
1260 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 46, NO. 8, AUGUST 2001

V. EXAMPLE

We now illustrate the proposed method to make the eigenvalues of
matrixA nonresonant through state feedback.

Example:

Step 1) Letn = 3.

F =

0 1 0

0 0 1

0 0 0

; G =

0

0

1

; K = [k3; k2; k1]: (31)

A = F �GK and the characteristic equation ofA is given
by �3 + k1�

2 + k2� + k3 = 0.
Step 2) Chooser01 = 1; r11 = 6; r21 = 10 andr31 = 6. The

unique polynomial correspondingly is given by�3+6�2+
11� + 6 = 0 having roots�1; �2 and�3 which are
resonant of orders 2 and 3 [note:(2)(�1) + (0)(�2) +
(0)(�3) = �2; (1)(�1)+(1)(�2) = �3 and(3)(�1)+
(0)(�2) + (0)(�3) = �3].

Step 3) In order to satisfy (25), as per Theorem 4, we chooser =
3� 2

p
2 and� =

p
2, and transform� 7! � according to

� =
2(�+ 1)

�+ 2
(32)

resulting in the characteristic equation

�3 +
133

30
�2 +

98

15
�+

16

5
= 0

which has nonresonant roots of(�3=2); �(4=3) and
(�8=5).

Step 4) The state feedback is then given byK = [ 16
5

98

15

133

30
].

VI. CONCLUSION

The problem of transforming a dynamic system (11) into normal
form is an old one. In the reduction to the normal form, the role played
by the resonance of the eigenvalues of the matrixA in (11), is well
known. In the context of control system of (17), however, the control
inputu can be used to provide state feedback so as to ensure the non-
resonance of theA matrix. This, in turn, can lead to the satisfaction
of the linearization conditions. Moreover, the eigenvalues of the linear
system can be arbitrarily placed inside a scalable circular region in the
left half of the complex plane. This region itself can be chosen to meet
other design criteria, such as, relative stability. The actual computation
of the transformation will, however, involve solving a series of gener-
alized homological equations.
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An Averaging Approach to Chattering

Leonid M. Fridman

Abstract—The singularly perturbed relay control systems (SPRCS)
as mathematical models of chattering in the small neighborhood of
the switching surface in sliding mode systems are examined. Sufficient
conditions for existence and stability of fast periodic solutions to the
SPRCS are found. It is shown that the slow motions in such SPRCS are
approximately described by equations derived from equations for the slow
variables of SPRCS by averaging along fast periodic motions. It is shown
that in the general case, when the equations of a plant contain relay control
nonlinearly, the averaged equations do not coincide with the equivalent
control equations or with the Filippov’s definition for the sliding motions
in the reduced system; however, in the linear case, they coincide.

Index Terms—Averaging, periodic solutions, singularly perturbed sys-
tems, sliding mode control, variable structure systems.

I. INTRODUCTION

The chattering phenomenon is one of the actual problems in modern
sliding mode control theory. The presence of actuators is one of the
basic reasons for chattering in sliding mode control systems [8], [1].
The behavior of sliding mode systems with fast actuators and iner-
tial sensors is described by singularly perturbed relay control systems
(SPRCS). In such a case, the following two qualitatively different types
of motions can occur in the original SPRCS and in the reduced system:

• in the original SPRCS, there are no stable first-order sliding
modes;

• the sufficient conditions for existence of a stable first-order
sliding mode hold for the reduced system describing the behavior
of a plant with ideal actuators and sensors [3], [4].

If the original SPRCS contains a sliding mode of the third order and
greater, then the sliding modes are unstable [4]. In such systems, fast
periodic oscillations can occur [3].
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The general model of sliding mode control systems with fast actua-
tors has the following form (see [1] and [4]):

� dz=dt = g(z; s; x; u(s))

ds=dt = h1(z; s; x; u(s)) dx=dt = h2(z; s; x; u(s))

(I.1)

wherez 2 Rm; s 2 R; x 2 Rn; u(s) = sign(s) andg; h1; h2 are
smooth functions of their arguments. Under such assumptions, system
(I.1) can describe, for instance, the behavior of control systems such
that variablesx; s describe plant dynamics, the vectorz describes dy-
namics of the fast actuator, where� is the actuator time constant.

