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Technical Notes and Correspondence

Frequency Domain Input–Output Analysis of
Sliding-Mode Observers

Igor Boiko and Leonid Fridman

Abstract—The sliding-mode (SM) observer dynamics are analyzed in the
frequency domain. It is shown that the SM observer is essentially a relay
feedback-feedforward system. It is feedback with respect to the measured
variable of the system being observed, and the feedforward with respect
to the control applied to the system being observed. Having noted this, the
input-output properties of observer dynamics are analyzed with the use of
the locus of a perturbed relay system (LPRS) method. The performance of
the observer is assessed via the use of the frequency response techniques. An
example of performance analysis of the observer dynamics in the frequency
domain is given.

Index Terms—Frequency domain, nonlinear observers, sliding modes
(SMs).

I. INTRODUCTION

The idea of using a dynamical system to obtain estimates of the
system states from measurable system variables was first proposed by
Luenberger [1]. This dynamical system received the name observer. In
that approach, the observer dynamical system is driven by the control
and by the difference between the output of the observer and the output
of the plant. This difference should ideally become zero, which would
indicate that the state estimates from the observer have become equal to
the states of the plant. Sliding modes (SM) can be used for the purpose
of observation if generated in the observer dynamical system, and the
system is designed in such a way that the difference between the output
of the observer and the output of the plant becomes the sliding variable.
The control should be designed to provide the existence of SM in the
observer dynamical system. SM observers were analyzed in a number
of publications (see, for example, respective chapters of textbooks [2]
and [3] and recent tutorials [4] and [5]). Only an ideal SM in the ob-
server dynamical system was analyzed in those works (as well as in
the publications referenced above). For that reason, in a steady mode,
the observation is done with zero error. The nonzero observation error
only appears in the transients while the process is converging. After the
process has converged (this time may be infinite though, and for that
reason some observers are called asymptotic observers) the observa-
tion error becomes zero and ideal observation occurs. Another feature
of the traditional analysis is that SM observers were always analyzed
as stabilization systems but not as servo systems.

However, no ideal SM exists in any real application. Parasitic dy-
namics always exist along with the principal dynamics. Even if we
consider an observer, where the control is realized by means of a digital
processor the processor itself would introduce a delay into the observer
loop. In addition to that, the sensors that measure the variables of the
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plant would also contribute to the error of observation, despite the fact
that they are outside the observer loop, due to mismatch between the
observer model that does not include the parasitic dynamics and the
plant that includes this dynamics. It was shown in [8] that due to the
parasitic dynamics presence not only chattering occurs but the aver-
aged motions in the SM system differ from those of the reduced-order
system model. Naturally, we can expect the same effect in the SM ob-
servers too.

Considering the fact that a SM observer can be analyzed as a servo
system, this analysis would involve solving the input–output problem.
The input–output problem in discontinuous control was considered in
[7], [8]. The locus of a perturbed relay system (LPRS) method was pro-
posed as a tool for input–output analysis of system with discontinuous
(relay) control. This method is going to be used below for input–output
analysis of SM observers.

II. PROBLEM FORMULATION

Consider an n-dimensional version of the observer proposed by
Utkin [2]. Let the linear plant, the states of which are supposed to be
observed, be the nth-order dynamical system

_x =Ax +Bu (1)

y =Cx (2)

where x 2 Rn is the state vector, y 2 R1 is the measurable system
output, A 2 Rn�n, B 2 Rn�1, C 2 R1�n are matrices. The pair
(C;A) is assumed to be observable.

The SM observer can be designed in the same form as the original
system (1), (2) with addition of an output injection being an observer
correction input that depends on the error between the output of the
observer and the output of the plant (system to be observed)

__
x =A

_

x +Bu+ L sign(y �
_

y ) (3)
_

y =C
_

x (4)

where
_

x 2 Rn is an estimate of the system state vector,
_

y 2 R1 is an
estimate of the system output, and L 2 Rn�1 is a gain matrix.

