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Mini–Max Integral Sliding-Mode Control for Multimodel
Linear Uncertain Systems

A. Poznyak, L. Fridman, and F. J. Bejarano

Abstract—An original linear time-varying system with matched and un-
matched disturbances and uncertainties is replaced by a finite set of dy-
namic models such that each one describes a particular uncertain case in-
cluding exact realizations of possible dynamic equations as well as external
unmatched bounded disturbances. Such a tradeoff between an original un-
certain linear time varying dynamic system and a corresponding higher
order multimodel system containing only matched uncertainties leads to a
linear multi-model system with known unmatched bounded disturbances
and unknownmatched disturbances as well. Eachmodel from a given finite
set is characterized by a quadratic performance index. The developed min-
imax integral slidingmode control strategy gives an optimalminimax linear
quadratic (LQ)-control with additional integral sliding mode term. The de-
sign of this controller is reduced to a solution of an equivalent mini–max
LQ problem that corresponds to the weighted performance indices with
weights from a finite dimensional simplex. The additional integral sliding
mode controller part completely dismisses the influence of matched uncer-
tainties from the initial time instant. Two numerical examples illustrate this
study.

Index Terms—Optimal control, sliding-mode control.

I. INTRODUCTION

Sliding-mode control is a powerful nonlinear control technique that
has been intensively developed during the last 35 years [8], [13]. The
sliding mode controller drives the system state to a “custom-built”
sliding (switching) surface and constrains the state to this surface
thereafter. A system motion in a sliding surface, named sliding mode,
is robust with respect to disturbances and uncertainties matched by
a control but sensitive to unmatched ones. The sliding mode design
approach usually consits of two steps [7],[11],[13]. First, the switching
surface is designed such that the system motion in sliding mode
satisfies design specifications. Second, a control function is designed
making the switching surface attractive to the system state.

However, this control design strategy has three main disadvantages
[13].

• The classical sliding-mode controllers are robust in the case of
matched disturbances only.

• The designed controller ensures the optimality only after the en-
trance point into the sliding mode.

• The trajectory of the designed solution is not robust even with
respect to the matched disturbances on a time interval preceding
the sliding motion.

Reference [12] proposes a new sliding-mode design concept, namely
integral sliding mode (ISM) without reaching phase. The order of the
motion equation in ISM is equal to the order of the original system,
rather than reduced by the dimension of the control input. As a result,
robustness of the trajectory for a system driven by a smooth control law
can be guaranteed throughout an entire response of the system starting
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from the initial time instance. However, ISM preserves only the trajec-
tories driven by smooth controllers and needs the knowledge of the con-
troller’s derivative. The uniform formulation of the ISM design prin-
ciple is developed in this note without the use of any information about
the derivative of the control law needed for the robustification.

A. Antecedents

As the antecedents reference we would like to single out the fol-
lowing lines of investigations.

• In [6], the ISM are used for the robustification of the optimal con-
trol problem for system with matched and unmatched uncertain-
ties. It was shown that ISM allows to reduce the solution of the
initial uncertain optimal problem to the solution of an optimal
problem with unmatched uncertainties only.

• The problem of minimax sliding-mode design with optimal
reaching phase solved in [11] for multimodel systems.

• In [2], the sliding mode approach was used for robust control
design together with H1.

• In some papers, special switching surfaces (dynamic sliding man-
ifolds) was introduced to robustify the solutions of different con-
trol problems: [14] (frequency shaping problem), [9] (precision
control of a magnetic suspension actuator).

• The sliding-mode control design was suggested in [3] for systems
with both matched and unmatched uncertainties using output in-
formation only.

• The classical sliding-mode approach was used in [11] for min-
imax control for multimodel linear uncertain systems.

B. Motivation

1) In the presence of unmatched uncertainties, the classical sliding-
mode control [13] cannot be formulated, since it may success-
fully compensate only uncertainties or disturbances of “matched
type.”