Letting� = 0 and expressingz = '(s; x; u(s)) from the equation
g(z; s; x; u(s)) = 0 according to the formulaz = '(s; x; u(s)), we
obtain the reduced system

ds=dt =h1('(s; x; u(s)); s; x; u(s)) = H1(s; x; u(s))

dx=dt =h2('(s; x; u(s)); s; x; u(s)) = H2(s; x; u(s))

(I.2)

describing the behavior of the plant when actuator is ideal.
Suppose that

1) Original system (I.1) has no stable first-order sliding mode.
This means that (almost everywhere ons = 0)

a) either there is no sliding mode and

h1(z; 0; x; 1)h1(z; 0; x; �1) > 0 (I.3)

b) or the sliding mode is unstable and consequently
h1(z; 0; x; 1) > 0 andh1(z; 0; x; �1) < 0.

2) The measure of the domainS = fx: H1(0; x; 1) < 0,
H1(0; x; �1) > 0g � Rn is not zero, which means that the
reduced system (I.2) has a stable first-order sliding domain.

This note presented deals with the chattering phenomenon in (I.2)
from the viewpoint of the averaging approach and specific features
of fast periodic solutions of system (I.1). This note consists of three
sections. Mathematical tools for the analysis of periodic solutions of
SPRCS are developed in Section II. In Section III these tools are used
to analyze the behavior of sliding mode control systems with fast actu-
ators.

II. M ATHEMATICAL TOOLS

A. Problem Formulation

In this section, we consider the existence and stability of the fast
periodic solutions to the SPRCS of the form

� dz=dt = g(z; �; x; u(�))

� d�=dt = h1(z; �; x; u(�)); dx=dt = h2(z; �; x; u(�))

(1)

wherez 2 Rm, � 2 R, x 2 Rn, u(�) = sign(�), andg; h1; h2 are
smooth functions of their arguments,� here is the auxiliary variable,
and the relation between� ands will be given in Section III. Intro-
ducing the “fast time”� = t=� into (1), we obtain

dz=d� = g(z; �; x; u(�))

d�=d� = h1(z; �; x; u(�)); dx=d� = �h2(z; �; x; u(�)):

(2)

For smooth singularly perturbed system, the existence and stability of
the first approximation of the fast periodic solution was investigated

in [7] using linearization method. For the relay control systems, this
method is not useful.

In this section, we develop the mathematical tools to explore the fast
periodic oscillations of (1), (2). The Poincare maps (see, for example,
[5]) are to be employed. It is possible to consider the results of this
section as some generalization of [7] for systems (1) and (2).

B. Some Properties of the Poincare Map, Generated by SPRCS

Let us denote the variation domain asZ; X with variables(z; �; x)
andx.

Suppose that the following conditions are true:

10 h1; h2; g 2 C
2[Z � [�1; 1]];

20 all the trajectories of

dz=d� = g(z; �; x; u(�)); d�=d� = h1(z; �; x; u(�)) (3)

which start outside the surface� = 0 for all x 2 X cross� = 0
at the point(z; 0; x), where sliding mode does not exist and
condition (I.3) holds;

30 system (3) for allx 2 X has an isolated orbitally asymptotically
stable solution(z0(�; x); �0(�; x)) with periodT (x).

Let us denote asz�0 (�; z; x) and��0 (�; z; x), the solutions
of system (3) with the initial conditionsz�0 (0; z; x) = z,
��0 (0; z; x) = 0 for � > 0 and � < 0. Then,
it is possible to define the Poincare map of the set
V = f(z; x): h1(z; 0; x; 1) > 0g on the surface
� = 0 into itself, which is generated by (3) in the form
(see Fig. 1)R(z; x) = z�0 (�0; z

+
0 (�0; z; x); x), where

�0(z; x); �0(z; x) are the smallest positive roots of equations

�+0 (�0; z; x) = 0; ��0 (�0; z
+
0 (�; z; x); x) = 0:

The roots of this equations exist for allx 2 X according to
condition 20.

