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V. EXAMPLE [7] V. 1. Arnold, Geometrical Methods in the Theory of Ordinary Differen-
. . tial Equations New York: Springer-Verlag, 1983, pp. 177-188.
We now illustrate the proposed method to make the eigenvalues ofg] . Guckenheimer and P. HolmeNpnlinear Oscillations, Dynamical
matrix A nonresonant through state feedback. Systems and Bifurcation of Vector FieldsNew York: Springer-Verlag,
Example: 1983. , , o
[9] P.za Torricelli 2, 1-56126, G. Cicogna, “Private communication: On the
Step1) Letr = 3. convergence of normalizing transformations in the presence of symme-
tries,” unpublished.
0 [10] F. Verhulst, Nonlinear Differential Equations and Dynamical Sys-
F=1|0 0 1|; G=|0|;: K =][ks, ko, ki]. (31) tems New York: Springer-Verlag, 1990, pp. 188—189.
i 1 ’ ’ [11] S. BarnettPolynomials and Linear Control SystemsNew York: Mar-
cell Dekker, 1983.
i . . . [12] L. S. Shieh, W. P. Schneider, and D. R. Williams, “A chain of factored
A = F — GK and the characteristic equation.¢fis given matrices for Routh array inversion and continued fraction inversian,”
by A* + A2 4+ kol + ks = 0. J. Control pp. 691-703, 1971.
Step2) Chooseq; = 1, r1; = 6, ro; = 10 andrs; = 6. The [13] L. Ahlfors, Complex Analysis New York: McGraw-Hill, 1979.
unique polynomial correspondingly is given py/+ 6,2 +
11 + 6 = 0 having roots—1, —2 and —3 which are
resonant of orders 2 and 3 [not@)(—1) + (0)(-2) +
(0)(=3)= =2, ((-1)+(1)(—2) = =3 and(3)(—1)+
(0)(=2) + (0)(=3) = =3]. . h h .
Step 3) In order to satisfy (25), as per Theorem 4, we choose An Averaging Approach to Chattering

3 — 2v/2 and§ = /2, and transform: — X according to Leonid M. Fridman

p= 20+l (32)
A+2 Abstract—The singularly perturbed relay control systems (SPRCS)
. . . as mathematical models of chattering in the small neighborhood of
resulting in the characteristic equation the switching surface in sliding mode systems are examined. Sufficient
conditions for existence and stability of fast periodic solutions to the
3\3 133 \2 98/\ 16 0 SPRCS are found. It is shown that the slow motions in such SPRCS are
+ 30 + 15 + 5 approximately described by equations derived from equations for the slow

variables of SPRCS by averaging along fast periodic motions. It is shown
which has nonresonant roots ¢f3/2), —(4/3) and that in the general case, when the equations of a plant contain relay control

(—8/5 nonlinearly, the averaged equations do not coincide with the equivalent
—8/5). . . ) 16 98 133 control equations or with the Filippov’s definition for the sliding motions
Step 4) The state feedback is then givedkby: [ 3 75 5571 in the reduced system; however, in the linear case, they coincide.

Index Terms—Averaging, periodic solutions, singularly perturbed sys-
VI. CONCLUSION tems, sliding mode control, variable structure systems.

The problem of transforming a dynamic system (11) into normal
formis an old one. In the reduction to the normal form, the role played
by the resonance of the eigenvalues of the matriin (11), is well ) ) ]
known. In the context of control system of (17), however, the control € chattering phenomenen is one of the actual problems in modern
inputu can be used to provide state feedback so as to ensure the riR}ifing mode control theory. The presence of actuators is one of the
resonance of thel matrix. This, in turn, can lead to the satisfactior?@Sic reasons for chattering in sliding mode control systems [8], [1].
of the linearization conditions. Moreover, the eigenvalues of the linehh€ behavior of sliding mode systems with fast actuators and iner-
system can be arbitrarily placed inside a scalable circular region in fifl Sensors is described by singularly perturbed relay control systems
left half of the complex plane. This region itself can be chosen to metPRCS). Insuch a case, the following two qualitatively different types
other design criteria, such as, relative stability. The actual computati@fimotions can occur in the original SPRCS and in the reduced system:
of the transformation will, however, involve solving a series of gener- * in the original SPRCS, there are no stable first-order sliding
alized homological equations. modes;

