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Technical Notes and Correspondence

Cheap Suboptimal Control of an Integral Sliding Mode for
Uncertain Systems With Delays

Valery Y. Glizer, Leonid M. Fridman, and Vladimir Turetsky

Abstract—A cheap control problem for a system with state delays and
matched uncertainties is studied. First, such a cheap control problem
is considered for the nominal linear system associated with the original
one. A suboptimal state-feedback composite control for this problem
is constructed using a singular perturbation technique. Employing this
composite control in the nominal system generates the suboptimal nominal
trajectory. Secondly, based on the composite control, an integral sliding
mode controller is designed for the original system, providing its robust
motion along the suboptimal nominal trajectory. An illustrative numerical
example is presented.

Index Terms—Cheap control, singular perturbation, sliding mode con-
trol, time delay system.

I. INTRODUCTION AND PROBLEM FORMULATION

Dynamics of real life controlled systems often contains unmeasured
terms (uncertainties). Assuming the uncertainty to be zero, one can
construct an optimal control (with respect to a prechosen cost func-
tional) for the resulting (nominal) system. However, the employment
of this nominal control in the original system generates the trajectory
depending on a realization of the uncertainty. Thus, the system motion
subject to this control is sensitive to the uncertainty. The sliding mode
method is one of the most simple and effective tools of designing a
controller providing an insensitivity of a desired system motion with
respect to the matched uncertainties (see, e.g., [1]–[3] and references
therein). This motion takes place in a sliding manifold, and it is called
a sliding mode. Due to the insensitivity of the sliding mode to the un-
certainties, an optimal sliding mode can be realized with respect to a
given cost functional. The extension of the sliding mode approach is
the integral sliding mode one (see, e.g., [4]). A controller, constructed
by this approach, uses not only the information on the current value of
the state variable but also the full history of the system motion. The
latter (in contrast with a conventional sliding mode controller) allows
an integral sliding mode controller to track a nominal trajectory from
the very beginning of the control process, ensuring the insensitivity of
the system motion to the matched uncertainties.

In this paper, we consider the following controlled uncertain system:

dz(t)=dt = Az(t)+Hz(t� h)+
0

�h

G(� )z(t+�)d�

+ [B+C(z(t); z(t�h); t)]u(t)

+ w(z(t); z(t�h); t); z(�)='(�); � 2 [�h; 0]

(1)
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where t 2 (0; T ]; z(t) 2 En; u(t) 2 Er; n � r (u is a con-
trol); h � 0 is a given constant time delay; A;H;G(�); and B are
given t-invariant matrices of corresponding dimensions; rankB = r;
G(�) is piecewise continuous for � 2 [�h; 0];C(z(t); z(t�h); t) and
w(z(t); z(t� h); t) are an unmeasured control coefficient uncertainty
and an unmeasured disturbance; T > 0 is a given control process du-
ration; and '(�) is a given vector-function continuous for � 2 [�h; 0].

The following is assumed.
A1) The uncertainty C(z(t); z(t � h); t) and the disturbance

w(z(t); z(t�h); t) satisfy the following matching conditions:
there exist an r� r-matrix U(z; �; t) and an r-vector (z; �; t)
such that

C(z; �; t) = BU(z; �; t); kU(z; �; t)k � � < 1 (2)

w(z; �; t) = B(z; �; t); k(z; �; t)k � f(z; �; t) (3)

where (z; �; t) 2 En � En � [0; T ]; � and f(z; �; t) are a
known positive constant and a known positive continuous func-
tion, respectively; and k�k denotes the Euclidean norm of either
a matrix or a vector.
The performance index of the control process for (1) is

J(u)
T

0

[z0(t)Dz(t) + "2u0(t)Mu(t)]dt! min
u(t)

(4)

where the prime denotes the transposition;D is symmetric pos-
itive semidefinite andM is symmetric positive definite matrices
of corresponding dimensions; and " > 0 is a small parameter
("� 1), meaning that the control in (4) is “cheap” with respect
to the state.
The cheap control problem has considerable importance in
many topics of control theory and its applications (see, e.g.,
[5]–[7]). The smallness of the control cost yields the singular
perturbation in the Hamilton–Jacobi–Bellman equation and
in the Hamilton boundary-value problem, associated with the
original problem by control optimality conditions. The cheap
control problem for systems without delays was extensively
studied (see, e.g., [6] and [8]–[10] and references therein).
However, in spite of the considerable importance of studying
delayed dynamics controlled systems (see, e.g., [11]–[13]), the
cheap control problem for such systems was considered only
in a few works [14], [15]. Also, only a few works study an
application of the integral sliding mode approach to uncertain
systems with delays (see [16] and [17], where systems with
matched disturbances and control delays in the dynamics are
considered).
In the sequel, we assume the following.