2) In turn, an optimal control requires a complete knowledge of
system dynamic equations. Therefore, in the situation when there
is any unmeasured (even “matched-type”) uncertainties another
design concept must be developed.

3) The implementation of the integral sliding-mode approach is ex-
pected to be able to eliminate the influence of matched uncer-
tainties in the right-hand side of the dynamic equation starting
from the initial time and, after that, when we will have only un-
matched uncertainties, but with completely known scenarios, the
“worst-case” optimization procedure may be applied.

4) The corresponding optimization problem is usually treated as a
minimax control dealing with different classes of partially known
models [4], [10], and [5]. The minimax control problem can be
formulated in such a way that the operation of the maximiza-
tion is taken over a set of uncertainty and the operation of the
minimization is taken over control strategies within a given re-
source set (usually a convex compact). In view of this concept,
the original system model is replaced (approximated) by a finite
set of dynamic models such that each model describes a partic-
ular uncertain case including exact realizations of possible dy-
namic equations as well as external bounded disturbances. An
example of such situation could be the reusable launch vehicle
attitude control dealing with a dynamic model which contains
an uncertain matrix of inertia (various payloads in a cargo bay)
and is affected by unknown bounded disturbances such as wind
gusts (usually modeled by table look up data corresponding to
different launch sites and months of a year). The design of the
mini–max sliding mode controller that optimizes the worst flight
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scenarios will reduce the risk of loss of a vehicle and a loss of a
crew. Others examples can be found in [11].

5) So, the suggested idea is to modify both approaches (integral
sliding-mode and minimax optimization) in order to bring to-
gether these advantages and ensure the successful control design
in this complex situation.

C. Basic Assumptions and Restrictions

Since the original system model is uncertain, in this work

• we consider a finite set of dynamic models (as an approxima-
tion of a convex compact) such that each model describes ex-
actly a particular unmatched uncertainty; the presence of matched
bounded uncertainties is admitted;

• each model from a finite set is supposed to be given by a system
of linear time-varyingODE with matched uncertainties may be a
nonlinear nature;

• the performance of each model is characterized by a LQ-criterion
with a finite horizon;

• the same control action is assumed to be applied to all models
simultaneously and designed based on an integral joint sliding
function as well as on the mini–max LQ-criterion (fuzzy or
mixing).

D. Main Contribution

This study demonstrates that

• the designed control, including the integral sliding-mode com-
ponent, provides the best dynamics for the worst transient re-
sponse to a disturbance input from a finite (a priori known) set
of unmatched uncertainties and disturbances in the presence of
the bounded matched part which is shown to be compensated by
the integral sliding-mode control part from the start-point of the
process, that is, from t = 0;

• the LQ problem formulation leads to the design of the mini–max
controller in a linear weighted format with respect to system state;

• the corresponding optimal weighting coefficients are computed
based on a Riccati equation parametrized by a vector, defined on
a finite dimensional simplex.

II. PROBLEM STATEMENT

Let us consider a controlled linear uncertain system

_x(t) = A(t)x(t) +B(t)u(x; t) + �(t); x(0) = x
0 (1)

where x (t) 2 Rn is the state vector at time t 2 [0; T ], u(x; t) 2
Rm is a control action, � is an external disturbance (or uncertainty),
A(t); B(t) are assumed to be partially continuous. We will assume the
following.

1) The matrix B(t) is known, it has a full-rank for all t � 0 and its
pseudoinverse matrix B+ is bounded

rank B(t) =m

kB+(t)k � b
+

B
+(t) := [B (t)B(t)]�1B (t)

b
+ =const > 0

and the matrix A(t) may take a finite number of
fixed and a priory known functions, that is, A(t) 2
A1 (t) ; A2(t); . . . ; AN (t) where N is a finite number of

possible dynamic scenarios, here A�(t) (� 2 f1; . . . ; Ng) is
supposed to be bounded, that is

sup
t�0

sup
�=1;N

kA�(t)k � a
+
; a

+ = const > 0: (2)