« the sufficient conditions for existence of a stable first-order
sliding mode hold for the reduced system describing the behavior

o ‘ o of a plant with ideal actuators and sensors [3], [4].
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The general model of sliding mode control systems with fast actuia-[7] using linearization method. For the relay control systems, this
tors has the following form (see [1] and [4]): method is not useful.
In this section, we develop the mathematical tools to explore the fast
pdz/dt = g(z, s, x, u(s)) periodic oscillations of (1), (2). The Poincare maps (see, for example,
ds/dt = hi(z, s, @, u(s)) da/dt = ha(z, s, @, u(s)) [5]) are to be employed. It is possible to consider the results of this
(1.1) section as some generalization of [7] for systems (1) and (2).

wherez € R™, s € R, = € R", u(s) = sign(s) andg, h, ho are B. Some Properties of the Poincare Map, Generated by SPRCS
smooth functions of their arguments. Under such assumptions, systeMet ys denote the variation domain&s.X with variables(z, ¢, )
(1.1) can describe, for instance, the behavior of control systems sughy ...
that variables:, s describe plant dynamics, the vectodescribes dy-  gyppose that the following conditions are true:
namics of the fast actuator, whetds the actuator time constant. 10 Iy, hay g € C[Z % [—1, 1]];

Lettingx = 0 and expressing = ¢ (s, z, u(s)) from the equation 0 aII/thé/trajectories of T
9(Z, s, z, u(s ))—Oaccordlngtotheformula (s, @, u(s)), we

obtain the reduced system dz]dr = g(=, & 2, u(€)), dé/dr = hi(z, w(©) @)

ds/dt =hi(p(s, @, u(s)). s, @, u(s)) = Hils, @, u(s)) which start outside the surfage= 0 for all z € X crosst = ()

da/dt = ha(p(s, 2, u(s)), s, z, u(s)) = Ha(s, , u(s)) at the point(z, 0, x), where sliding mode does not exist and

L2 condition (1.3) holds;

(-2) 3° system (3) for all: € X has an isolated orbitally asymptotically
stable solutior{zo (T, ), & (7, x)) with periodT ().

describing the behavior of the plant when actuator is ideal. Let us denote asE (7, =, «) and& (r, =, x), the solutions

Suppose that

o . o of system (3) with the initial conditionsf(o, z,r) = z,

1) Original system (I.1) has no stable first-order sliding mode. 53[(0, s 2) = O0foré > 0andé < 0. Then,
This means that (almost everywhere o= 0) it is possible to define the Poincare map of the set

a) either there is no sliding mode and V. = {(z2): hi(z0,2,1) > 0} on the surface
¢ = 0 into itself, which is generated by (3) in the form

hi(z, 0, @, Dl (z, 0, 2, =1) > 0 (13) (see Fig. 1)R(z, ®) = 25 (o, 2§ (ho, 2, =), =), Where

o ) Bo(z, ), Op(z, x) are the smallest positive roots of equations
b) or the sliding mode is unstable and consequently

h(2, 0, 2, 1) > 0 andhy (2, 0, 2, —1) <0. & (B0, 2 w) =0, & (Oo, 28 (6, 2, 2), x) = 0.
2) The measure of the domath = {«: H:(0, 2, 1) < 0,
H(0, 2, —=1) > 0} C R" isnotzero, which means that the The roots of this equations exist for all € X according to

reduced system (I.2) has a stable first-order sliding domain. condition 2.