A2) det(B0DB) 6= 0.
Transform the state and the control in (1) and (4) as follows:

z(t) = LZ(t); Z(t) = col(x(t); y(t))

u(t) = "�1v(t) (5)

where x(t) 2 En�r; y(t) 2 Er;L = (L1; B); L1 = Bc �

B(B0DB)�1B0DBc; and Bc is a complement matrix to B.
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Due to (5), (1) and (4) become

dx(t)=dt = F1x(t) + F2y(t) +K1x(t� h)

+K2y(t� h) +
0

�h

[N1(� )x(t+ � )

+N2(�)y(t+ � )]d�; t 2 (0; T ] (6)

"dy(t)=dt = " F3x(t) + F4y(t) +K3x(t� h)

+K4y(t� h) +
0

�h

[N3(�)x(t+ � )

+ N4(�)y(t+ � )]d�

+ (Ir + V (Z(t); Z(t� h); t))v(t)

+ "�(Z(t); Z(t� h); t); t 2 (0; T ] (7)

x(�) =  x(�); y(�) =  y(�); � 2 [�h; 0] (8)

J (v)
T

0

[x0(t)Dxx(t) + y0(t)Dyy(t)

+ v0(t)Mv(t)]dt! min
v(t)

(9)

where Ik is the k-dimensional identity matrix;

col( x(�);  y(�)) = L�1'(�)  Z(�);

and F1 F2

F3 F4
= L�1AL F

K1 K2

K3 K4
= L�1HL K

N1(�) N2(�)

N3(�) N4(�)
= L�1G(�)L N(�)

V (Z(t); Z(t� h); t) = U(LZ(t); LZ(t� h); t)

�(Z(t); Z(t� h); t) = (LZ(t); LZ(t� h); t)

Dx = L01DL1; Dy = B0DB:

In the sequel, we deal with this new control problem.
Note that dynamics (6) and (7) in this problem is singularly perturbed

[9]. Due to (2) and (3), for all (Z; �; t) 2 En � En � [0; T ]

kV (Z; �; t)k � � < 1

k�(Z; �; t)k � g(Z; �; t) f(LZ;L�; t): (10)

The objective of this paper is to design a robust controller trans-
ferring system (6)–(8) to a preconstructed “manifold” in zero time,
keeping it there until the end of the control process and providing the
systems motion on this “manifold” to be suboptimal with respect to (9)
for all sufficiently small " > 0. This objective is achieved by two steps.
First, the nominal optimal control problem (NOCP), associated with
(6)–(9), is treated. The NOCP is obtained from (6)–(9) by setting there
V ( � ) � 0;�( � ) � 0, i.e., it consists of the nominal system [(6)–(8)
with V ( � ) � 0 and �( � ) � 0] and performance index (9). For the
NOCP, a suboptimal state-feedback composite control is constructed
by its asymptotic decomposition into two lower dimension "-free sub-
problems (the slow and fast ones) and employing optimal feedback
controls of the latter. Secondly, based on this control and using the in-
tegral sliding mode approach, a required robust controller for system
(6)–(8) is designed.

To our best knowledge, the combination of the integral sliding mode
approach and cheap control approach to design a controller, providing a

robust and suboptimal motion of an uncertain system on some precon-
structed “manifold,” never has been considered in the literature. Such a
combination allows one to design a controller gathering the advantages
of both approaches.

II. ASYMPTOTIC DECOMPOSITION OF NOCP

A. Slow Subproblem

Setting formally " = 0 in the NOCP, and then redenoting in the
resulting problem the variables x; y; v; and J by xs; ys; vs; and Js,
respectively, one obtains after some rearrangement

dxs(t)=dt = F1xs(t) +K1xs(t� h)

+
0

�h

N1(�)xs(t+ � )d�

+ F2ys(t) +K2ys(t� h)

+
0

�h

N2(�)ys(t+ � )d�; t 2 (0; T ] (11)

xs(�) =  x(�); � 2 [�h; 0]

ys(�) =  y(�); � 2 [�h; 0) (12)

vs(t) = 0; t 2 [0; T ] (13)

Js =
T

0

[x0s(t)Dxxs(t) + y0s(t)Dyys(t)]dt! min : (14)

Since ys(t); t 2 [0; T ] does not satisfy any equation, the minimiza-
tion of (14) can be fulfilled by a proper choice of ys(t); t 2 [0; T ],
i.e., ys(t) can be considered as a control in (11), (12), and (14). This
optimal control problem is called the reduced optimal control problem
(ROCP). The ROCP has the delay not only in the state variable but also
in the control variable. The ROCP, along with (13), constitutes the slow
subproblem associated with the NOCP.