Suppose that

40 the Poincare mapR(z; x) has a fixed pointz�(x) corresponding
to (z0(�; x); �0(�; x));

50 provided that for allx 2 X �i(x) (i = 1; . . . ; m), the eigen-
values of the matrix(@R=@z)(z�(x); x), satisfyj�i(x)j 6= 1;

60 the averaged systemdx=dt = p(x), where

dx=dt = p(x) (4)

p(x) =
1

T (x)

T (x)

0

� h2(z0(�; x); �0(�; x); x; u(�0(�; x))d�

has an isolated equilibrium pointx0 such thatp(x0) = 0,
det dp

dx
(x0) 6= 0.

Let us denote asz�(�; z; x; �) and��(�; z; x; �), the solutions of
(2) with the initial conditionsz�(0; z; x; �) = z, ��(0; z; x; �) = 0
for � > 0 and� < 0.

The Poincare map of the domain V of the surface� = 0, generated
by (2), has the following form:

�(z; x; �) = (�1(z; x; �); �2(z; x; �))

= (z�(�; z+(�; z; x; �); x+(�; z; x; �); �)

x�(�; z+(�; z; x; �); x+(�; z; x; �); �))

where the functions�(z; x; �) and �(z; x; �) are determined by
equations

�+(�; z; x; �) = 0

��(�; z+(�; z; x; �) x+(�; z; x; �); �) = 0:
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Fig. 1. Poincare mapR(z; x).

This means that

�1(z; x; 0) = R(z; x); �2(z; x; 0) = x: (5)

The surface� = 0 is the surface without stable sliding for (3). This
means that there exists a neighborhood of the point(z�(x0); x0) on
the surface� = 0, wheremaxfjd�+=d�j; jd��=d�jg > 0. From
condition10 and the implicit function theorem, it follows that for some
small�0, the functions�; �; � have continuous derivatives in some
setU � [0; �0] on the surface� = 0. This means that we can consider
the function� as the Poincare map of the setU� [0; �0] on the surface
� = 0 into itself. Moreover, according to (5) and condition60 we can
rewrite�(z; x; �) in the form

�(z; x; �) = (�1(z; x; �); x + �Q(z; x; �))

where�1(z; x; �); Q(z; x; �) are sufficiently smooth functions and

�1(z
�(x); x; 0) = z�(x); Q(z�(x); x; 0) = T (x)p(x)

Q(z�(x0); x0; 0) =T (x0)p(x0) = 0:

Let us introduce new variables for the function� using the formula
� = z � z�(x). Then the Poincare map� takes the form

	(�; x; �) = (	1(�; x; �); 	2(�; x; �))

= (�1(� + z�(x); x; �)� z�(x)

x + �Q(� + z�(x); x; �)) (6)

and consequently	(0; x; 0) = (0; x).

C. Existence of Fast Periodic Solution

Theorem 1: Under conditions 10–60, (1) has an isolated peri-
odic solution with the period�(T (x0) + O(�)) near the circle
(z0(t=�; x0); �0(t=�; x0); x0).

Proof: We will prove a periodic solution to exist as being the
fixed point(��(�); x�(�)) of the map	. Let us rewrite the existence
conditions of this fixed point in the form

G(��; x�; �) =
G1(�

�; x�; �)

G2(�
�; x�; �)

=

�� �	1(�
�; x�; �)

1

�
[x� �	2(�

�; x�; �)]
= 0: (7)

It is necessary to take into account that for� = 0 ��(0) = 0, x�(0) =
x0 andG2(0; x0; 0) = �T (x0)p(x0) = 0 and consequently for
� = 0 conditions (7) are fulfilled. Moreover, taking into account that
G1(0; x; 0) = 0 for all x 2 X we can conclude that@G

@x
(0; x0; 0) =

0. Let us compute the Jacobian of functionG with respect to variables
�; x at � = 0.

@G

@(�; x)
(0; x0; 0)

=

Im �
@R

@z
(z�(x0); x0) 0

@G2

@�
(0; x0; 0) �T (x0)

@p

@x
(x0)

6= 0:

This means that there exists an isolated fixed point(z�(�); x�(�)) of
the mapG, which corresponds to the periodic solution of systems (1)
and (2), and in this casez�(�) = z�(x0) + O(�), x�(�) = x0 +
O(�).