This note presented deals with the chattering phenomenon in (I.2)Suppose that
from the viewpoint of the averaging approach and specific features4® the Poincare maR(z, =) has afixed point*(z) corresponding
of fast periodic solutions of system (I.1). This note consists of three  to (zo(, ), & (7, @));
sections. Mathematical tools for the analysis of periodic solutions of5° provided that for al: € X )\ x) (i =1,...,m), the eigen-
SPRCS are developed in Section II. In Section Ill these tools are used values of the matriXo R/9z) ( ), &), satlsfy|>\ (x)] #1;
to analyze the behavior of sliding mode control systems with fast actu-6° the averaged systetir:/dt = p(J) where
ators.

da/dt = p(x) (4)

1 ~T(x)
pla) = m /0 X ho(zo(7, @), Eo(T, x), , u(&o (T, x))dT

Il. M ATHEMATICAL TOOLS

A. Problem Formulation

In this section, we consider the existence and stability of the fast has an isolated equilibrium point; such thatp(zo) = 0,
periodic solutions to the SPRCS of the form det "P L (xo) # 0.
Letus denoteasi(r z, @, p) andé® (7, z, x, p), the solutions of
pdzfdt = g(z, & @, u(f)) (2) with the initial conditions™® (0, z, z, p) = z,65(0, 2, 2, ) =0
pdé/dt = hi(z, & x, uw(€)), dx/dt = ha(z, &, v, u(f)) for¢ > 0 and¢ < 0.

1) The Poincare map of the domain V of the surfgce 0, generated
by (2), has the following form:
wherez € R™, £ € R,z € R", u(§) = sign({), andg, h, h» are
smooth functions of their argumentshere is the auxiliary variable, ~ ®(z, @, ) =(®1(z, @, p), P2(z, x, p))
and the relation betweefiand s will be given in Section lll. Intro- + " Fn o
ducing the “fast time”r = ¢/u into (1), wge obtain =(27(0, 270, 2 @ ) @78, 2, @, 1), p)
2T(O, 278, 2, 2, p), m+(9, Z, @, ), 1)

dz/dr = g(z, & w, u(§))
d¢/dr = hy(z, & o, w(€)), da/dr = phy(z, & 2, u(E)). where the function®(z, =, n) and ©(z, =, p) are determined by
‘ ‘ ‘ (2) equations

+ig . —
For smooth singularly perturbed system, the existence and stability of €0, 2, @, p) =0
the first approximation of the fast periodic solution was investigated £7(0, 20, 2,z 1) .r+((7', z, zy i), 1) =0.
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Z; 0,2,x) A¢ #()
25(0,25(8,2,x),%)
£,(0,25(8,2,x),x) =0

Fig. 1. Poincare ma®(z, x).
This means that
Di(z, 2, 0) = R(z, z), Pofz, x, 0) =a. (5)

The surfacg = 0 is the surface without stable sliding for (3). This

means that there exists a neighborhood of the paifitzo), o) on
the surfacet = 0, wheremax{|d¢™/d8|, |[d¢~/d©|} > 0. From

condition1® and the implicit function theorem, it follows that for som
small uo, the functions®, 4, © have continuous derivatives in som
setU x [0, po] on the surfac€ = 0. This means that we can conside
the function® as the Poincare map of the §&k [0, o] on the surface

¢ = 0 into itself. Moreover, according to (5) and conditi6hwe can
rewrite ®(z, x, p) in the form

(P(Z @, p) = (@1(2, £, u)a x+ H‘@(Za B :u))

where®,(z, =, p), Q(z, z, p) are sufficiently smooth functions and

S (2" (v), v, 0) = 2" (2),
Q(=" (o), w0, 0) =T (0)p(20) = 0.

Q2" (), z, 0) = T(x)p(x)

Let us introduce new variables for the functi®rusing the formula
n = z — z*(«). Then the Poincare map takes the form

‘I’(ﬁ-, T, /") :(‘1’1(777 x, ), ‘1}2(777 T, /’))
= (@1(n+ =" (), w, p) = 2" (x)
@+ pQ(n+ =" (), , p)) (6)

and consequentl¥ (0, =, 0) = (0, x).

