
Slow periodic motions with internal sliding modes in variable structure systems

LEONID M. FRIDMANy

Singularly perturbed relay systems (SPRS) in which the reduced systems have the stable periodic motions with internal
sliding modes are studied. The slow motion integral manifold of such systems consists of the parts which correspond to
the di� erent values of relay control and the solutions may contain the jumps from one part of the slow manifold to
another. For such systems a theorem about existence and stability of the periodic solutions is proved. An algorithm of
asymptotic representation for this periodic solutions using boundary layer method is presented. It is proved that in the
neighbourhood of the break away point the asymptotic representation starts with the ®rst order boundary layer function.

1. Introduction

There are a wide class of relay control systems which

work in periodic regimes (Sira Ramirez 1988, Johansson

et al. 1999). Moreover, such regimes arise every time in

relay control systems with time delays because a time

delay does not allow an ideal sliding mode to be rea-

lized, but results in periodic oscillations (Drakunov and
Utkin 1992, Fridman et al. 1993). In controllers of

exhaust gases for fuel injector automotive control

systems (see for example Choi and Hedrick 1996, Li

and Yurkovitch 1999) the sensors can measure only

the sign of the controlled variable with a delay. In

such systems only oscillations around zero value can

occur. In the controllers for stabilization of underwater
manipulators it is possible to realize only oscillations

because of the manipulators properties (see Bartolini

et al. 1997).

Some relay systems work in periodic regimes with

internal sliding modes. As the simplest modelling ex-

ample of the periodic oscillations with the internal slid-

ing modes we will consider the pendulum which has dry
friction contact with an inclined uniformly rotating disc

(see, for example, Rumpel 1996). First this pendulum is

moving together with disc until returned point and

returning back. In real relay control systems, every

time we have some unmodelled dynamics which can

correspond, for example, to the presence in system of

fast actuators or inertial sensors. Usually such dynamics
destroy the qualitative behaviour of control systems.

The complicated model of sliding mode control systems

taking into account the presence of fast and inertial

sensors is described by singularly perturbed relay

systems (SPRS).

SPRS describe the complete model of fuel injector

systems taking into account the in¯uence of the addi-

tional dynamics (the car motor). The knowledge of
properties of SPRS it is necessary in the controllers for

stabilization of the underwater manipulator ®ngers to
take into account the in¯uence of the elasticity of

these ®ngers. In the simplest pendulum systems SPRS
describe the in¯uence of the second small pendulum on
the oscillation of the ®rst one.

SPRS was investigated by Utkin (1992), Fridman
(1990) (stability), Bogatyrev and Fridman (1992) (exist-

ence of stable slow motion integral manifold), and
Fridman (2001) (averaging and existence of stable peri-
odic solutions). Some control algorithms for SPRS was

suggested by Heck (1991), Su (1999) and Innocenti et al.
(2000).

For smooth singularly perturbed systems there are

two main classes of slow periodic solutions. Slow peri-
odic solutions of the smooth singularly perturbed

systems `without jumps’ are situated on slow motion
integral manifold (see for example Wasov 1965). The

other important class of such solutions are the relaxa-
tion solutions (see Mishchenko and Rosov 1980), which
contain the `jumps’ from the neighbourhood of the one

stable branch of slow motion manifold to the neigh-
bourhood of another one.

Fridman (2000) was shown that the slow motion
integral manifold of SPRS is discontinuous and consists
at least of parts which correspond to the di� erent values

of control. This means that the desired periodic solution
of SPRS should have the jumps from the small neigh-
bourhood of the one sheet of integral manifold to the

neighbourhood of another one. From this viewpoint the
qualitative behaviour of this periodic solution will be

nearer to the relaxation solution. The main speci®c fea-
ture of systems with relaxation oscillations is the follow-
ing: at the moment of time corresponding to the jump

from the neighbourhood of one branch of the stable
integral manifold to the neighbourhood of another

one, the value of the right-hand side is small. That is
why in order to ®nd the asymptotic representation of the
relaxation solution it was necessary to make special

asymptotic representations. The situation with SPRS is
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di� erent. The right-hand side of a SPRS is switches im-
mediately after the switching moment and the right-
hand side of fast equations in SPRS after this moment
is very big. It allows us to use the standard boundary
layer functions method (see Vasil’eva et al. 1995) for
asymptotic representation of slow periodic solution of
SPRS.