2) An external disturbances � are represented in the following
manner:

�(t) = g(x; t) + �(t); t 2 [0; T ] (3)

where g(�) is unmeasured smooth uncertainty representing the
perturbations which satisfies the so-called “standard matching
condition,” that is, g 2 spanB, or, in other words, g(x; t) 2 

where


 := fg(x; t) : g(x; t) = B(x; t)

k(x; t)k � qkxk+ p; q; p > 0g (4)

and �(t) is a disturbance taking the finite number of alterna-
tive functions, that is, �(t) 2 � =: �1(t); . . . ; �N (t) where
��(t) (� 2 f1; . . . ; Ng) are known (smooth enough) bounded
functions such that k�(t)k � �+ for all t 2 [0; T ].

So, for each concrete realization of possible scenarios we obtain the
following dynamics:

_x�(t) =A
�(t)x�(t) +B(t)u(x; t) + g(x�; t) + �

�(t)

x
�(0) =x

0
: (5)

Our goal is to design a control law which allows us to eliminate com-
pletely the matched part of uncertainties g(x; t) and after that, using
the rest of the control possibilities, to minimize a given performance
index corresponding a worst possible scenario of the system dynamics.

III. CONTROL DESIGN CHALLENGE

Now, the control design problem can be formulated as follows: de-
sign the control u = u(x; t) in the form

u(x; t) = u0(x; t) + u1(x; t)

u1(x; t) = u1corr + u1comp
(6)

where u1(x; t) is a term named the ISM control part, u1comp is re-
sponsible for the exact compensation of the unmeasured matched part
of uncertainties g(x; t) for a finite minimal possible compensation time
tcomp, u1corr is a correction term for the linear part of ISM equations,
and u0(x; t) is a control function minimizing the worst possible sce-
nario in the sense of some LQ-index over a finite horizon T � tcomp,
that is

min
u 2R

max
�=1;N

h
� (7)

h
� :=

1

2
(x�(T ); Lx�(T )) +

1

2

�
T

t=t

[(x�(t);Qx�(t))

+(u0(t) + u1corr(x; t); R(u0(t)

+u1corr(x; t)))]dt

Q = Q
> � 0; L = L

> � 0 R = R
>
> 0: (8)

Below will be shown that tcomp = 0.
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IV. DESIGN PRINCIPLES

Substitution of the control law (6) and (3) into (1) yields

_x(t) =A(t)x(t) +B(t)u0(x; t)

+B(t)u1(x; t) + g(x; t) + �(t)

x(0) =x0: (9)

Define the auxiliary “sliding” function s(x; t) 2 Rm as

s(x; t) = z(x; t) + s0(x; t) (10)

where s0(x; t) and z(x; t) are also some auxiliary variables which will
be defined below. Then, it follows:

_s(x; t) = _z(x; t) +G(x; t) [A(t)x+B(t)u0(x; t)

+B(t)(x; t) +B(t)u1(x; t) + �(t)] +
@s0(x; t)

@t
(11)

with G(x; t) = @s0(x; t)=@x. This means that integral sliding mode
design needs a continuously differentiable function s0. Select the aux-
iliary variable z as the solution to the differential equation

_z(x(t); t) =�G(x(t); t)[B(t)u0(x(t))]�
@s0(x(t); t)

@t
z((x(0);0)) =�s0(x(0);0): (12)

Here, we should emphasize that we only know that A(t) 2
A1(t); A2(t); . . . ; AN(t) , but we do not know which of these

matrices is the matrix of our realization. That is why, in difference
with [12], we do not include the matrix A(t) in the function _z: Then
the equation for s(x; t) becomes as follows:

_s(x(t); t) =G(x(t); t)

� [B(t)(x(t); t) +B(t)u1(x(t); t) + �(t)]

+G(x(t); t)A(t)x(t)

s(x(0);0) =0: (13)

In order to realize a sliding mode dynamics, let us design the relay
control in form

u1(x; t) =�M(x)Sign[s(t)]