Denote the sliding variable as follows:

� = y �
_

y : (5)

The elements of L must be such that the reachability condition of the
SM and stability of the reduced SM dynamics should be insured. It is
shown in [2] and [3] that the matrix L can be selected to provide the
convergence of the sliding variable � to zero in finite time and asymp-
totic convergence of the estimation error for the system variables. We
assume that conditions of existence of SM in the observer dynamics
are satisfied. The subject of analysis of the present note is the effect of
the parasitic dynamics that are inevitably present in the dynamics of a
practical realization of an observer. Let us consider the observer to be
a dynamical system that has two inputs and one output. One of those
two inputs y(t)must be followed (tracked) by the observer output

_

y (t)
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Fig. 1. Relay servo system representation of the SM observer.

Fig. 2. Relay servo system representation of the SM observer with parasitic
dynamics.

as precisely as possible. The other input u(t) can be treated as a feed-
forward. Therefore, it makes sense to consider the observer as a relay
servo system (Fig. 1).

With this representation, we are now able to apply the LPRS ap-
proach [7], [8] to analysis of the SM observer performance. Yet, it is
worth noting that a SM observer is designed the way that theoretically
in the system Fig. 1 an ideal SM occurs. As a result, in a steady state,
variables

_
y (t) and y(t) are always equal, and the state estimates

_
x(t)

are equal to the plant states x(t). We need to determine the nature the
parasitic dynamics to obtain a result different from the ideal sliding and
observation accuracy different from the ideal one. Considering a digital
realization of the SM observer one can note that the parasitic dynamics
of the SM observer comes from the delay in the output

_
y (t) calcula-

tion [9]. Let us show now that in a relay feedback system, the digital
realization of the observer equations is manifested as a delay. Consider
only calculations that are done within the observer loop. Suppose that
the computing of the observer output begins from the calculation of the
sliding variable �(t), after that the discontinuous control v(t) is calcu-
lated, and so on up to the observer output

_
y (t). All those calculations

are done over one execution period � of the controller. Therefore, at
the calculation of the sliding variable, the value of the observer output
calculated on the previous execution period is used. This is equivalent
to introducing the time delay in the observer loop (Fig. 2). It should
be noted that the execution period for computing

_
y (t) and the sam-

pling rate for measuring y(t) are two different notions. However, for
the purpose of our analysis we can assume that the values of those two
variables are equal. This is a simplified approach. In reality, there may
be different combinations of sampling rate and execution period. The
results would also depend on the algorithm of the numeric integration.

Let us proceed from the following assumption. Since in the case of
absence of the parasitic dynamics the SM is realized ideally, the digital
implementation would exhibit chattering with the period equal to two
execution periods of the algorithm (see [10], for example). On the other
hand the system with a time delay (Fig. 2) would exhibit the same kind
of motion. Obviously, by varying the time delay the frequency of chat-
tering in the second case can be tuned to be equal to the frequency of
chattering in the first case. If we assume that the solution of system (3),
(4) is obtained exactly at the digital realization of the SM observer then
the considered two SM observer dynamics: the digital realization and
the time delay realization would be equivalent. In other words, knowing
the execution period we can find a certain equivalent time delay that
the dynamics of those two representations of the SM observer would

Fig. 3. Relay servo system.

be equivalent. A similar approach to analysis of discrete-time SM sys-
tems was proposed in [11]. Therefore, the use of time delay in the model
represents a certain generic approach to evaluation of the SM observer
performance.

With this representation, we can analyze the observer performance
in terms of the response of the relay servo system (Fig. 2) to two in-
puts: u and y. This is a complex task, which, however, can be fulfilled
via application of the LPRS method that is designed for input–output
analysis of relay systems.

III. THE CONCEPTS OF THE LOCUS OF A PERTURBED RELAY SYSTEM

(LPRS) APPROACH

In [7], [8] the LPRS was introduced as a method of analysis and
design of relay servo systems having a linear plant (Fig. 3). Let us call
the part of the relay servo system that is given by the linear differential
equations the linear part. With respect to the SM observer, the linear
part will be the one given by (3) and (4).