Based on results of [18], one directly obtains the following lemma.
Lemma 1: Under assumption A2), the optimal control of the ROCP

exists, is unique, and has the feedback form

ys[xs(t); xsh(t); ysh(t); t]

= �D�1
y [F 0

2Ps(t) +Q0

s2(t; 0)]xs(t)

+
0

�h

[F 0

2Qs1(t; � ) +R0

s1(t; �; 0)]xs(t+ � )d�

+
0

�h

[F 0

2Qs2(t; � ) +Rs2(t; 0; � )]ys(t+ � )d� (15)

where xsh(t) = fxs(t+� ) 8� 2 [�h; 0)g; ysh(t) = fys(t+� )8� 2
[�h; 0)g; the matrices Ps(t);Qsi(t; � ); Rsi(t; �; �); (i = 1; 2), along
with an additional matrix Rs0(t; �; �), form the unique solution of the
set of Riccati-type functional-differential equations in the domain T =
f(t; �; �) : t 2 [0; T ]; � 2 [�h; 0]; � 2 [�h; 0]g

dPs(t)=dt

= �Ps(t)F1 � F 0

1Ps(t)�Qs1(t;0)

�Q0

s1(t; 0)�Dx + [Ps(t)F2 +Qs2(t; 0)]D
�1
y

� [Ps(t)F2 +Qs2(t;0)]
0; Ps(T ) = 0 (16)

(@=@t� @=@� )Qs1(t; � )

= �F 0

1Qs1(t; � )� Ps(t)N1(�)�Rs0(t; 0; � )

+ [Ps(t)F2 +Qs2(t;0)]D
�1
y [F 0

2Qs1(t; � )

+R0

s1(t; �; 0)]; Qs1(T; � )

= 0; Qs1(t;�h) = Ps(t)K1 (17)
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(@=@t� @=@�)Qs2(t; � )

= �F 01Qs2(t; � )� Ps(t)N2(�)�Rs1(t; 0; � )

+ [Ps(t)F2 +Qs2(t; 0)]D
�1
y [F 02Qs2(t; � )

+Rs2(t; 0; � )]; Qs2(T; � )

= 0; Qs2(t;�h) = Ps(t)K2 (18)

(@=@t� @=@� � @=@�)Rs0(t; �; �)

= �N 0

1(�)Qs1(t; �)�Q0s1(t; � )N1(�)

+ [Q0s1(t; � )F2 +Rs1(t; �; 0)]D
�1
y

� [F 02Qs1(t; �) +R0s1(t; �; 0)]; Rs0(T; �; �) = 0 (19)

(@=@t� @=@� � @=@�)Rs1(t; �; �)

= �N 0

1(�)Qs2(t; �)�Q0s1(t; � )N2(�)

+ [Q0s1(t; � )F2 +Rs1(t; �; 0)]D
�1
y

� [F 02Qs2(t; �) +Rs2(t; 0; �)]; Rs1(T; �; �) = 0 (20)

(@=@t� @=@� � @=@�)Rs2(t; �; �)

= �N 0

2(�)Qs2(t; �)�Q0s2(t; � )N2(�)

+ [Q0s2(t; � )F2 +Rs2(t; �; 0)]D
�1
y

� [F 02Qs2(t; �) +Rs2(t; 0; �)]; Rs2(T; �; �) = 0 (21)

Rs0(t;�h; � )

= K 0

1Qs1(t; � ); Rs0(t; �;�h) = Q0s1(t; � )K1

Rs1(t;�h; � )

= K 0

1Qs2(t; � ); Rs1(t; �;�h) = Q0s1(t; � )K2

Rs2(t;�h; � )

= K 0

2Qs2(t; � ); Rs2(t; �;�h) = Q0s2(t; � )K2: (22)

Remark 1: Although (16)–(22) look like an unsimple problem, it
is simpler (less dimensional) than the set of Riccati-type matrix func-
tional-differential equations associated with the NOCP by the control
optimality conditions (see, e.g., [18]). Taking into account the sym-
metry of the respective unknown matrices in both sets, one obtains that
in the latter set the number of the unknown scalar functions, depending
on t; (t; � ) and (t; �; �), isn(n+1)=2,n2, andn(n+1)=2, respectively,
while in (16)–(22), the number of such functions is (n � r)(n� r +

1)=2, n(n�r), and n(n+1)=2, respectively. Moreover, the set of Ric-
cati-type equations, associated with the NOCP, depends on ", while
(16)–(22) is "-free, which allows one to solve it once and then to use
its solution in designing the NOCP suboptimal composite control for
all sufficiently small " > 0.