D. Stability in the First Approximation

Assume that

70 the eigenvalues�i(x0) of the matrix(@R=@z)(z(x0); x0) sat-
isfy the inequalitiesj�i(x0)j < 1 (i = 1; . . . ; m);

80 the eigenvalues�j(x0); j = 1; . . . ; n of the matrix dp

dx
(x0)

satisfy the inequalities

Re �j(x0) < 0:

Theorem 2: Under conditions 10–80 the periodic solution of (1), (2)
is orbitally asymptotically stable.

Proof: Let us find the derivatives	 by variables�; x, as shown
in the equation at the bottom of the page. Consequently the matrix
�(�; x; �) has at the small vicinity of(0; x0; 0) two groups of eigen-
values

�i(x0)+O(�); i = 1; . . . ; m

1+�T (x0)�j(x0) + �o(�); j = 1; . . . ; n:

This means that under conditions of Theorem 2 there exists some
neighborhood of(0; x0; 0), where	 is contraction map and the
corresponding fast periodic solution of systems (1), (2) is orbitally
asymptotically stable.

@	

@(�; x; �)
= �(�; x; �) =

Im �
@R

@z
(x0) +O(�) O(�)

@	2

@�
(0; x0; 0) +O(�) Im + �T (x0)

@p

@x
(x0) +O(�)

:
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III. A NALYSIS OF AVERAGED EQUATIONS IN SLIDING MODE WITH

FAST ACTUATORS

A. The Averaged Equations of Systems that Linear in Relay Control

In this section, we consider the SPRCS, which linearly depend on
relay control. We will show that if the fast periodic solution of SPRCS
exists, then the averaged equations which describe the slow motions in
such SPRCS and the equations which describe the sliding motion in
the reduced systems coincide.

Let us consider the system

� dz=dt =A(s; x)z + f1(s; x) +K1(s; x)u(s)

ds=dt =B(s; x)z + f2(s; x) +K2(s; x)u(s)

dx=dt =D(s; x)z + f3(s; x) +K3(s; x)u(s) (8)

wherez 2 Rm, s 2 R, x 2 Rn, u(s) = sign(s) andfi; Ki (i =
1; 2; 3) are smooth functions of their arguments. Suppose that there is
no stable first order sliding mode in (8). This means thatK2(0; x) � 0.
Setting� = 0 and expressingz0 from the first equation of (8), ac-
cording to the formulaz0 = �A�1(s; x)[f1(s; x) +K1(s; x)u(s)],
we obtain the reduced system

ds=dt =�B(s; x)A�1(s; x)f1(s; x) + f2(s; x)

� [B(s; x)A�1(s; x)K1(s; x)�K2(s; x)]u(s)

dx=dt =D(s; x)A�1(s; x)f1(s; x) + f3(s; x)

� [D(s; x)A�1(s; x)K1(s; x)�K3(s; x)]u(s):

(9)

Suppose that sufficient conditions for the existence of sliding mode are
found for this system, then

B(0; x)A�1(0; x)K1(0; x)�K2(0; x) > 0: (10)

Equations which describe the sliding motion in the reduced system
have the form

dx=dt =�D(0; x)A�1(0; x)f1(0; x) + f3(0; x)

� [D(0; x)A�1(0; x)K1(0; x)�K3(0; x)]

� (u(s)� ueq(x))

ueq(x) = [B(0; x)A�1(0; x)K1(0; x)�K2(0; x)]
�1

� [�B(0; x)A�1(0; x)f1(0; x) + f2(0; x)]:

(11)

Let us show that the averaged equations for the original system (8)
coincide with (11).

Suppose that the following conditions are true:

(�) Re SpecA(0; x) < 0 for all x 2 X;
(��) the measure of the sliding mode domainS � X for (9) in

which jueq(x)j < 1 is nonzero.
Let us denote byV(S) the attractive domain ofS for (9). This means

that all solutions of (9) starting fromV(S) reach the sliding domainS
in a finite time and with a finite number of switchings.