M(x) = �qkx(t)k+ �p+ � = scalar

� > b+�+ (14)

�p � p, Sign[s(t)] = [sign[s1(t)];sign[s2(t)]; . . . ;sign[sm(t)]]T , �q �
q + b�a+ (a+ is a positive constant), that implies

_s(x(t); t) =G(x(t); t)

� [B(t)((x; t)�M(x)Sign[s(t)]) + �(t)]

+G(x(t); t)A(t)x(t):

In [13] and [12], to design the integral sliding-mode controllers the
auxiliary function s0(x; t) = u0(x; t) is used. However, such a choice
of auxiliary function requires a smoothness of u0(x; t). On the other
hand, the minimax controllers do not have the continuos derivative ([4],
[10] and [5]). So, modifying the integral sliding mode procedure, we
select s0(x; t) := [B(t)]+x. ConsequentlyG(x(t); t) = [B(t)]+ and,

for the Lyapunov function V (s) = 1=2 ksk2 ; in view of (4) and (2),
and using the inequality m

i=1
jsij � ksk, it follows:

d

dt
V =(s; _s)

= (s; [B(t)]+B(t)((x; t)�M(x)Sign[s(t)])

+ [B(t)]+�(t)) + (s; [B(t)]+A(t)x(t))

� � ksk(M(x)� k(x; t)k � kB+(t)k�+

� k[B(t)]+k � kA(t)k � kx(t)k)

� � ksk[(�q � q � b+a+)kx(t)k

+ (�p� p) + �� b+�+]

� � ksk[�� b+�+] � 0:

So, in view of (12), we derive

V (s(x(t); t)) � V (s(x(0);0)) =
1

2
ks(x(0);0)k2 = 0

that implies for all t � 0 the following identities:

s(t) =0

_s(t) =0: (15)

It means that the integral sliding mode control (14) completely com-
pensates the effect of thematched uncertainty g from the beginning
of the process. The relations (15) and (13) leads to the following rep-
resentations:

B(t)[(x; t) + u1eq(x; t)]

+B(t)B+(t)(�(t)+A(t)x(t)) = 0

u1eq(x; t) = u1corr + u1comp

u1comp = �(x; t)�B+(t)�(t)

u1corr = �B+(t)A(t)x(t)

and, hence

_x(t) = A(t)x(t) +B(t)(u0(x)�B+(t)A(t)x(t))

+[I �B(t)B+(t)]�(t); �(t) 2 �: (16)

Remark 1: �eq := I �BB+ � 2 kerB+. This means that vector
�eq is a projection of the vector � on the space ker B+.

V. OPTIMAL CONTROL DESIGN

Returning to the multimodel case when A(t) may take one of pos-
sible scenarios A�(t)(� = 1; N), one can conclude that the multi-
model system dynamics into the ISM takes the form

_x�(t) = A�(t)x(t) +B(t)(u0(x)�B+(t)A�(t)x(t))

+[I �B(t)B+(t)]��(t); ��(t) 2 � (17)

and LQ-index (8) becomes

h� :=
1

2
(x�(T ); Lx�(T )) +

1

2

�
T

t=t

[(x�(t);Qx�(t))

+ [u0(t)� (B+(t)A�(t)x�(t))

R(u0(t)�B+(t)A�(t)x�(t))]]dt:

(18)

The next and last step is to apply the mini–max LQ control [4], [10] to
the plant (17) and obtain the control u0(x) which together with u1(14)
solves the minimax problem for (18). It is necessary to remark here that
unlike to [4], [10] in (17) only unmatched uncertainties can occur.
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Now, with the extended system _x(t) = Aeq(t)x(t)+B(t)u0(x)+d
and according to [4], [10], this control is as follows:

u0 = �R
�1
B [P�x + p�] +B

+
A���x (19)

where the matrixP� = PT
� 2 RnN�nN is the solution of the parame-

trized differential matrix Riccati (20), shown at the bottom of the page,
and the shifting vector p� satisfies (21), as shown at the bottom of the
page. Here