Remark 2: There are two main approaches to approximate solution
of (16)–(22). The first one is based on a finite-difference approxi-
mation of the derivatives with respect to � and � (see, e.g., [19] and
references therein). The second one is based on an iterative solution
with an approximate linearizing the problem at each iteration (see,
e.g., [20] and references therein). In the case K2 = 0; N2( � ) � 0,
i.e., when the slow subsystem does not contain the delayed fast state
variable, the ROCP does not contain the delayed control. The latter
circumstance allows one to simplify (16)–(22) considerably. In this
case, Qs2( � ) � 0; Rs1( � ) � 0; Rs2( � ) � 0; (16)–(22) becomes the
set of three (16), (17), and (19) with the respective boundary conditions
for Rs0(t; �; �) from (22), while (15) becomes ys[xs(t); xsh(t); t] =
�D�1

y F 02[Ps(t)xs(t) +
0

�h
Qs1(t; � )xs(t + � )d� ]. Further simpli-

fication is obtained in the undelayed case (h = 0), where (16)–(22)
becomes (16) with Qsi(t; 0) � 0; (i = 1; 2) and (15) becomes
ys[xs(t); t] = �D�1

y F 02Ps(t)xs(t).
Remark 3: An important feature of the ROCP optimal control is that,

at any current time-instant t, this control depends on the state and con-

trol values distributed over the interval [t�h; t), i.e., on the distributed
state and control delays. It was shown in [21] that a digital computer
implementation of a control law, depending on a distributed control
delay, is a very unsimple task. Fortunately, the ROCP optimal control
is only an intermediate result needed for obtaining a composite subop-
timal control in the NOCP. This composite control is independent of a
distributed control delay (see Section III), although it does depend on
a distributed state delay. The latter circumstance does not create prob-
lems for its digital computer implementation (see Section V).

B. Fast Subproblem

Using the fast subsystem of the NOCP, corresponding to (7), and
cost functional (9), the fast subproblem is obtained in the way.

1) The state x( � ) is removed from the fast subsystem of the NOCP
and (9).

2) The transformation of variables t = "�; y("�) = yf (�); v("�) =

vf(�);J (v("�)) = "Jf (vf(�)) is made in the resulting equa-
tions, where �; yf ; vf ; andJf are new independent variable, state,
control, and cost functional.

Thus, one has the problem

dyf(�)=d� = "[F4yf (�) +K4yf (� � h=")

+
0

�h

N4(�)yf(� + �=")d� ] + vf(�);

� 2 (0; T="]

Jf (vf) =
T="

0

[y0f(�)Dyyf(�) + v0f(�)Mvf (�)]d� ! min
v (�)

:

(23)

Neglecting in (23) the terms multiplied by ", and replacing there T="
by +1, yields the fast subproblem associated with the NOCP

dyf(�)=d� = vf(�); � > 0

Jf (vf) =
+1

0

[y0f(�)Dyyf(�)

+ v0f(�)Mvf (�)]d� ! min
v (�)

: (24)

Using [22], one directly has the following lemma.
Lemma 2: Under assumption A2), the fast subproblem (24) with a

given yf (0) has the unique state-feedback optimal control

vf [yf (�)] = �M�1Pfyf (�) (25)

wherePf is the unique positive definite solution of the algebraic Riccati
equation PfM�1Pf �Dy = 0. The optimal trajectory yf (�) of this
problem satisfies the inequality kyf(�)k � a exp(���)kyf (0)k; � �

0. Here and in the sequel, a and � denote some positive constants in-
dependent of ".

III. COMPOSITE SUBOPTIMAL CONTROL OF NOCP

The algorithm of the formal designing the composite control consists
of two stages. At the first stage, the following auxiliary control function
va is constructed:

va[Z(t); Zh(t); t] = vs(t) + vf [y(t)� ys[x(t); xh(t); �yh(t); t]]
(26)
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where vs(t) and vf [ � ] are given by (13) and (25); Zh(t) fZ(t +
� ) 8� 2 [�h; 0)g; �yh(t) yh(t) � yfh(t="); yfh(t=") fyf [(t +
� )="] 8� 2 [�h; 0]g; yf (�) = 0 8� < 0.