This paper is devoted to the investigation of the
in¯uence of additional dynamics on the periodic motion
of the relay systems with internal sliding modes. We will
consider the SPRS for which the reduced systems have
the periodic solution with internal sliding mode. A
theorem about existence and stability of slow periodic
solutions for singularly perturbed relay systems with
internal sliding mode is proved. The algorithm for
asymptotic representation of the periodic solution is
suggested and it is proved that there is no zero order
boundary layer function in the asymptotic approxima-
tion of periodic solutions at break away point.

2. Problem statement

Consider the SPRS in the form

· dz=dt ˆ g…z; ¼; s; x; u†; ds=dt ˆ h1…z; s; ¼; x; u†
d¼=dt ˆ h2…z; s; ¼; x; u†; dx=dt ˆ h3…z; s; ¼; x; u†

¼

…1†

where z 2 Rm, s; ¼ 2 R, x 2 Rn, u…s† ˆ sign …s†,
g; hi …i ˆ 1; 2; 3† are the smooth functions of their argu-
ments, · is the small parameter. Denote by Z; S; S; X
the domains in which the variables …z; s; ¼; x†; …s; ¼; x†;
…s; x† and x are de®ned. Suppose that
h1; h2; h3; g 2 C2‰ ·ZZ £ ‰¡1; 1ŠŠ: Then putting · ˆ 0 and
expressing z from the equation

g…z0; s; ¼; x; u…s†† ˆ 0

we have the reduced system

z0 ˆ ’…s; ¼; x; u†

d·ss0=dt ˆ h1…’…·ss0; ·¼¼0; ·xx0; u†; ·ss0; ·¼¼0; ·xx0; u†

ˆ H1…·ss0; ·¼¼0; ·xx0; u†

d·¼¼0=dt ˆ h2…’…·ss0; ·¼¼0; ·xx0; u†; ·ss0; ·¼¼0; ·xx0; u†

ˆ H2…·ss0; ·¼¼0; ·xx0; u†

d·xx0=dt ˆ h3…’…·ss0; ·¼¼0; ·xx0; u†; ·ss0; ·¼¼0; ·xx0; u†

ˆ H3…·ss0; ·¼¼0; ·xx0; u†

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

…2†

Suppose that the measure of the sliding domain

S ˆ f…z; ¼; x† : h1…z; 0; ¼; x; 1† < 0; h1…z; 0; ¼; x; ¡1† > 0g

on the surface s ˆ 0 in system (2) is non-zero in S £ f0g
and G is the border of S is described by equations

s ˆ 0 \ …¼ ˆ 0 , ueq…z; 0; x†

² 1 , h1…z; 0; 0; x; 1† ² 0†

and moreover for all …z; x† 2 G 2 Rm £ Rn

h1…z; 0; 0; x; ¡1† > 0; h2…z; 0; 0; x; 1† > 0

Suppose that the solution of system (1) in the sliding
domain S is uniquely described by the equivalent con-
trol method (see for example Utkin 1992)

· dz=dt ˆ g…z; ¼; 0; x; ueq…z; ¼; x††

d¼=dt ˆ h2…z; 0; ¼; x; ueq…z; ¼; x††

dx=dt ˆ h3…z; 0; ¼; x; ueq…z; ¼; x††

9
>>=

>>;
…3†

where the equivalent control u ˆ ueq…z; ¼; x† at all
…z; ¼; x† 2 S is determined by equation

h1…z; 0; ¼; x; ueq† ˆ 0

and everywhere in S the inequality jueq…z; ¼; x†j < 1 is
true.

The main speci®c feature of system (1) is the follow-
ing: the zero approximation of the slow motion integral
manifold for system (1) consists of three sheets

·zz §
0 ˆ ’§…s; ¼; x† ˆ ’…s; ¼; x; §1†; and

·zz*0 ˆ ’*…¼; x† ˆ ’…0; ¼; x; ·uueq…¼; x††

corresponding to the value of relay control u ˆ §1 and
u ˆ ·uueq…¼; x†; where ·uueq…¼; x† is the value of equivalent
control determined by equation