Consider a solution of (8) starting from the point(z�; s�; x�),
((s�; x�) 2 V(S)). Condition (�) ensures that at least before the
switching moment the fast variables of (8) will be stable. Then,
according to the boundary layer method (see for example [9]), one can
conclude that the solution of the original system (8) reaches theO(�)

neighborhood of theS. This means that it is reasonable to consider
only solutions of (8) with initial conditions

z(0; �) = z0; s(0; �) = �s0; x(0; �) = x0

which are located in theO(�) vicinity of the sliding domainS. Fol-
lowing [3], let us increase1=� times the neighborhood of the discon-
tinuity surfaces = 0 in (8) and let the variable� = s=�. Then, (8) is
rewritten in the form

� dz=dt =A(��; x)z + f1(��; x) +K1(��; x)u(�)

� d�=dt =B(��; x)z + f2(��; x) +K2(��; x)u(�)

dx=dt =D(��; x)z + f3(��; x) +K3(��; x)u(�): (12)

In this case, the system which describes the fast motions in (12) has,
analogous to (3), the form

dz=d� =A(0; x)z + f1(0; x) +K1(0; x)u(�)

d�=d� =B(0; x)z + f2(0; x) +K2(0; x)u(�)

(x-parameter): (13)

Suppose that (13) has the isolated periodic solution(z0(�; x),
�0(�; x)).

Introducing the new variables

� = z + A�1(0; x)[f1(0; x) +K1(0; x)ueq(x)]

for (13), we have

d�=d� =A(0; x)� +K1(0; x)u(�; x)

d�=d� =B(0; x)� +K2(0; x)u(�; x)

u(�; x) =u(�)� ueq(x): (14)

Lemma 1 [6]: If there exists a solution of (14) of the periodT (x)
then

T (x)

0

�0(�; x) d� = 0

1

T (x)

T (x)

0

u(�0(�; x))d� =
��(x)���(x)

T (x)
= ueq(x):

Let us consider (8). If the conditions of Theorem 2 are
true for (12), then there exists an isolated periodic solution
(z(�; �); �(�; �); x(�; �)), which corresponds to the periodic
solution(�0(�; x); �0(�; x)) of (14). Moreover,

T (x)

0

z0(�; x) d� = A�1(0; x)(f1(0; x) +K1(0; x)ueq(x)):

This means that the averaged equations which approximately describe
the behavior of the slow motions in (8) coincide with (11) for the sliding
motions in the reduced system.

B. Example

Consider a mathematical model of a control system with an actuator
and the overall relative degree 3

_x =�x� u; _s = z1 (15)

� _z1 = z2; � _z2 = �2z1 � 3z2 � u: (16)
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Herez1; z2; s; x 2 R, u(s) = sign(s), � is the actuator time con-
stant. The fast motions taking place in (15), (16) are described by the
system

d�

d�
= z1;

dz1
d�

= z2;
dz2
d�

= �2z1 � 3z2 � u

u = sign(�): (17)

Then, the solution of (17) for� > 0 with initial condition�(0) = 0,
z1(0) = z10, z2(0) = z20 is as follows:

�(�) = 3

2
z10 � 2z10e

�� + 1

2
z10e

�2� + 1

2
z20 � z20e

��

+ 1

2
z20e

�2�
�

1

2
� + 3

4
� e�� + 1

4
e�2� ;

z1(�) = 2z10e
��
� z10e

�2� + z20e
�
� z20e

�2�

�
1

2
+ e�� � 1

2
e�2�

z2(�) = 2z10e
�2�

� 2z10e
��
� z20e

��

+ 2z20e
�2�

� e�� + e�2� :

Consider the point mapping�(z1; z2) of the domainz1 > 0, z2 > 0
on the switching surface� = 0 into the domainz1 < 0, z2 < 0 with
sign(�) > 0, generated by (17). Then

�(z1; z2) = (�1(z1; z2); �2(z1; z2));

�1(z1; z2) = 2z1e
�T
� z1e

�2T + z2e
�T
� z2e

�2T

�
1

2
+ e�T � 1

2
e�2T ;