Calculating (26) yields, after some rearrangement

va[Z(t); Zh(t); t]

= �M�1Pf

� y(t) +D�1

y (F 0

2Ps(t)

+Q0

s2(t; 0))x(t) +
0

�h

(F 0

2Qs1(t; � )

+R0

s1(t; �; 0))x(t+ � )d� +
0

�h

(F 0

2Qs2(t; � )

+ Rs2(t; 0; � ))(y(t+ � )� yf [(t+ � )="])d� : (27)

It is seen that (27) depends not only on x( � ) and y( � ) but also on

yf ( � ). At the second stage, we eliminate yf ( � ) from va( � ). Using

Lemma 2 yields the estimate for all sufficiently small " > 0 and t 2

[0; T ]: k 0

�h
(F 0

2Qs2(t; � )+Rs2(t; 0; � ))yf [(t+�)="]d�k � a". Due

to the latter, the term in (27), depending on yf ( � ), vanishes as " !

+0. Neglecting this term converts (27) to the composite state-feedback

control of the NOCP

vc[Z(t); Zh(t); t]

= �M�1Pf

� y(t) +D�1

y (F 0

2Ps(t)

+Q0

s2(t; 0))x(t) +
0

�h

(F 0

2Qs1(t; � )

+R0

s1(t; �; 0))x(t+ � )d� +
0

�h

(F 0

2Qs2(t; � )

+ Rs2(t; 0; � ))y(t+ � )d� : (28)

Let J �

" be the optimal value of the cost functional in the NOCP

and J"(vc) be the value of this cost functional obtained by employing

v(t) = vc[Z(t); Zh(t); t] in the NOCP.

Theorem 1: Under assumption A2), there exists a number "� > 0

such that the following inequality is satisfied for all " 2 (0; "�]: 0 <

J"(vc)� J �

" � a"2(k Z(�)kC)
2, where k � kC denotes the uniform

norm in the space C[b; c;Ek] of k-dimensional vector functions, de-

fined and continuous on a closed interval [b; c].

Proof: The theorem is a direct consequence of [15, Theorem 5.1].

IV. ROBUST CONTROL OF ORIGINAL SYSTEM (6)–(8)

In this section, a robust controller for (6)–(8) is designed using the
integral sliding mode approach. For any given " > 0, consider the
following integral sliding mode “manifold” subject to (8):

�[Z( � ); Zh( � )](t)

y(t)�  y(0)

�
t

0

F3x(s) + F4y(s)

+K3x(s� h) +K4y(s� h)

+
0

�h

[N3(�)x(s+ � ) +N4(�)y(s+ � )]d�

+ "�1vc[Z(s); Zh(s); s] ds = 0; t 2 [0; T ]: (29)

Let Z(t); t 2 [0; T ] be a solution of (6)–(8) for some given v(t).
Theorem 2: Let assumption A2) and inequalities (10) be satisfied.

Let d�[Z( � ); Zh( � )](t)=dt = 0 for some t 2 (0; T ]. Then, for this t
and any given " > 0; Z(t) satisfies the nominal system with v(t) =
vc[Z(t); Zh(t); t].

Proof: By using (29), the equality d�[Z( � ); Zh( � )](t)=dt = 0
yields

dy(t)=dt� F3x(t)� F4y(t)�K3x(t� h)

�K4y(t� h)�
0

�h

[N3(�)x(t+ � )

+N4(�)y(t+ � )]d� � "�1vc[Z(t); Zh(t); t] = 0: (30)

Substituting (7) into (30), one obtains after some rearrangement the
algebraic equation with respect to v(t). This equation, due to the first
inequality in (10), has the unique solution

v(t) = [Ir + V (Z(t); Z(t� h); t)]�1

�fvc[Z(t); Zh(t); t] � "�(Z(t); Z(t� h); t)g: (31)

Substituting (31) into (7) directly yields the statement of the theorem.
Corollary 1: Let assumption A2) and (10) be satisfied. Let (29) be

satisfied on some interval (t1; t2] � (0; T ]. Then, for all t 2 (t1; t2]
and any given " > 0; Z(t) satisfies the nominal system with v(t) =
vc[Z(t); Zh(t); t].

Proof: Since (29) is satisfied for all t 2 (t1; t2];
d�[Z( � ); Zh( � )](t)=dt = 0 for these t. Now, the corollary is a direct
consequence of Theorem 2.