H1…s; ¼; x; ·uueq…¼; x†† ˆ 0

It is obvious (see for example Heck 1991), that

ueq…’…0; ¼; x; ·uueq…¼; x††; ¼; x† ˆ ·uueq…¼; x†

For the description of periodic solution in the reduced
system consider two auxiliary systems. The system

d·ss ‡
0 =dt ˆ H1…·ss ‡

0 ; ·¼¼ ‡
0 ; ·xx‡

0 ; 1†
d·¼¼ ‡

0 =dt ˆ H2…·ss ‡
0 ; ·¼¼ ‡

0 ; ·xx‡
0 ; 1†

d·xx‡
0 =dt ˆ H3…·ss ‡

0 ; ·¼¼ ‡
0 ; ·xx‡

0 ; 1†

9
>=

>;
…4†

describes the motions in (2) for u ˆ 1: Consider the
system

d·¼¼0*=dt ˆ H2…0; ·¼¼0*; ·xx0*; ·uueq†
d·xx0*=dt ˆ H3…0; ·¼¼0*; ·xx0*; ·uueq†

)
…5†

corresponding to the motions in (2) in sliding mode on
s ˆ 0:

Let us denote

¢ ˆ fx : H1…0; 0; x; 1† ˆ 0; H1…0; 0; x; ¡1† > 0g

as the border of sliding domain of system (2). Then the
points …0; 0; x† 2 ¢ are the points in which solutions of
(2) are leaving the sliding domain. Suppose that for sol-
ution of system (4) with the initial conditions
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s0…0† ˆ 0; ¼0…0† ˆ 0; x0…0† ˆ x0; x0 2 ¢

the following conditions are true

(i) there exists t ˆ ³…x0† the smallest root of equa-
tion ·ss ‡

0 …³† ˆ 0; such that

. h1…’‡…0; ·¼¼ ‡
0 …³†, ·xx‡

0 …³††, 0; ·¼¼ ‡
0 …³†, ·xx‡

0 …³†, 1† < 0,
h1…’‡…0; ·¼¼ ‡

0 …³†; ·xx‡
0 …³††; 0; ·¼¼ ‡

0 …³†; ·xx‡
0 …³†; ¡1† > 0;

. ·¼¼ ‡
0 …³† < 0;

(ii) for solution of system (5) with initial conditions

·¼¼0*…³† ˆ ·¼¼ ‡
0 …³†; ·xx0*…³† ˆ ·xx‡

0 …³†

there exists t ˆ T…x0† the smallest root of equa-
tion ·¼¼0*…T† ˆ 0 such that

. for all t 2 ‰³; T†

h1…’*…0; ·¼¼0*…t†; ·xx0*…t††; 0; ·¼¼0*…t†; ·xx0*…t†; 1† < 0;

h1…’*…0; ·¼¼0*…t†; ·xx0*…t††; 0; ·¼¼0*…t†; ·xx0*…t†; ¡1† > 0;

. H2…0; 0; ·xx0*…T†; ¡1† > 0:

Now we can de®ne the Poincare map C : x0
>

·xx0*…T…x0†† of the border of the sliding domain ¢ gener-
ated by system (2) into itself (see ®gure 1).

The systems (1) and (2) are discontinuous, and con-
sequently for investigation of stability for their periodic
solution it is impossible to use equation in variations.
That is why we will write down the conditions of exist-
ence and stability of periodic solutions for systems (1)
and (2) in the form of the Poincare map properties.

Suppose that for the system (2) the following
hypotheses are true:

(iii) there exists an isolated ®xed point of the Pain-
care map C…x† : C…x0*† ˆ x0*; x0* 2 ¢; corre-
sponding to the periodic solution of (2), such
that det …@C=@x†…x*0† 6ˆ 0;

(iv) k…@C=@x†…x*0†k < q < 1:

Denote by ³0 ˆ ³…x0*†; T0 ˆ T…x0*†: Consider the broken
line

L0…t† ˆ

’‡…s‡
0 …t†; ¼ ‡

0 …t†; x‡
0 …t†† for t 2 …0; ³0†

’¤…¼0*…t†; x0*…t†† for t 2 …³0; T0†
…1 ¡ ¶†’‡…0; ·¼¼ ‡

0 …³0†; ·xx‡
0 …³0††

‡¶’¤…·¼¼ ‡
0 …³0†; ·xx‡

0 …³0††
¶ 2 ‰0; 1Š for t ˆ ³0

8
>>>>>><

>>>>>>:

In this paper the su� cient conditions are found for
existence of the isolated orbitally asymptotically stable
periodic solution of system (1) with internal sliding
modes near to the broken line

…L0…t†; s0…t†; ¼0…t†; x0…t††

An algorithm for the asymptotic representation of this
periodic solution is suggested. This solution consists of
boundary layers at the break away point t ˆ 0 and at the
point t ˆ ³0 and it is proved there is no zero order
boundary layer function in the asymptotic representa-
tion of periodic solution at break away point.