C. Existence of Fast Periodic Solution

Theorem 1: Under conditions 46", (1) has an isolated peri-

odic solution with the periodu(ZT(xo) + O(u)) near the circle
(20(t/ 1ty w0), Eo(t/pt, o), 20).

e
e
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Proof: We will prove a periodic solution to exist as being the
fixed point(n™(u), =" (1)) of the map¥. Let us rewrite the existence
conditions of this fixed point in the form

Gy (77*7 'T*v lu’)
Ga(n*, ", 1)

n" =Wy, 2", p)
=0. 7
L = wair, am ) @

u

G(n*a m*ﬁ :”) = <

It is necessary to take into account thatfio= 0 n*(0) = 0, 27(0) =

zo and G2(0, xo, 0) = —T(zo)p(zo) = 0 and consequently for
w = 0 conditions (7) are fulfilled. Moreover, taking into account that
G1(0, x, 0) = Oforall 2 € X we can conclude thaﬁ%(o, 20, 0) =

0. Let us compute the Jacobian of functi@rwith respect to variables
7, xatpy = 0.

oG
—6(77, ) (()g 2o, 0)
R .
I, — 22 (2" (x0), o) 0
— d # 0
oG o .
S (0.20.0)  =T(xo) 5 (o)
n Oz

This means that there exists an isolated fixed poifity), «*(un)) of
the mapG, which corresponds to the periodic solution of systems (1)
and (2), and in this case" () = z"(zo) + O(p), 2" (1) = @0 +
O(p). u

r

D. Stability in the First Approximation

Assume that

7° the eigenvalues; (o) of the matrix(dR/z)(z(x0), o) sat-
isfy the inequalitieg;(xo)| < 1 (i =1, ..., m);

8° the eigenvaluew;(x¢), j = 1,..., n of the matrix%(wo)
satisfy the inequalities

Re Z/]'(;L’o) < 0.

Theorem 2: Under conditions -8’ the periodic solution of (1), (2)
is orbitally asymptotically stable.
Proof: Let us find the derivative¥ by variables;, =, as shown
in the equation at the bottom of the page. Consequently the matrix
T'(n, z, 1) has at the small vicinity of0, zo, 0) two groups of eigen-
values

Ai(@0)+0(p),
1+uT(zo)vj(xo) + polp),

i=1,...,m

j=1, ..., n

This means that under conditions of Theorem 2 there exists some
neighborhood of(0, zo, 0), where ¥ is contraction map and the
corresponding fast periodic solution of systems (1), (2) is orbitally
asymptotically stable. [ |

8@ Inz -

o(n, x, p)

Oz
= F("I: £, .u') = v,

an

OR
— (@0) + O(p)

O(p)

(0, 20, 0) 4 O() T+ #T (o) 22 (5) + Oy
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IIl. ANALYSIS OF AVERAGED EQUATIONS IN SLIDING MODE WITH neighborhood of th&. This means that it is reasonable to consider
FAST ACTUATORS only solutions of (8) with initial conditions
A. The- Avera.ged Equatlor.ls of Systems that LII.‘lear-In Relay Control S0, 1) = 2, s(0, p) = ps®s (0, ) = 2°
In this section, we consider the SPRCS, which linearly depend on
relay control. We will show that if the fast periodic solution of SPRC§hich are located in thé)() vicinity of the sliding domairS. Fol-
exists, then the averaged equations which describe the slow motiongiging [3], let us increasé/ . times the neighborhood of the discon-
such SPRCS and the equations which describe the sliding motioniiuity surfaces = 0 in (8) and let the variablé = s/u. Then, (8) is
the reduced systems coincide. rewritten in the form
Let us consider the system

pdz/dt = A(pg, @)z + fi(p€, x) + Ki(pg, x)u()
pdé/dt = B(pé, ©)z+ fo(pé, ) + Ko(p€, x)u(f)
da/dt = D(pg, =)z + f3(pg, ») + Ks(pg, 2)u(€). (12)

pdz/dt = A(s, 2)z + fi(s, ) + Ki(s, z)u(s)
ds/dt = B(s, x)z + f2(s, x) + K2(s, x)u(s)