The LPRS was defined as a complex function J(!) in the frequency
domain as follows:

J(!) = �
1

2
lim
f !0

�0

u0
+ j

�

4c
lim
f !0

y(t)jt=0 (6)

where t = 0 is the time of the switch of the relay from “�c” to “+c”, !
is the frequency of the periodic motion. The frequency in (6) is the fre-
quency of the self-excited oscillations varied by changing the hysteresis
2bwhile all other parameters of the system are considered constant; �0,
u0 and y(t)jt=0 can, therefore, be considered functions of !, and ! a
function of the hysteresis 2b. The limit in the imaginary part of (6) is
the value of y(t) at the time of the switch in the symmetric oscillations.
Thus, J(!) is defined as a characteristic of the response of the linear
part to the unequally spaced pulse input u(t) subject to f0 ! 0 as the
frequency ! is varied.

A few techniques of the LPRS computing—for different types of
plant description—were proposed. If the plant is represented by (1),
(2) the LPRS is given by the following formula:

J(!) = �0:5C A
�1 +

2�

!
(I� e

(2�=!)A)�1e(�=!)A B

+j
�

4
C(I+ e

(�=!)A)�1(I� e
(�=!)A)A�1B (7)

where matrix A is assumed to be invertible (for noninvertible A, an-
other formula of the LPRS is obtained in [8]). Another useful formula
of J(!) was derived for the case of the linear part given by a transfer
function Wl(s) [7], [8]. The formula has the form of infinite series,
which is convenient if the plant is given by the transfer function. This
formula can be used for linear parts containing a time delay

J(!) =

1

k=1

(�1)k+1Re Wl(k!) + j

1

k=1

ImWl[(2k � 1)!]

2k � 1
(8)

where Wl(s) = C(Is�A)�1B or considered a given function.
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Fig. 4. LPRS and oscillations analysis.

Fig. 5. Plant and observer model.

With the plant model available, the LPRS can be computed at var-
ious frequencies and the LPRS plot can be drawn on the complex plane
(an example of the LPRS is given in Fig. 4). What is important is that
the LPRS is a characteristic of the relay feedback system and can be
computed from the plant model. Once the LPRS is computed, the fre-
quency 
 of the symmetric periodic solution can be determined from
the following equation:

Im J(
) = �
�b

4c
(9)

which corresponds to finding the point of intersection of the LPRS and
the horizontal line that lies below the real axis at ��b=(4c) (Fig. 4),
and the equivalent gain [7], [8] of the relay (the gain of the relay with
respect to the averaged motions) can be determined as

kn =
@u0
@�0 � =0

= �
1

2ReJ(
)
(10)

which corresponds to the distance between the intersection point and
the imaginary axis. Both formulas: (9) and (10) directly follow from
the definition (6).

With the formulas of the LPRS available, input-output analysis of the
relay feedback system (Fig. 3) can be done in the same manner as with
the use of the describing function method [12] (however, involvement
of the filtering hypothesis is not needed any longer). The relay func-
tion can be replaced with the equivalent gain (10) and the input–output
properties of the relay system can be analyzed as the properties of the
resulting linearized system.

IV. SM OBSERVER PERFORMANCE ANALYSIS AND CHARACTERISTICS

With the representation of the SM observer as a relay servo system,
we can formulate some performance measures of the observer. In our
analysis, we have to consider some properties of this servo system typ-
ical of the observers only. The main feature of the observer input-output

Fig. 6. Linearized model of plant and observer.

dynamics is that there are two different inputs to the system that are not
independent (Fig. 5).