�2(z1; z2) = 2z1e
�2T

� 2z1e
�T
� z2e

�T

+ 2z2e
�2T

� e�T + e�2T

whereT (z1; z2)is the smallest root of equation

�(T (z1; z2)) =
3

2
z1�2z1e

�T+ 1

2
z1e

�2T+ 1

2
z2 � z2e

�T

+ 1

2
z2e

�2T
�

1

2
T + 3

4
�e�T + 1

4
e�2T = 0:

The system (17) is symmetric with respect to the point� = z1 =
z2 = 0. Thus, the initial condition(0; z�1 ; z

�

2) and the semi-period
T � = T (z�1 ; z

�

2) for the periodic solution of (17) are determined by
the equations

�(z�1 ; z
�

2) = �(z�1 ; z
�

2); �(T (z�1 ; z
�

2)) = 0: (18)

Equations (18) and (18) have positive solution

T � � 2:2755; z�1 � 0:3241; z�2 � 0:1654

corresponding to the existence of a2T �-periodic solution in (17). Cal-
culating the value of Frechet derivative@�=@z at (z�1 ; z

�

2), using the
found value ofT �, we achieve

@�

@z
(z�1 ; z

�

2) = J =
�0:4686 �0:1133

0:3954 0:0979
:

The eigenvalues of matrixJ are�0:3736 and0:0029. That implies
existence and asymptotic stability of the periodic solution of (17). The
averaged equation for (15), (16) is_x = �x, and it has the asymptoti-
cally stable equilibrium pointx = 0. Hence, (15), (16) has an orbitally
asymptotically stable periodic solution, which lies in theO(�)-neigh-
borhood of the switching surface.

C. The Systems Containing the Relay Control Nonlinearly

Suppose that the behavior of a control system with a fast actuator is
described by equations

dx=dt =((2z1)
4
� (2z1)

2 + �)x; ds=dt = z1

� dz1=dt = z2; �dz2=dt = �2z1 � 3z2 � u (19)

wherex; s 2 R describing the behavior of the plant,z1; z2 2 R are
the variables of the actuator,u(s)= sign(s), 0< � < 1, and� is the
actuator time constant.If we take� = 0 in (19) we will have

ds=dt = �u=2; dx=dt = (u4 � u2 + �)x: (20)

A stable first order sliding mode exists in (20). Both the classical ex-
tension of the definition of solutions by Filippov [2] and the equivalent
control method [8] coincide. These motions are described by the equa-
tion dx=dt = �x. The zero solution of this equation is unstable for
� > 0.

At the same time, in (17), a fast periodic solution occurs. Let us
denotez1(�) as the first coordinate of2T � periodic solution (17). If

 > � are selected so that

�
 =
2T

0

[(2z1)
4(�)� (2z1)

2(�)] d� < �� < 0;

then the averaged equation has the formdx=dt = �(
 � �)x. The
zero solution of this equation is asymptotically stable. This means that
(19) has an asymptotically orbitally stable periodic solution in theO(�)
neighborhood of the points = x = 0. The averaged equation does
not coincide with the equations of the equivalent control method and
Filippov’s definition of the solution.

IV. CONCLUSION

The singularly perturbed relay control systems as mathematical
models of chattering in the small neighborhood of the switching
surface in sliding mode systems are examined.

Sufficient conditions for existence and stability of fast periodic so-
lutions to the SPRCS are found. It is shown that the slow motions in
such SPRCS are approximately described by equations derived from
the equations for the slow variables of SPRCS by averaging along fast
periodic motions.