dx/dt = D(s, x)z + f3(s, v) + K3(s, x)u(s) (8)
In this case, the system which describes the fast motions in (12) has,
wherez € R™,s € R,z € R", u(s) = sign(s) andf;, K; (i = analogous to (3), the form
1, 2, 3) are smooth functions of their arguments. Suppose that there is
no stable first order sliding mode in (8). This means &at0, x) > 0. dz/dr = A0, )z + f1(0, ) + K1(0, z)u(§)
Setting;: = 0 and expressingo, from the first equation of (8), ac- ,
cording to the formulao = —A~" (s, 2)[f1 (s, z) 4+ K (s, z)u(s)], dg/dr = B(0, x)z + f2(0, ) + K>(0, w)u(E)

we obtain the reduced system (x-parameter. 13)

ds/dt ==B(s, x) A" (s, ) fi(s, &) + fa(s, ) Suppose that (13) has the isolated periodic solutien(r, =),
— [B(s, £)A™ (s, 2) K (s, z) — Kao(s, )]u(s) o(T, 2)). _ _
Introducing the new variables
da/dt = D(s, 2)A™" (s, &) f1(s, @) + f3(s, x)
7 —a / 71 oy . g Y oy
— [D(s, 2)A™ (s, 2) K1 (s, ) — Ks(s, 2)]u(s). =24 A0, )10, @) + K (0, @)y (o)
(9) for (13), we have

Suppose that sufficient conditions for the existence of sliding mode are dn/dr = A0, z)n + K,(0, 2)u(€, =)
found for this system, then i
de/dr = B(0, x)n + K>(0. 2)a(€. x)

(€, x) =u(f) — ueq(). (14)

Equations which describe the sliding motion in the reduced systemy . 1 [6]: If there exists a solution of (14) of the peridd«)
have the form ' ]

B(0, )A'(0, 2) K (0, #) — K2(0, #) > 0. (10)

then
. - _ A4—1 - 3 T ()
dx/dt = —=D(0, 2)A™ (0, 2) f1(0, =) + f5(0, x) / no(rs 2) dr =0
— [D(0, 2)A7'(0, 2) K (0, x) — K3(0, )] 0
1 T(2) _ 0 (x) — O (x)
X (u(s) — ueq(x)) T(@) Jy u(no(7, x))dr = — Tw = Ueq ().
teq() = [B(0, 2) A0, 2) K1 (0, ) — K2(0, )]~ Let us consider (8). If the conditions of Theorem 2 are
x [=B(0, 2)A™"(0, 2)£1(0, 2) + £2(0, 2)]. true for (12), then there exists an isolated periodic solution

(z(r, n), &(7y p), 2(7, 1)), which corresponds to the periodic

(11) solution(no(7, x), & (7, x)) of (14). Moreover,

Let us show that the averaged equations for the original system (8) /7'(«)
coincide with (11). /
Suppose that the following conditions are true: 0

zo(7, &) dr = A0, 2)(f1(0, 2) + K1(0, 2)teq(2)).

(*) Re SpecA(0, ) < Oforallx € X; This means that the averaged equations which approximately describe
(¥*) the measure of the sliding mode dom&nC X for (9) in the behavior of the slow motions in (8) coincide with (11) for the sliding
which |u.,(2z)| < 1 is nonzero. motions in the reduced system.

Let us denote by (S) the attractive domain & for (9). This means
that all solutions of (9) starting frofW (S) reach the sliding domai® B. Example

in a finite time and with a finite number of switchings. Consider a mathematical model of a control system with an actuator
Consider a solution of (8) starting from the poipt*, s*, ™), and the overall relative degree 3

((s*, ") € V(8)). Condition &) ensures that at least before the
switching moment the fast variables of (8) will be stable. Then,

according to the boundary layer method (see for example [9]), one can
conclude that the solution of the original system (8) reache&the HE =20, ptEe = =2z — 3z — u. (16)