From the function of the observer it follows that, apart from the ini-
tial transient time, the values of y(t) and of

_

y (t) are very close. The
variable y(t) is a result of the propagation of input u(t) through the
dynamics of the plant. On the other hand, if we assume that the model
of the observer ideally matches the model of the plant we can conclude
that by setting v(t) � 0 we can obtain the result:

_

y (t) = y(t), which
essentially means that the discontinuous control v(t) is needed to com-
pensate for the mismatch between the dynamics of the plant and the
dynamics of the observer model. Since the values of y(t) and of

_

y (t)
are close, with the value of

_

y (t) alternately becoming slightly above
and slightly below y(t), the control v(t) is almost equally spaced, and
u(t) plays the role of the “equivalent control.”

At first, consider possible methodology of analysis of the observer
dynamical system given in Fig. 2. From the LPRS approach, we know
that the averaged forced motions in the system Fig. 2 can be analyzed
via the use of the equivalent gain of the relay concept and the linearized
model, which can be obtained from the original model by replacing the
relay function with the equivalent gain. The linear part of the system
for the LPRS analysis is the dynamics of the observer model and the
parasitic dynamics (time delay) marked in the diagram Fig. 2 with the
dashed line. This model can also be represented by the transfer function
Wl(s) from control v(t) to the output

_

y (t).
Methodology of input–output analysis of the dynamics given in

Fig. 5 is presented in [7], [8]. However, the observer analysis has its
specifics due to unknown value of the equivalent time delay. As a
result, analysis can be done via: a) identification of the equivalent time
delay of the continuous-time model of the observer—via matching
the frequencies of chattering, where the frequency of chattering of the
continuous-time system should be computed from (9), where b = 0,
with the LPRS computed per (8) (or using other techniques given in
[8]); b) computing the LPRS for the linear part of the relay system
(corresponding to Wl(s)); c) computing the equivalent gain value
using formula (10); and d) replacing the relay with the equivalent gain
and carrying out analysis of the linearized observer dynamics. The
linearized plant-observer dynamics can be represented as in Fig. 6. In
Fig. 6, subscript “0” is used to indicate the averaged on the period of
chattering variables.

We have thus obtained a linear model of the plant and the observer,
from which various characteristics of the observer accuracy can be de-
rived. Those characteristics are different from the frequency and the
amplitude of chattering that can be obtained from the relay feedback
representation of the observer (Fig. 2). If, for example, we follow the
conventional approach to servo systems analysis we can formulate a dy-
namical accuracy criterion as a frequency response of the error signal
�(t) to the harmonic excitation u(t) of variable frequency. This char-
acteristic can be presented as a magnitude and a phase responses:

M =20 lg jWu��(j!)j (11)

' = argWu��(j!) (12)
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Fig. 7. LPRS of the SM observer linear part.

whereM is the magnitude response,' is the phase response,Wu��(s)
is the transfer function from u(t) to �(t) that is given by

Wu��(s) = C(sI�A)�1B
1� e��s

1 + knC(sI�A)�1Le��s
: (13)

Such characteristics as the bandwidth, resonant frequencies and others
can be easily obtained from the frequency response of the linearized
plant-observer model too.

V. EXAMPLE OF SM OBSERVER PERFORMANCE ANALYSIS

Consider an example of performance analysis of two-dimensional
version of the SM observer. Let the plant be the second-order system

(1), (2) with A =
0 1

�1 �3
, B =

0

1
, C = [ 1 1 ]. And the

observer dynamics be given by (3), (4) with L = [ 1 4 ]T . Assume
that the input to the system is a harmonic oscillation of variable fre-
quency: u(t) = sin(!t). Let the equivalent delay be � = 0:01 s. The
corresponding execution period that would cause such delay will be
determined below. Write an expression for the transfer function of the
linear part in the relay servo dynamics

Wl(s) =C(sI�A)�1Le��s =
5s+ 6

s2 + 3s+ 1
e�0:01s

=
25+3

p
5

10

s+ 3+
p
5

2

+
25�3

p
5

10

s+ 3�
p
5

2

e�0:01s

=
1:2112

0:3819s+ 1
e�0:01s +

4:7888

2:6180s+ 1
e�0:01s: (14)