Let us extend the approach, suggested in [23] for the case of unde-
layed systems, to the case of system (6)–(8). Namely, let us consider
the following integral sliding mode controller:

v = vsoism[Z(t); Zh(t); t]

= vvs[Z(t); Zh(t); t] + vc[Z(t); Zh(t); t] (32)

where the variable structure part vvs has the form shown in (33) at the
bottom of the page, and, for any fixed t 2 [0; T ]; �[Z(t); Zh(t); t] is a
given functional defined on the direct productEn�C[�h; 0;En] and
satisfying the inequality

�[Z(t); Zh(t); t] � f�kvc[Z(t); Zh(t); t]k+ "g(Z(t)

Z(t� h); t) + �g=(1� �) (34)

� > 0 is a given constant. In the sequel, vsoism[Z(t); Zh(t); t] is called
the suboptimal integral sliding mode controller.

vvs[Z(t); Zh(t); t] =
�f�[Z(t); Zh(t); t]=k�[Z( � ); Zh( � )](t)kg�[Z( � ); Zh( � )](t); if �[Z( � ); Zh( � )](t) 6= 0;

0; if �[Z( � ); Zh( � )](t) = 0
(33)
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Theorem 3: Let assumption A2) and (10) be satisfied. Then, for any
given " > 0, the trajectory Z = Z(t) of (6)–(8) subject to control (32)
satisfies (29) for all t 2 [0; T ].

Proof: Consider the Lyapunov–Krasovskii functional

W [Z( � ); Zh( � )](t)

= (1=2)�0[Z( � ); Zh( � )](t)�[Z( � ); Zh( � )](t): (35)

Differentiating W [Z( � ); Zh( � )](t) with respect to t along the trajec-
tory Z( � ) of (6)–(8), (32) yields, after some rearrangement

dW [Z( � ); Zh( � )](t)=dt

= �0[Z( � ); Zh( � )](t)d�[Z( � ); Zh( � )](t)=dt

= �0[Z( � ); Zh( � )](t) "�1[Ir

+ V (Z(t); Z(t� h); t)]vsoism[Z(t); Zh(t); t]

+ �(Z(t); Z(t� h); t)

� "�1vc[Z(t); Zh(t); t] ; t 2 [0; T ]: (36)

Let �[Z( � ); Zh( � )](t) 6= 0 at some t 2 [0; T ]. Using (32), (33), and
(36), one has

dW [Z( � ); Zh( � )](t)=dt

= ��[Z(t); Zh(t); t]k�[Z( � ); Zh( � )](t)k="

+ �0[Z( � ); Zh( � )](t) "�1V (Z(t); Z(t� h); t)

� vsoism[Z(t); Zh(t); t] + �(Z(t); Z(t� h); t)g (37)

yielding, by using (10) and (34)

dW [Z( � ); Zh( � )](t)=dt � �"�1�k�[Z( � ); Zh( � )](t)k

�[Z( � ); Zh( � )](t) 6= 0: (38)

Due to (8), (29), and (35), W [Z( � ); Zh( � )](t) = 0 for t = 0. The
latter, along with (35) and (38), implies that W [Z( � ); Zh( � )](t) �

0 8t 2 [0; T ]. Hence, �[Z( � ); Zh( � )](t) � 0 8t 2 [0; T ], which
completes the proof of the theorem.

The following proposition presents the case where, for all suffi-
ciently small " > 0, the functional �[Z(t); Zh(t); t] can be chosen
subject to a simpler inequality than (34).

Corollary 2: Let assumption A2) and (10) be satisfied. Let a con-
stant � > 0 exist such that g(Z; �; t) � � 8(Z; �; t) 2 En � En �

[0; T ]. Let, for some constant � > 0, the functional �[Z(t); Zh(t); t]

satisfy the inequality �[Z(t); Zh(t); t] � f�kvc[Z(t); Zh(t); t]k +

�g=(1� �). Then, for any " 2 (0; �=�), the trajectory Z = Z(t) of
(6)–(8) subject to control (32) satisfies (29) for all t 2 [0; T ].

Proof: Considering Lyapunov–Krasovskii functional
(35) and using the same arguments as in the proof of The-
orem 3, one obtains dW [Z( � ); Zh( � )](t)=dt � �"�1(� �

"g(Z(t); Zh(t); t))k�[Z( � ); Zh( � )]k; �[Z( � ); Zh( � )](t) 6= 0.
This inequality, along with g(Z; �; t) � �, directly yields the state-

ment of the corollary.
Remark 4: Two important features of the integral sliding mode con-

troller (32) should be emphasized. First, the variable structure part (33)
of (32) is not derived as a solution of an optimal control problem.
Therefore, cost functional (9) is not used directly in the design of (33).
This cost functional is used directly only for design of the composite
state-feedback control (28) of the NOCP, the second term in (32). Due

to Theorems 2 and 3 and Corollaries 1 and 2, the first term in (32) is re-
sponsible for keeping the original uncertain system on the “manifold”
(29), where its motion coincides with the motion of the nominal system
subject to (28). According to Theorem 1, the second term in (32) makes
the motion of the original system on (29) be suboptimal with respect to
(9). Due to such a structure of controller (32), cost functional (9) cal-
culated along the trajectory of the original system, generated by (32),
depends, in general, on the uncertainties, while the trajectory is insen-
sitive to the uncertainties. The value of cost functional (9), in which
only the second term of (32) is taken for the calculation, is robust with
respect to the uncertainties. Moreover, if the uncertainties vanish, the
full value of cost functional (9) coincides with J"(vc). The second fea-
ture is that (32) transfers the original system from its initial position to
(29) in zero time, i.e., the system motion, generated by this control, is
a sliding mode from t = 0 to t = T .

V. EXAMPLE

Consider a particular case of (1) and (4) withn = 2; r = 1; h = 0:5;

T = 2, and

A =
3 �2

2 �3
; H =

�1:6 5:4

�0:4 2:6

G(� ) � 0; B =
3

2
; D =

0:24 �0:56

�0:56 1:64
; M = 1

'(�) = col(16� + 7; 9� + 3). The matrix C( � ) and the vector w( � )
in (1) satisfy (2) and (3) with � = 0:5; f( � ) � 1. Based on these data,
one obtains the matrix L in (5)

L =
4 3

1 2

yielding (6)–(9) as

dx(t)=dt = x(t) + 2y(t)� x(t� 0:5)

x(�) = � + 1; � 2 [�0:5; 0]

"dy(t)=dt = "[2x(t)� y(t) + x(t� 0:5) + 2y(t� 0; 5)]

+ [1 + V (Z(t); Z(t� 0:5); t)]v(t)

+ "�(Z(t); Z(t� 0:5); t); y(�) = 4� + 1;

� 2 [�0:5; 0] (39)

J (v)
2

0

[x2(t) + 2y2(t) + v2(t)]dt! min
v(t)

: (40)

In (39), t 2 (0; 2];Z( � ) = col(x( � ); y( � )); and V ( � ) and �( � )

satisfy (10) with � = 0:5 and g(Z; �; t) � 1. Due to (11), (12), and
(14), the ROCP, associated with (39) and (40), has the form

dxs(t)=dt = xs(t)� xs(t� 0:5) + 2ys(t); t 2 (0; 2]

xs(�) = � + 1; � 2 [�0:5; 0]

Js(ys)
2

0

x2s(t) + 2y2s(t) dt! min
y (t)

: (41)

By Lemma 1 and Remark 2, the optimal feedback control of (41) is

ys[xs(t); xsh(t); t] = � Ps(t)xs(t)

+
0

�0:5

Qs1(t; � )xs(t+ � )d� (42)
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Fig. 1. Integral sliding modes and nominal trajectories.

where Ps(t) and Qs1(t; � ) are obtained from the unique solution of
the set of equations

dPs(t)=dt

= �2Ps(t)� 2Qs1(t;0)� 1 + 2P 2
s (t); Ps(2) = 0

(@=@t� @=@� )Qs1(t; � )

= �Qs1(t; � )[1� 2Ps(t)]�Rs0(t; 0; � ); Qs1(2; � ) = 0

(@=@t� @=@� � @=@�)Rs0(t; �; �)

= 2Qs1(t; � )Qs1(t; �); Rs0(2; �; �) = 0

Qs1(t;�0:5)
= �Ps(t); Rs0(t;�0:5; � ) = Rs0(t; �;�0:5)
= �Qs1(t; � ): (43)

In this example, (43) is solved numerically by using the first-order fi-
nite-difference approximation of the derivatives with respect to � and
�, and then by applying the Euler method to the obtained set of ordi-
nary differential equations.