3. Existence of the slow periodic solution

We will consider only situations in which the fast
motions in (1) are uniformly asymptotically stable.
This means that for systems

dz

d½
ˆ g…z; s; ¼; x; 1† …6†

dz

d½
ˆ g…z; 0; ¼; x; ueq…z; ¼; x†† …7†

which describe the fast motions in (1) for u ˆ 1 and (3)
respectively, for some ¬ > 0; ¯ > 0 the following con-
ditions are true:

(v) the matrix …@g=@z†…z; s; ¼; x; 1† is stable on the
set

Z‡ ˆ f…z; s; ¼; x† : …z; s; ¼; x† 2 Z ; s > 0

j…z; s; ¼; x† ¡ …’‡…·ss ‡
0 …t†; ·¼¼ ‡

0 …t†; ·xx‡
0 …t††; ·ss ‡

0 …t†;

·¼¼ ‡
0 …t†; ·xx‡

0 …t††k < ¯; t 2 ‰0; ³0Šg

and

Re Spec
@g

@z
…z; s; ¼; x† < ¡¬ < 0

(vi) the matrix …@g=@z†…z; 0; ¼; x; ueq…z; 0; ¼; x†† is
stable on the set

526 L. M. Fridman
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Z* ˆ f…z; 0; ¼; x† : …z; 0; ¼; x† 2 Z; k…z; 0; ¼; x†

¡ …’*…·¼¼*0…t†; ·xx*0…t†; ·uueq…·¼¼*0…t†; ·xx*0…t†††; ·¼¼*0…t†; ·xx*0…t††k

< ¯; t 2 ‰³0; T0Šg

and

Re Spec
@g

@z
…z; 0; ¼; x† < ¡¬ < 0

It is natural to suppose that at the time moment of input
into the sliding mode the corresponding point of system
(1) solution is situated in the interior of attractivity
domain for slow motion integral manifold of system
(3). Suppose that:

(vii) point ’‡…0; ·¼¼ ‡
0 …³0†; ·xx‡

0 …³0†† is an internal point
of attractivity domain of ’*…·¼¼ ‡

0 …³0†; ·xx‡
0 …³0††

which is equilibrium point of system

dz=d½ ˆ g…z; 0; ·¼¼ ‡
0 …³0†; ·xx‡

0 …³0†; ueq…z; ·¼¼ ‡
0 …³0†; ·xx‡

0 …³0††

and at all points of segment connected the points

’‡…0; ·¼¼ ‡
0 …³0†; ·xx‡

0 …³0†† and ’¤…·¼¼ ‡
0 …³0†; ·xx‡

0 …³0†† the
su� cient conditions for sliding mode existence
are true, which means that for all ¶ 2 ‰0; 1Š

h1……1 ¡ ¶†’‡…0; ·¼¼ ‡
0 …³0†; ·xx‡

0 …³0††

‡ ¶’*…·¼¼ ‡
0 …³0†; ·xx‡

0 …³0††; 0; ·¼¼ ‡
0 …³0†; ·xx‡

0 …³0†; 1† < 0

h1……1 ¡ ¶†’‡…0; ·¼¼ ‡
0 …³0†; ·xx‡

0 …³0††

‡ ¶’*…·¼¼ ‡
0 …³0†; ·xx‡

0 …³0††; 0; ·¼¼ ‡
0 …³0†; ·xx‡

0 …³0†; ¡1† > 0

For the proof of existence and stability of system (1)
periodic solution consider the properties of the
Poincare map F…z; x; ·† of the border of sliding domain

G into itself, generated by (1).
Denote by

…z…t; ·†; s…t; ·†; ¼…t; ·†; x…t; ·††

the solution of system (1) with initial conditions

z…0; ·† ˆ ²; s…0; ·† ˆ 0;

¼…0; ·† ˆ 0; x…0; ·† ˆ ¹

Lemma 1: Under conditions (i)±(vii) there exists the
neighbourhood U 2 G of the point …’*…0; x*0†; x*0†; such
that for all …²; ¹† 2 U for su� ciently small · there exist
0 < ³…²; ¹; ·† < T…²; ¹; ·† such that

s…³…²; ¹; ·†; ·† ˆ 0

¼…T…²; ¹; ·†; ·† ˆ 0

, h1…z…T…²; ¹; ·†; ·†; 0; ¼…T…²; ¹; ·†; ·†;

x…T…²; ¹; ·†; ·†; 1† ˆ 0;

and for all t 2 ‰³…²; ¹; ·†; T…²; ¹; ·††:

. ¼…t; ·† < 0

. h1…z…t; ·†; 0; ¼…t; ·†; x…t; ·†; 1† < 0

. h1…z…t; ·†; 0; ¼…t; ·†; x…t; ·†; ¡1† > 0

Moreover y…t; ·† ˆ …z…t; ·†; s…t; ·†; ¼…t; ·†; x…t; ·†† exists

and unique on ‰0; T…²; ¹; ·†Š and

…z…T…²; ¹; ·†; ·†; x…T…²; ¹; ·†; ·†† 2 U

Proof: The functions …z…t; ·†; s…t; ·†; ¼…t; ·†; x…t; ·†† is

dii� erentiable on ²; ¹; · at the points

t ˆ ³0; T ˆ T0 (see for example Strygin and Sobolev

1988). Then from implicit function theorem it follows

that there exists the closed ball ·BB…¬† » U 2 Rn with

radius ¬ with the centre of x0* such that for every

¹ 2 ·BB…¬†:

. k…@C=@x†…¹†k < q 0 < 1;

. the point ’‡…0; ·¼¼ ‡
0 …³…¹††; ·xx ‡

0 …³…¹††† is an internal
point of attractivity domain for asymptotically

stable equilibrium point ’*…·¼¼ ‡
0 …³…¹††; ·xx ‡

0 …³…¹†††
of system

dz

d½
ˆ g…z; 0; ·¼¼ ‡

0 …³…¹††; ·xx ‡
0 …³…¹††; ueq…0; ·¼¼ ‡

0 …³…¹††;

·xx ‡
0 …³…¹†††

. ·xx*0…T…¹†† 2 ·BB…q 0¬†;

. the set ·WW ˆ co ’*…0; ·UU…¬†† is situated in the inter-

ior of the attractivity domain of the equilibrium

point ’‡…0; 0; x*0† for system (6).

Then from the implicit functions theorem and lemmas 2

and 3 from the appendix it follows that at every point

…²; ¹† 2 ·WW £ ·BB…¬† there exists ·0…²; ¹†; such that for

every · 2 ‰0; ·0…²; ¹†Š

. for the solution …z‡…t; ·†; s‡…t; ·†, ¼‡…t; ·†,
x‡…t; ·†† of system (1) for u ˆ 1

· dz‡=dt ˆ g…z‡; s‡; ¼‡; x‡; 1†

ds‡=dt ˆ h1…z‡; s‡; ¼‡; x‡; 1†

d¼‡=dt ˆ h2…z‡; s‡; ¼‡; x‡; 1†

dx‡=dt ˆ h3…z‡; s‡; ¼‡; x‡; 1†

with initial condition (8), there exists ³…²; ¹; ·† the

smallest root of equation

s‡…³…²; ¹; ·†; ·† ˆ 0

such that
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h1…z‡…³…²; ¹; ·†; ·†; 0; ¼‡…³…²; ¹; ·†; ·†;

x‡…³…²; ¹; ·†; ·†; 1† < 0

h1…z‡…³…²; ¹; ·†; ·†; 0; ¼‡…³…²; ¹; ·†; ·†;

x‡…³…²; ¹; ·†; ·†; ·†; ¡1† > 0

¼‡…³…²; ¹; ·†; ·† < 0

. the point z‡…³…²; ¹; ·†; ·†; ·† is situated in the
attractivity domain of

’*…·¼¼ ‡
0 …³…²; ¹; ·†; ·†; ·xx ‡

0 …³…²; ¹; ·†; ·††

. for …z*…t; ·†; ¼*…t; ·†; x*…t; ·†† the solution system
(3) with initial conditions ensuring the continuity
of solution in the input in the sliding mode

z*…³…²; ¹; ·†; ·† ˆ z‡…³…²; ¹; ·†; ·†
¼*…³…²; ¹; ·†; ·† ˆ ¼‡…³…²; ¹; ·†; ·†
x*…³…²; ¹; ·†; ·† ˆ x‡…³…²; ¹; ·†; ·†