Now, compute the LPRS corresponding to the transfer function (14)
using the formula for the first-order plus dead time dynamics [8] with
the transfer function W (s) = Ke��s= (Ts+ 1) and the additivity
property of the LPRS [8, Th. 1]

J(!) =
K

2
(1� �e
cosech�) + j

�

4
K

2e��e


1 + e��
� 1

where � = �=T! and 
 = �=T . The LPRS of the observer dynamics
is presented in Fig. 7. Calculate the frequency of chattering as per for-
mula (9) assuming zero hysteresis (b = 0): 
 = 158:48 s�1. This
would correspond to the execution period equal to �=
 = 0:0198 s,
which illustrates the correspondence between the execution period and
the equivalent delay. Using formula (10) calculate the equivalent gain
of the relay: kn = 20:08. Now, we can compute the observation error
for various frequencies of the input signal as the magnitude of the
transfer function (13). The plot providing the output error versus the
frequency of the input signal is given in Fig. 8. From this plot, we can
also derive some other characteristics of the analyzed SM observer. For
example, the resonant frequency of the observer characteristic is about
138 s�1, and the observer bandwidth measured at the level of 1% ob-
servation error is about 76 s�1, maximum observation error is about
2.85%. At low frequencies, observation error grows linearly with the
logarithm of the input signal frequency. It should be noted that the fre-
quency-domain input–output analysis in a SM system makes sense only
for the frequencies below the frequency of chattering. For that reason,
the observation error is computed only in this frequency range.

The observation error can also be computed for x1 and x2 using the
transfer functions from the system input to the difference of the variable
x1;2 and its estimate x̂1;2

Wu�x1(s)

= C(sI�A)�1B
1� e��s

1 + knC(sI�A)�1Le��s
C1(sI�A)�1L

(15)

where C1 = [ 1 0 ].

Wu�x2(s)

= C(sI�A)�1B
1� e��s

1 + knC(sI�A)�1Le��s
C2(sI�A)�1L

(16)

where C2 = [ 0 1 ]. The error of observation for variables x1 and
x2 versus the frequency of the input signal is depicted in Fig. 9. The
computer simulations qualitatively match very well the results obtained
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Fig. 8. Output error magnitude versus frequency.

Fig. 9. Observation error of x and x versus frequency.

analytically. However, the numeric results may differ from the analyt-
ical results—depending on the used method of integration, step value,
execution order of the model, etc.

VI. CONCLUSION

It was shown that the SM observer is essentially a relay feedback-
feedforward system and can be analyzed as such. Having noted this,
it is proposed above that the performance of the SM observer should
be estimated in terms of the characteristics of the frequency response
of this relay feedback-feedforward system. Respective analysis should
involve replacement of the original digital implementation of the SM
observer with a certain SM system having a time delay. The latter can
be analyzed with the use of the LPRS method, which involves com-
puting the frequency-domain characteristic called the LPRS, solving
the equation for the frequency of chattering, computing the value of
the equivalent gain of the relay for the averaged values of the variables,
building the linearized model of the averaged motions via the replace-
ment of the relay characteristic with the equivalent gain. Analysis of the
linearized system can be done with the use of applicable methods. It is

found that the dynamical performance of the SM observer is not ideal.
Because of the existence of parasitic dynamics in the observer loop
(time delay due to discrete implementation of the algorithm) there al-
ways exists a nonzero observation error – even after the initial transient.
This observation error depends on a number of factors (including the
execution period of the algorithm), and can be numerically evaluated
with the use of the approach presented above. The provided example
illustrates the proposed approach in detail and proves that no ideal ob-
servation occurs in an implementation of the SM observers.
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A Block Triangular Form for Nonlinear Observer Design

Yebin Wang and Alan F. Lynch

Abstract—This note reconsiders existence conditions for an established
block triangular form (BTF) for a broad class of multi-output nonlinear
systems. Systems transformable into BTF coordinates allow for decentral-
ized observer design performed subsystem-at-a-time effectively treating
upper subsystem states as measurements. Sufficient conditions are given to
ensure that the output is linear in BTF coordinates. An example illustrates
the BTF construction and a typical observer design.