A :=

A1 0 � � 0

�

� �

�

0 � � 0 AN

Aeq :=

A1eq 0 � � 0

�

� �

�

0 � � 0 AN
eq

A
�
eq = [I �BB

+]A�

Q :=

Q1 0 � � 0

�

� �

�

0 � � 0 QN

L :=

L 0 � � 0

�

0 0

�

0 � � 0 L

��� :=

�1In�n 0 � � 0

�

0 0

�

0 � � 0 �NIn�n

Q
� =Q+ [B+(t)A�(t)]>RB+(t)A�(t) (22)

and

B
> := [B(t)1> . . . B(t)N> ] 2 R

r�nN ;

B
+ := [B+(t) . . . B+(t) ]

d
> := (�1eq)

>
; . . . ; (�Neq)

>
2 R

1�nN ;

�
�
eq = [ I �B(t) B+(t) ] ��:

The matrix ��� = ���(��) is defined by (22) with the weight vector
� = �� solving the following finite-dimensional optimization
problem:

�
� = arg min

�2S
J(�)

J(�) := max
�=1;N

h
�

=
1

2
x
>(0)P�(0)x(0)+ x

>(0)p�(0)

+
1

2
max
i=1;N 0

T

x
i>(t)Qi

x
i(t)

+2xi>(t)(B+
A
i)>

B
>[P�x + p�] �RB

+
A���x dt

+ x
i>(T )Lxi(T )

�
1

2

N

i=1

�i
0

T

x
i>(t)Qi

x
i(t)

+2xi>(t)(B+
A
i)>(B>[P�x+ p�]

�RB
+
A���x) dt+ x

i>(T )Lxi(T )

+
1

2

T

t=0

p
>
� [2d�BR

�1
B
>
p�]dt

S
N = ��� 2 <

N : �� � 0
N

�=1
�� = 1 : (23)

This means that, u0 is a linear combination of a feedback part (pro-
portional to x) and a shifting vector p� which is indeed an open loop
control part.

So, we can summarize the designed control algorithm as follows.

Step 1) For a fixed control , we con-
struct the “nominal” systems (17)
and the corresponding LQ-index (18).

Step 2) Construct the control using the
extended system (22).

Step 3) Design the ISM law in the form
(14), compensating the matched part
of the uncertainties from the begin-
ning of the process completely.

Step 4) Apply the control to the
closed-loop system (1).

_P� +P�(Aeq +BB+A���) + (Aeq +BB+A���) P��P�BR
�1B P �

+���(Qeq � (B+A)>RB+A���) = 0; P�(T ) = ���L
(20)

_p� + (Aeq +BB+A���) p� �P�BR
�1B p� +P�d = 0

p�(T ) = 0
:

(21)
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Fig. 1. Trajectories of the states variables for thesystem (24) and Performance
index J .

A. Examples

Example 1: Let us consider two possible scenarios (N = 2) with

A
1 =

�0:2 � t 2 � t

�0:3 � t �1:5 � t

A
2 =

�0:25 � t 2:3 � t

�0:27 � t �1:7 � t

B
> = [ 2 t ]

g
> = [ 1:2 sin(4�t) 0:6t(sin 4�t) ]

(�1)> = [ 0:2 � sin(� � t) 0:25 ]

(�2)> = [ 0:5 0:3 � sin(� � t) ] : (24)

Selecting R = 1, Q = 1, L = I , T = 6, we obtain (see Fig. 1)
��1 = 0:58; ��2 = 0:42 and J(��) = 3:744. The corresponding state
variable dynamics is depicted at Fig. 1 and the control law is in
Fig. 2.
Example 2: Consider the case of three possible scenarios (N = 3)

where

A
1 =

�1 2

0 �0:5

A
2 =

�0:5 2:2

0 �0:7

A
3 =

�1:3 1:5

0 �0:8

B
> = [ 2 2 ]

g
> = [ 0:8 � x1 0:8 � x1 ]

(�1)> = [ 0:62 � sin(2 � � � t) 0:13 ]

(�2)> = [ 0:2 0:7 ]

(�3)> = [ 0:55 0:15 ] : (25)

Selecting R = 1, Q = I , L = I , T = 6 we obtain the optimal
weights ��1 = 0 ��2 = 0; ��3 = 1 and the functional J(��) =
4:365. The corresponding state variables dynamics is shown at Fig. 3
and control law is in Fig. 4.