9
>=

>;
…9†

there exists the break away point
T…²; ¹; ·† > ³…²; ¹; ·† as the smallest positive
root of equation ¼*…T…²; ¹; ·†; ·† ˆ 0 for which

d¼*=dt…T ; ·† ˆ h2…z*…T ; ·†; 0; 0; x*…T ; ·†; 1† > 0

solution …z*…t; ·†; s*…t; ·†; x*…t; ·†† is uniquely
de®ned on

‰³…²; ¹; ·†; T…²; ¹; ·†Š

and the point …z*…T…²; ¹; ·†; ·†; x*…T…²; ¹; ·†; ·††
belongs to the set

…’*…0; U……1 ‡ q 0†¬=2††; U……1 ‡ q 0†¬=2††

Moreover

F…²; ¹; 0† ˆ lim
·>0

F…²; ¹; ·† ˆ …’*…0; x‡…T…¹†††; x*…T…¹†††

and for ¹ ˆ x0* we have F…’…0; x0*; 1†, x*0; 0† ˆ
…’*…0; x0*†; x*0†: Now from the compactness of the set

¨ ˆ ·WW £ ·UU…¬† one can conclude that there exists such

·0 such that for all · 2 ‰0; ·0Š

F…²; ¹; ·† ˆ …F1…²; ¹; ·†; F2…²; ¹; ·††

ˆ …z*…T…²; ¹; ·†; ·†; x*…T…²; ¹; ·†; ·††

the Poincare map of ¨; generated by system (1) trans-
forms ¨ into itself. This means that F…²; ¹; ·† for all

· 2 ‰0; ·0Š has on the set ¨ a ®xed point corresponding
to the periodic solution of system (1) in the neighbour-
hood of the broken line …L0…t†; ·ss0…t†; ·¼¼0…t†; ·xx0…t††: &

4. Uniqueness of periodic solution and its stability

Theorem 1: Under conditions (i)±(vii) for su� ciently
small · in the neighbourhood of the broken line

…L0…t†; ·ss0…t†; ·¼¼0…t†; ·xx0…t†† there exists orbitally asympto-
tically stable periodical solution with period
T…·† ˆ T0 ‡ O…·† and boundary layers at t ˆ 0 near to
the point t ˆ ³0: The zero order boundary layer function
at t ˆ 0 is equal zero.

Proof: The derivative of the Poincare map F by

²; ¹; · is smoothly depending from the corresponding
derivatives of functions

z‡…³…²; ¹; ·†; ·†; x‡…³…²; ¹; ·†; ·†;

z*…T…²; ¹; ·†; ·†; x*…T…²; ¹; ·†; ·†

and ³…²; ¹; ·†; T…²; ¹; ·†: The existence and continuity of
this derivative follows from the theorems about exist-
ence and continuity on initial conditions and parameters
for solutions of system di� erential equations at the end
of the ®nite time interval (Strygin and Sobolev 1988).

Introduce the new variable À ˆ ² ¡ ’*…0; x*…T…¹†††:
Consider now the conditions under which the ®xed
point of the map

L…À; ¹; ·† ˆ …L1…À; ¹; ·†; L2…À; ¹; ·††

ˆ ‰F1…À ‡ ’*…0; x*…T…¹†††; ¹; ·†

¡ ’*…0; x*…T…¹†††;

F2…À ‡ ’*…0; x*…T…¹†††; ¹; ·†Š

It is necessary to take into account that at · ˆ 0 at the
point …0; x0*† is the ®xed point of the map L; and L for
su� ciently small  ; ··· transforms the set

M… ; ¬; ···† ˆ f…À; ¹; ·† : kÀk <  ; x 2 ·BB…¬†; · 2 ‰0; ···Šg

into itself.
Let us ®nd the derivative of L with respect to À and

¹. For · ˆ 0 the value L…À; ¹; 0† does not depend on À
and L1…À; ¹; 0† does not depend on ¹: This means that

@L
@…À; ¹†

ˆ
O…·† O…·†
O…·† @C=@¹…x0*† ‡ O…·†

³ ´

Let us choose such  ; ··· > 0 that for some q1…q1 < 1†

sup
M… ;¬;···†

k @L
@…À; ¹†

k < q1 < 1

This means that the Poincare map L…À; ¹; ·† is a con-
tractive on M… ; ¬; ···† and has a unique ®xed point,
corresponding to a desired periodic solution of system
(1). The Poincare map L is contractive on M… ; ¬; ···†
and consequently a corresponding solution of system
(1) is orbitally asymptotically stable. &

5. Algorithm of asymptotic representation for solution

Suppose that h1; h2; h3; g 2 Ck‡3‰ ·ZZ £ ‰¡1; 1ŠŠ and
conditions (i)±(vi) are true.

