derivative of �0(t) if N(t) = 0: Otherwise, if sup N(t) = " it provides for
accuracy proportional to C1=2"1=2: Therefore, having been implemented k
times successively, that di�erentiator will provide for kth order di�erentiation
accuracy of the order of "(2

�k): Thus, full local real-time robust control of
output variables is possible, using only output variable measurements and
knowledge of the relative degree.

When the base signal �0(t) has (r-1)th derivative with Lipschitz's constant
C > 0; the best possible kth order di�erentiation accuracy is dkC

k=r"(r�k)=r;
where dk > 1 may be estimated (this asymptotics may be improved with
additional restrictions on �0(t)). Moreover, it is proved that such a robust
exact di�erentiator really exists (Levant, 1998a). Unfortunately, that is only
a pure existence theorem. Hence, the following result is rather abstract.

Theorem 7 An optimal k-th order di�erentiator having been applied, r -
sliding controller (3.49) provides locally for the sliding accuracy js(i)j < ci"

(r�i)=r;
i = 0; 1; :::; r� 1; where " is the maximal possible error of real-time measure-
ments of s and ci are some positive constants.

Theorem 7 probably determines the best sliding asymptotics attainable
when only s is available.
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3.7.3 Examples

Car control.

Consider a simple kinematic model of car control Murray et al. 1993

_x = v cos'; _y = v sin';

_' =
v

l
tan �;

_� = u;

where x and y are Cartesian coordinates of the rear-axle middle point, ' is
the orientation angle, v is the longitudinal velocity, l is the length between
the two axles and � is the steering angle. The task is to steer the car from a
given initial position to the trajectory y = g(x); while x; y and ' are assumed
to be measured in real time. De�ne

s = y � g(x):

Let v = const = 10m=s; l = 5m; g(x) = 10 sin 0:05x + 5; x = y = ' = � = 0
at t = 0: The relative degree of the system is 3 and both 3-sliding controller
No.3 and its regularized form (3.51) may be applied here. It was taken
� = 20: The corresponding trajectories are the same, but the performance
is di�erent. The trajectory and function y = g(x) with measurement step
� = 2 � 10�4 are shown in Fig.3.16. Graphs of s; _s; �s are shown in Fig. 3.16,
3.17 for regularized and not regularized controllers respectively.

4-sliding control.

Consider a model example of a tracking system. Let input z(t) and the
control system satisfy equations

z(4) + 3�z + 2z = 0;

x(4) = u:

The task is to track z by x; s = x� z; the 4th controller with � = 40 is used.
Initial conditions for z and x at time t = 0 are

z(0) = 0; _z(0) = 0; �z(0) = 2; z(3)(0) = 0;
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Figure 3.16: Car trajectory tracking

Figure 3.17: Regularized 3-sliding controller

Figure 3.18: Standard 3-sliding controller
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Figure 3.19: 4 - sliding tracking

Figure 3.20: Third derivative tracking

Figure 3.21: Tracking deviation and its three derivatives
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x(0) = 1; _x(0) = 1; �x(0) = 1; x(3)(0) = 1:

A mutual graph of x and z with � = 0:01 is shown in Fig. 3.19. A mutual
graph of x(3) and z(3) with � = 0:001 is shown in Fig. 3.20. Mutual graphs
of s; _s; �s; s(3) with � = 0:001 are demonstrated in Fig. 3.21. The attained
accuracies are jsj � 1:33 � 10�4 with � = 0:01 and jsj � 1:49 � 10�12 with
� = 0:0001:

The authors are grateful to A. Stotsky for helpful discussions on VSS car
control.

3.8 Conclusions

� A general review of the current state of the higher order sliding theory,
its main notions and results were presented.

� It was demonstrated that higher order sliding modes are natural phe-
nomena for relay control systems if the relative degree of the system is
more than 1 or a dynamic actuator is present.

� Stability was studied of second order sliding modes in relay systems
with fast stable dynamic actuators of relative degree 1.

� Instability of higher order sliding modes was shown in relay systems
with dynamic actuators of relative degree 2 and more.

� A number of the most popular 2-sliding controllers were listed and
compared.

� A family of arbitrary order sliding controllers with �nite time conver-
gence was presented.

� The discrete switching modi�cation of presented sliding controllers pro-
vide for third-order sliding precision with respect to the measurement
time interval.

� A robust exact di�erentiator was presented allowing for full control of
output variables using only measurements of their current values.

� A number of simulation examples were presented.
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