Fig. 2. Controls u and u for � = 1 � = 2.

Fig. 3. Trajectories of the states variables for (25).

Fig. 4. Controls u and u for � = 1, � = 2, and � = 3.

VI. CONCLUSIONS

The problem of robust optimal control design is considered for a
linear multimodel system with bounded disturbances and uncertainties.
With this aim the methods of integral sliding mode control and min-
imax robust optimal control are modified. The suggested designed con-
trol, includes terms corresponding to an integral sliding-mode compo-
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nent as well as a minimax optimization part. The integral sliding-mode
component

• compensates of the matching part of the uncertainty beginning
from the start-point of the process, that is, from t = 0;

• allows to make minimax control design for unmatched uncertain-
ties only.

So, theminimax optimization control provides now the best dynamics
for the worst transient response to a disturbance input from a finite (a
priori known) set of unmatched uncertainties.
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Distributed Multirate Interacting Multiple Model Fusion
(DMRIMMF) With Application to Out-of-Sequence

GMTI Data

Lang Hong, Shan Cong, and Devert Wicker

Abstract—This note develops a distributed approach for fusing ground
moving target indicator data with out-of-sequence (OOS)measurements. A
multirate interacting multiple model (MRIMM) fusion algorithm is devel-
oped for effectively fusing multirate information. The multirate approach
provides an excellent framework for efficient information retrodiction and
forward update. A multirate interacting multiple model filter is employed
locally to track a target with or without maneuvering behavior. The combi-
nation of global MRIMM fusion and local MRIMM tracking proves to be
powerful for tracking and fusing maneuvering and nonmaneuvering tar-
gets in an environment of OOS measurement reporting.

Index Terms—Multirate processing, out-of-sequence (OOS) measure-
ments, target tracking, track fusion.

I. INTRODUCTION

Ground moving target indicator (GMTI) radar has demonstrated
its powerful surveillance/ reconnaissance capability in many military
and law enforcement operations. Its ability to timely provide detailed
information throughout the theater is critical to real-time command
and control in a battlefield. In the near future, a surveillance operation
may include a network of GMTI platforms. As there are thousands of
objects in a surveillance region, an enormous tracking effort is needed
to correlate radar measurements into target trajectories. Meanwhile,
under a combat condition, the measurements from multiple platforms
will not be synchronized, because each individual platform has its own
scan rate and the communication network cannot guarantee to deliver
measurements on time. Asynchronized measurements inevitably make
the order of measurements uncertain, which creates an out-of-sequence
(OOS) reporting phenomenon. Tracking with OOS measurements
poses a challenge to GMTI tracker design. Although the delay of each
OOS measurement may be only a fraction of a scan to a few scans,
this challenge cannot simply be ignored, because this phenomenon is
due to the nature of networking and is expected to occur frequently.

Although the OOS reporting phenomenon exists widely in the real
world applications, only limited research papers have been published
[1], [14] among which Bar-Shalom made a significant contribution in
formalizing the problem and initial development [1]. His work focused
on an optimality study of filtering OOS measurements with delay time
less than one scan, which can be considered as a generalization of tra-
ditional smoothing algorithms. Based on our recently developed multi-
rate techniques [7]–[9], we have developed a general multirate filtering
algorithm for arbitrary OOS measurements [10] and resolved three key
issues: 1) an efficient processing structure for information retrodiction,
2) an efficient memory structure for storing historical information, and
3) an efficient computational structure for tracking nonmaneuvering
and maneuvering targets.
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