Due to (24), the fast subproblem, associated with (39) and (40), has
the form

dyf (�)=d� = vf(�)

Jf (vf)
+1

0

2y2f(�) + v2f (�) d� ! min
v (�)

: (44)

By Lemma 2, the optimal feedback control of (44) is vf [yf (�)] =

�p2yf(�). Now, using the latter, along with (42) and results of
Section III, one obtains the composite suboptimal control for the
NOCP, associated with (39) and (40)

vc[Z(t); Zh(t); t] = �
p
2 Ps(t)x(t) + y(t)

+
0

�0:5

Qs1(t; � )x(t+ � )d� : (45)

Based on (45), the integral sliding mode manifold (29) becomes in this
example as

�[Z( � ); Zh( � )](t)
y(t)� 1�

t

0

f2x(s)� y(s)

+ x(s� 0:5) + 2y(s� 0:5)

+ "�1vc[Z(s); Zh(s); s]gds = 0; t 2 [0; 2]: (46)

TABLE I
VALUES OF J ; J ; J ; AND J

The suboptimal integral sliding mode controller vsoism[y(t); yh(t); t]

is obtained by using (32) and (33) with vc[Z(t); Zh(t); t]

and �[Z( � ); Zh( � )](t) given by (45) and (46). More-
over, using Corollary 2 and that � = 0:5, one can take
�[Z(t); Zh(t); t] = jvc[Z(t); Zh(t); t]j + 0:22, implying that the
controller vsoism[Z(t); Zh(t); t] is robust at least for " 2 (0; 0:11).
This controller is compared to the integral sliding mode controller
v�ism[Z(t); Z(t)h; t], constructed by using (29), (32), and (33) where
the composite control vc[Z(t); Zh(t); t] is replaced by the optimal
state-feedback control v�[Z(t); Zh(t); t] of the NOCP. The set
of Riccati-type functional-differential equations, associated with
this control, is solved similarly to (43). The functional �[ � ] in the
expression for v�ism[ � ] has the same form as in the expression for
vsoism[ � ] with replacing vc[ � ] by v�[ � ].

Employing vsoism[ � ] and v�ism[ � ] in the original uncertain system (39)
yields the integral sliding modes Zso

ism(t) = col(xsoism(t); y
so
ism(t)) and

Z�ism(t) = col(x�ism(t); y
�

ism(t)), respectively. These integral sliding
modes are evaluated by cost functional (40). Let Jso

ism and J�ism be
the respective values of this cost functional. Also, let J�nom be the
optimal value of the cost functional in the NOCP and Jso

nom be the
value of the same cost functional obtained by employing the com-
posite control in the nominal system. In Table I, all these values are
presented as functions of ". The calculations for (39) are carried out
with V [Z(t); Z(t� 0:5); t] � �0:5; �[Z(t); Z(t� 0:5); t] � 1. The
numerical solution of the set of Riccati-type equations, associated with
v�[Z(t); Zh(t); t], is obtained for the numbers of mesh points of 150
in � and �, and of 2400 in t. These numbers provide the accuracy of the
respective value of the cost functional in the NOCP to be within 0.25%
for all considered values of ". The numerical solution of (43) is obtained
for the same numbers of mesh points. It is seen from Table I that 0 <

Jso
nom�J�nom < 4:69"2 for " 2 (0; 0:1]. The initial function [see (39)]
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is  Z(� ) = col(� +1; 4� +1); � 2 [�0:5; 0] and k Z(�)kC =
p
2.

Thus, one directly obtains 0 < Jsonom � J�nom < 2:35"2(k Z(�)kC)2
for " 2 (0; 0:1], which accords Theorem 1. Moreover, one has from
Table I that 0 < Jsoism � J�ism < 2:31"2(k Z(�)kC)2 for " 2 (0; 0:1].
Comparison of this inequality to the previous one for Jsonom and J�nom
shows that, in spite of the presence of the uncertainties in the original
system, the suboptimal integral sliding mode controller keeps the same
accuracy of the corresponding value of the cost functional as is obtained
for the composite control in the NOCP.

In Fig. 1(a), the first components of the integral sliding modes
xsoism(t) and x�ism(t), as well as the first components of the corre-
sponding nominal trajectories xsonom(t) and x�nom(t), are depicted
for " = 0:06. In Fig. 1(b), the respective second components
are shown. It is seen that the integral sliding modes practically
coincide with the respective nominal trajectories. Moreover, the
integral sliding mode Zsoism(t) = col(xsoism(t); ysoism(t)) is close to
Z�

ism(t) = col(x�ism(t); y
�

ism(t)).

VI. CONCLUSION

The controlled system with matched uncertainties and point-wise
and distributed state delays was considered. The control cost in the
performance index for this system is small with respect to the state
cost. Using the singular perturbation technique and the integral sliding
mode approach, an integral sliding mode “manifold” and a respective
robust controller were designed for this system. It was shown that this
controller transfers the system from its initial position to the integral
sliding mode “manifold” in zero time, keeps this system on the “mani-
fold” until the end of the control process, and provides the system mo-
tion on the “manifold” (the sliding mode) to be suboptimal with respect
to the cheap control performance index.
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