Denote by yT ˆ …zT; s; ¼; xT† and vT ˆ …s; ¼; xT†:
Then the asymptotic representation of the point ³…·†
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and period the T…·† of desired periodic solution of
system (1) on interval ‰0; ~TTk‡1…·†Š has the form

Yk…t; ·† ˆ
Xk

iˆ0

‰·yyi…t† ‡ P*iy…½ k‡1†Š·i ‡
Xk

jˆ1

P‡
j y…½†·i

Vk…t; ·† ˆ
Xk

iˆ0

·vvi…t†·i ‡
Xk

iˆ2

P‡
i v…½†·i ‡

Xk

iˆ1

P*iv…½ k†·i

½ ˆ t=·; ½k‡1 ˆ …t ¡ ~³³k‡1…·†††=·
~³³k‡1…·† ˆ ³0 ‡ ·³1 ‡ ¢ ¢ ¢ ‡ ·k‡1³k‡1

~YYk‡1…·† ˆ Y0 ‡ ·Y1 ‡ ¢ ¢ ¢ ‡ ·k‡1Yk‡1

~TTk…·† ˆ T0 ‡ ·T1 ‡ ¢ ¢ ¢ ‡ ·kTk

kPi*y…½†k < C e¡®½ ; C; ® > 0; Pi*y…½† ² 0 for ½ < 0

kP‡
i y…½k‡1†k < C e¡®½k‡1 ; P‡

i y…½k‡1† ² 0 for ½k‡1 < 0

9
>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>;

…10†

Denote by

·yy0…t† ˆ

·yy ‡
0 …t† ˆ …’‡…·ss ‡

0 …t†; ·¼¼ ‡
0 …t†; ·xx ‡

0 …t††; ·ss ‡
0 …t†; ·¼¼ ‡

0 …t†; ·xx ‡
0 …t††

for t 2 ‰0; ³0Š

·yy 0*…t† ˆ …’*…·¼¼ 0*…t†; ·xx 0*…t††; 0; ·¼¼ 0*…t†; ·xx 0*…t††

for t 2 ‰³0; T0Š

8
>>>>><

>>>>>:

·vv0…t† ˆ
·vv ‡

0 …t† ˆ …·ss ‡
0 …t†; ·¼¼ ‡

0 …t†; ·xx ‡
0 …t†† for t 2 ‰0; ³0Š

·vv*0…t† ˆ …0; ·¼¼*0…t†; ·xx*0…t†† for t 2 ‰³0; T0Š

(

P‡
0 z…½† ² 0: Function P*0z…½*† is de®ned by equation

dP*0z=d½ ˆ g(P*0z ‡ ’*…·¼¼ ‡
0 …0†; ·xx ‡

0 …0††; 0; 0; ·xx ‡
0 …0††

P ‡
0 z…0† ˆ ’‡…0; ·¼¼ ‡

0 …³0†; ·xx ‡
0 …³0†† ¡ ’*…·¼¼ ‡

0 …³0†; ·xx ‡
0 …³0††

To ®nd ·ss ‡
1 …t†; ·¼¼ ‡

1 …t†; ·xx ‡
1 …t†; ·zz ‡

1 …t† and ·¼¼*1…t†, ·xx*1…t†, ·zz*1…t†
we have the system of linear equations in form