The analysis of oscillations in the small neighborhood of the sliding
surface in the sliding mode control systems has shown that

• in the general case, when the original SPCSC contains the relay
control nonlinearly, the averaged equations do not coincide with
the equivalent control equations or the Filippov’s definition,
which describes the motions in the sliding mode in the reduced
system;

• in the case, when the original SPCSC contain the relay control
linearly, the averaging equations and equations which describe
the reduced system motions in the sliding mode coincide.
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Fundamental Limits in Robustness and Performance for
Unstable, Underactuated Systems

Nancy Morse Thibeault and Roy Smith

Abstract—We derive bounds on the norm of a weighted output
sensitivity function and a weighted output complementary sensitivity func-
tion for an underactuated, multiple-input–multiple-output (MIMO), linear,
time-invariant (LTI), unstable plant in feedback with an internally stabi-
lizing, LTI controller. These bounds indicate a limit to the achievable ro-
bustness and performance for such systems and thus, are valuable tools for
performing system design tradeoffs.

Index Terms—Fundamental system limits, robustness, underactuated
systems.

I. INTRODUCTION

In control system design, common measures of the effect of system
uncertainties on closed-loop robustness and performance of a system
are theH1 norm of the sensitivity function, which we denoteS(s), and
the complementary sensitivity function, denotedT (s). Unfortunately,
in every system, there are limits and tradeoffs which restrict the mini-
mization of these sensitivities. The investigation of limits on achievable
sensitivity reduction has a long history beginning with Bode’s integral
theorem [1], [2] and Zames [3]. Since that time there has been an explo-
sion of results providing sensitivity reduction limits for a larger class
of plants including multiple-input–multiple-output (MIMO) systems
as well as plants with instabilities and/or nonminimum phase zeros
[4]–[9]. Until recently, the additional limitations present in nonsquare
systems have not received much attention. However, there have been a
few exceptions worth noting, for example [10], [11].
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Fig. 1. Closed-loop system configuration.

In this note, we consider limits in achievable robustness and perfor-
mance for underactuated, MIMO, linear, time-invariant (LTI), unstable
systems which are internally stabilized by an LTI controller in feed-
back. We develop lower bounds on theH1 norm of both the weighted
output sensitivity and weighted output complementary sensitivity func-
tions of the closed-loop system. We then discuss ways to calculate the
bounds and use the bounds to derive intuitive insight into the nature of
the system limitations.

II. SYSTEM PRELIMINARIES

For the development which follows, we will refer to the feedback
configuration of Fig. 1 where we are given an LTI plantP of dimension
No � Ni with No > Ni having unstable polesp0; . . . ; pN , and an
internally stabilizing, LTI controllerC in feedback aroundP .

Let [A; B; C; D] be a state-space representation of our system
P (s). Then for each unstable polepi of our plantP (s) we define an
output direction vectorxp 2 N , kxp k2 = 1 asxp := C� where
� satisfiesA� = pi� [12]. In addition, sinceP (s) is underactuated
(No > Ni), for everys0 2 +, where + := fs 2 : Re(s) > 0g,
P (s0) has a nontrivial left nullspace (anNo � Ni dimensional
subspace of N ). Thus, for everys0 2 + n fp0; . . . ; pN g there
exists at least one output null direction vectorus 2 N defined as a
vector satisfyingkus k2 = 1 andu�s P (s0) = 0. Both analytical and
numerical methods of calculating output direction vectors such asxp
andus have been outlined in [12].

We now define two new transfer matrices as follows:

PN (s) := B
�1

N (s)P (s); Ps (s) := Bs (s)P (s) (1)

whereBN (s) andBs (s) are the all-pass filters

BN (s) :=

N

i=0

Bp (s)

:=

N

i=0

I +
2Re(pi)

s� pi
x̂p x̂

�

p (2)

Bs (s) := I +
2Re(s0)

s� s0
us u

�

s (3)

and whereus is any output null direction vector corresponding to
P (s0) andx̂p is the output direction vector corresponding to the pole
pi for the transfer function

P for i = 0

Pp for i = 1; . . . ; Np
(4)

wherePp := ( i�1

j=0
Bp )�1P . In general,̂xp will be different

from xp except fori = 0 [12]. The transfer matricesBN (s) and
Bs (s) will be used to express the subsequent bounds.

Now, if P is in feedback with the LTI, internally stabilizing con-
troller C as shown in Fig. 1, we can define the output loop transfer
functionL = PC and the output sensitivity and output complemen-
tary sensitivity functions for our system, respectively, as follows:S =

0018–9286/01$10.00 © 2001 IEEE