T=—x—u, §==z (15)
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Herezi, z2, s, € R, u(s) = sign(s), u is the actuator time con-
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C. The Systems Containing the Relay Control Nonlinearly

stant. The fast motions taking place in (15), (16) are described by thE'Suppose that the behavior of a control system with a fast actuator is

system
d&_ le_ dZZ__-,, .
ar Y ar TP ar 2o =332 —u
u = sign(&). a7)

Then, the solution of (17) faf > 0 with initial condition£(0) = 0,
z1(0) = z10, 22(0) = 220 is as follows:

g(r) = % zi0 — 2z10e” " + %Zme_zr n %/220 ~ e
+hzee T —gT i e 4 e
2(7) =2z1007 " = 210777 4 zage” — zage T
_%-i-e_r_ %Q—QT
22(7-) = 2310672? — 2310677 _ 220671-

+ 22206727 —e T+ e 2,

Consider the point mappirig(z:, z2) of the domainz; > 0, z5 > 0
on the switching surfaceé = 0 into the domain:; < 0, z2 < 0 with
sign(¢) > 0, generated by (17). Then

E(z1, z2) = (Ei (21, 22), Ba(z1, 22));
Zi(z1, 22) = 226 —a e L ope Tt e
T 1

—2T . -7 -7
, Z9) =2z1¢ — 2z1e — zoe

—2T - —2T
+ 2z0€ —e +e

whereT'(z;, z2)is the smallest root of equation

z 3 . . =T 1 —2T 1 . =T
E(T(Z1732)):§41_24]6 +§Z16 -{—542—426
1. =20 1. 3 =T 1,27
+ 3 =€ 2T+ 7—e "+ 3e =0

The system (17) is symmetric with respect to the pgint z; =
zz = 0. Thus, the initial conditior(0, =7, z3) and the semi-period

described by equations

defdt =((221)" = (2210)° 4 B)x,  ds/dt = z

pdzi/dt =z, pdzo/dt = =221 — 322 —u (29)
wherez, s € R describing the behavior of the plant,, z, € R are
the variables of the actuatar(s)= sign(s), 0< 3 < 1, andp is the
actuator time constant.If we take= 0 in (19) we will have
ds/dt = —u/2, dz/dt = (u* —u* + 3)u. (20)

A stable first order sliding mode exists in (20). Both the classical ex-
tension of the definition of solutions by Filippov [2] and the equivalent
control method [8] coincide. These motions are described by the equa-
tion dz/dt = p=x. The zero solution of this equation is unstable for
8 > 0.

At the same time, in (17), a fast periodic solution occurs. Let us
denotez; (1) as the first coordinate of7™ periodic solution (17). If
~v > (3 are selected so that

-y =

27T
/ [(2:0)'(7) = (221)%(7)] dr < =3 < 0,

then the averaged equation has the fekmdt = —(v — 8)z. The
zero solution of this equation is asymptotically stable. This means that
(19) has an asymptotically orbitally stable periodic solution in#g)
neighborhood of the poirt = = = 0. The averaged equation does
not coincide with the equations of the equivalent control method and
Filippov’s definition of the solution.

IV. CONCLUSION

The singularly perturbed relay control systems as mathematical
models of chattering in the small neighborhood of the switching
surface in sliding mode systems are examined.

Sufficient conditions for existence and stability of fast periodic so-
lutions to the SPRCS are found. It is shown that the slow motions in
such SPRCS are approximately described by equations derived from

1" = T(z1, z) for the periodic solution of (17) are determined bWhe equations for the slow variables of SPRCS by averaging along fast

the equations

E(a1, 2) = = (a1, ), &T(z1, 22)) =0. (18)

Equations (18) and (18) have positive solution

T* 7= 2.2755, = =~ 0.3241, 2z =~ 0.1654
corresponding to the existence at’&*-periodic solution in (17). Cal-
culating the value of Frechet derivatid®& /9= at(z7, 23 ), using the

found value ofl'*, we achieve

[1

—0.4686
J =

—0.1133
0.3954 '