Index Terms—Differential geometry, nonlinear systems, observers.

I. INTRODUCTION

We consider uncontrolled multiple-output systems

_� = f(�) y = h(�) (1)

with C1 vector fields f : n ! n, and C1 output functions
h : n ! p. Exact error linearization (EEL) is an established ob-
server design method based on an observer form (OF) which leads to
linear time-invariant (LTI) error dynamics when expressed in OF co-
ordinates. After the original single-output work on EEL in [1] and [2]
many extensions have been proposed [3]–[10]. OF-based methods may
be difficult to apply in practice due to restrictive existence conditions,
and this has led to approaches which relax these conditions. For ex-
ample, researchers have considered removing the linearity constraint
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on the output [11] or the use of high gain [12]. The OF and related spe-
cial forms, such as that considered in this note, define coordinates in
which the system has a special structure which facilitates observer de-
sign. This may lead to a more complex design applicable to a restricted
system class. However, the benefits of exploiting a particular system
form, even if only locally defined, are established and include simple
observer structures and reduced observer gains which make the design
less susceptible to measurement noise and model uncertainty.

This note presents a block triangular form (BTF) which relates to
EEL in that it also identifies coordinates in which the system has a
special structure. The BTF is more broadly applicable than the OF and
decomposes a p-output system (1) into p subsystems with the dynamics
of the ith subsystem depending on the state of the ith subsystem itself,
the states of the “upper” jth subsystem, j < i, and the system output.
In general we do not constrain the dependence of the output in the
BTF coordinates. The BTF first appeared in [6] as an intermediate step
to computing a so-called block triangular observer normal form and
was further investigated in [13]. The primary reason for transforming a
system into BTF is that it permits lower dimensional observer designs
to be performed subsystem-at-a-time while effectively treating “upper”
subsystem states as known measurements [6]. Existence conditions for
the BTF are weaker than those of the special forms used in EEL [4],
[5] and can, therefore, be applied to a broader class of systems. As
in [6], we reconsider the application of the results in [14] to establish
modified BTF existence conditions. It is important to note the similarity
of the existence conditions and their proof which are presented here
with those given in [6]. The present work’s contribution is to point out
the oversight in [6]; the upper subsystem variables cannot be treated as
parameters.

II. SYSTEM FORMS

In order to state the existence conditions for the BTF we introduce an
observable form which exists if we make an observability assumption.

Definition 2.1: System (1) is locally observable at �0 2 n with
indexes �i > 0, 1 � i � p, if

1) p

i=1 �i = n;
2) after suitable reordering of the hi’s,

dim(spanfLj�1
f dhi(�

0); 1 � j � �i; 1 � i � pg) = n.
The indexes �i in Definition 2.1 are not uniquely defined [6]. As shown
in Section IV, nonuniqueness of �i can add a degree of freedom when
checking BTF existence conditions. That is, for a particular choice of
indexes �i the system may be transformable to BTF and for another
choice it is not.

A. Observable Form

When (1) is observable according to Definition 2.1 we can define
new coordinates xij = L

j�1
f hi , 1 � j � �i, 1 � i � p to locally

transform (1) into an observable form whose ith subsystem �i is

�i :
_xi = f i xhii; y

h� i
[i+1;p] =

xi2

xi3
...

'i xhii; y
h� i
[i+1;p]

yi = xi1

(2)

where xhii = ((x1)T ; . . . ; (xi)T )T 2 � with �i =
i

k=1 �k , xi =

(xi1; . . . ; x
i
� )T , yh� i

[i+1;p] = ((y
h� i

i+1 )T ; . . . ; (y
h� i
p )T )T , y

h� i

j =

(yj ; _yj ; . . . ; y
(� )

j )T , and the nonnegative indexes �ij , 1 � i < j � p

denote the highest order of time derivative of yj appearing in 'i =
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