0.0979

ol

The eigenvalues of matri{ are —0.3736 and0.0029. That implies

existence and asymptotic stability of the periodic solution of (17). The
averaged equation for (15), (16)4s= —x, and it has the asymptoti-
cally stable equilibrium point = 0. Hence, (15), (16) has an orbitally

asymptotically stable periodic solution, which lies in théu)-neigh-
borhood of the switching surface.

periodic motions.
The analysis of oscillations in the small neighborhood of the sliding
surface in the sliding mode control systems has shown that

« in the general case, when the original SPCSC contains the relay
control nonlinearly, the averaged equations do not coincide with
the equivalent control equations or the Filippov’'s definition,
which describes the motions in the sliding mode in the reduced
system;

« in the case, when the original SPCSC contain the relay control
linearly, the averaging equations and equations which describe
the reduced system motions in the sliding mode coincide.
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Closed-loop system configuration.

Il. SYSTEM PRELIMINARIES

Fundamental Limits in Robustness and Performance for For the development which follows, we will refer to the feedback

Unstable, Underactuated Systems configuration of Fig. 1 where we are given an LTI pldhbf dimension
N, x N; with N, > N; having unstable poles, ..., p~,, and an
Nancy Morse Thibeault and Roy Smith internally stabilizing, LTI controlleC”' in feedback around.

Let [A, B; C, D] be a state-space representation of our system
P(s). Then for each unstable poje of our plantP’(s) we define an
o ; ' = output direction vector,, € CV°, ||z,,||2 = 1 asz,, := C'¢ where
sensitivity function and a weighted output complementary sensitivity func- tisfiesAC = p 127 In additi © eP(s . d tuated
tion for an underactuated, multiple-input—-multiple-output (MIMO), linear, ¢ ?a IS I?S‘ ¢ = piC[12) ,rjra ! Ion’,fmc (5) IS, l/m eractuate
time-invariant (LTI), unstable plant in feedback with an internally stabi- (Vo > N;), for everyso € C", whereC™ := {s € C: Re(s) > 0},
lizing, LTI controller. These bounds indicate a limit to the achievable ro- P(sy) has a nontrivial left nullspace (a®V, — N; dimensional
bustness and performance for such systems and thus, are valuable tools forsubspace OCNO)I Thus, for everys, € C* \ {po pn,} there
. . ’ [ Np
performing system design tradeoffs. exists at least one output null direction vectoy € C*- defined as a
Index Terms—Fundamental system limits, robustness, underactuated vector satisfying|u, |l = 1 andu;, P(so) = 0. Both analytical and
systems. numerical methods of calculating output direction vectors sueh,as
andu,, have been outlined in [12].
We now define two new transfer matrices as follows:

Abstract—We derive bounds on the’ ., norm of a weighted output

|. INTRODUCTION

In control system design, common measures of the effect of system Py, (s) := Bg,i (s)P(s), P, (s) := Bsy(s)P(s) )
uncertainties on closed-loop robustness and performance of a system
are theH . norm of the sensitivity function, which we dendtés),and  WhereBux, (s) and Bs, (s) are the all-pass filters
the complementary sensitivity function, denofEgks). Unfortunately,

in every system, there are limits and tradeoffs which restrict the mini- ._ e )

mization of these sensitivities. The investigation of limits on achievable B, (s) = H By;(s)

sensitivity reduction has a long history beginning with Bode's integral \:,0

theorem [1], [2] and Zames [3]. Since that time there has been an explo- o ﬁ <I n 2Re(p:) P ) @
sion of results providing sensitivity reduction limits for a larger class ' Pl s—p; DT

of plants including multiple-input—-multiple-output (MIMO) systems 2 Re(s0) ’

as well as plants with instabilities and/or nonminimum phase zeros Boy(s) =T+ ——— us us, (3)

[4]1-[9]. Until recently, the additional limitations present in nonsquare s

systems have not received much attention. However, there have beand whereu,, is any output null direction vector corresponding to
few exceptions worth noting, for example [10], [11]. P(sy) andi,, is the output direction vector corresponding to the pole
p; for the transfer function
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