·zz‡
1 …t† ˆ ¡‰g 0

z
‡Š¡1…g 0

s
‡·ss‡

1 ‡ g 0
¼‡…t†·¼¼‡

1 ‡ g 0
x

‡ ·xx‡
1

‡ g‡
1 …t††

d·ss‡
1 =dt ˆ h 0

1z
‡…t†·zz‡

1 …t† ‡ h 0
1s
‡·ss‡

1 …t† ‡ h 0
1¼

‡…t†·¼¼‡
1

‡ h 0
1x

‡ ·xx‡
1 …t†

d·¼¼‡
1 =dt ˆ h 0

2z
‡…t†·zz‡

1 …t† ‡ h 0
2s
‡·ss‡

1 …t† ‡ h 0
2¼

‡…t†·¼¼‡
1

‡ h 0
2x

‡ ·xx‡
1 …t†

d·xx‡
1 =dt ˆ h 0

3z
‡…t†·zz‡

1 …t† ‡ h 0
3s
‡·ss‡

1 …t†

‡ h 0
3¼

‡…t†·¼¼‡
1 h 0

3x‡·xx‡
1 …t†

·zz*1…t† ˆ ¡‰g 0*z Š¡1…g 0*¼ ·¼¼*1 ‡ g 0*x ·xx*1 ‡ g**1 …t††

d·¼¼*1=dt ˆ h 0*2z…t† ·zz*1…t† ‡ h 0*2¼ ·¼¼*1…t† ‡ h 0*2x ·xx*1…t†

d·xx*1=dt ˆ h 0*3z …t†·zz*1…t† ‡ h 0*3¼ ·¼¼*1…t† ‡ h 0*3x ·xx*1…t†

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

…11†

Here the upper index ‡ means that the values of corre-
sponding functions are computed at the point

…’‡…·ss ‡
0 …t†; ·¼¼ ‡

0 …t†; ·xx ‡
0 …t††; ·ss ‡

0 …t†; ·¼¼ ‡
0 …t†; ·xx ‡

0 …t†; 1†

but index * means that the values of corresponding func-
tions are computed at the point

…’*…·¼¼*0…t†; ·xx*0…t††; 0; ·¼¼*0…t†; ·xx*0…t†; ueq…’‡…0; ·¼¼*0…³0†; ·xx*0…³0†††

P‡
1 s ² 0; P‡

1 x ² 0: Then to ®nd P‡
1 z; P*1z; P*1s; P*1x

one have the system

dP‡
1 z=d½ ˆ g 0

zP
‡
1 z

dP*1z=d½ ˆ g 0*z P*1z ‡ P*1g…½†

dP*1¼=d½ ˆ P*0h2 ˆ h2…·zz*0…³0†‡P*0z; 0; ·¼¼*0…³0†; ·xx*0…³0†; ueq†

¡ h2…·zz*0…³0†; 0; ·¼¼*0…³0†; ·xx*0…³0†; ueq†

dP*1x=d½ ˆ P*0h3

ˆ h3…·zz*0…³0† ‡ P*0z; 0; ·¼¼*0…³0†; ·xx*0…³0†; ueq†

¡ h3…·zz*0…³0†; 0; ·¼¼*0…³0†; ·xx*0…³0†; ueq†

where

·zz ‡
0 …0† ˆ ’‡…0; 0; x0*†; ·zz‡

0 …³0† ˆ ’(·¼¼ ‡
0 …³0†; ·xx ‡

0 …³0††

ueq ˆ ueq…·zz*0…³0† ‡ P*0z; ·¼¼*0…³0†; ·xx*0…³0††; here the upper
index ‡ means that the values of derivatives of function
g are computed at the point

…·zz ‡
0 …0† ‡ P ‡

0 z; 0; 0; ·xx0…0†; 1†

but the corresponding derivative with upper index * is
computed at the point

…·zz*0…³0†‡P*0z; 0; ·¼¼*0…³0†; ·xx*0…³0†; ueq…’‡…0; ·¼¼*0…³0†; ·xx*0…³0†††

Now the initial conditions for boundary layer functions
of the slow variables have the form

P*1¼…0† ˆ
…0

1
P*0h2…Y† dY

P*1x…0† ˆ
…0

1
P*0h3…Y† dY

Then ·ss‡
1 …0† ˆ ·¼¼‡

1 …0† ˆ 0; ·¼¼*1…³0† ˆ ¡P*1¼…0†: Functions
·vv ‡

1 …t†; ·vv*1…t† could be uniquely de®ned from system (11),
via the initial conditions ·xx ‡

1 …0†; ·¼¼*1…³0†; ·xx*1…³0†:
For the ®rst-order terms in asymptotic representa-

tions for ¼…T…·†; ·† ˆ 0 and s…³…·†; ·† ˆ 0 we have

Y1H2…0; 0; x*0; 1† ‡ ·¼¼*1…T0† ˆ 0

³1H1…0; ·¼¼ ‡
0 …³0†; ·xx ‡

0 …³0†; 1† ‡ ·ss ‡
1 …³0† ˆ 0

¼
…12†

It follows from condition (ii) that it is possible to express
uniquely the constants ³1 and Y1 via ·ss ‡

1 …0† and ·¼¼*1…³0† in
form
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Y1 ˆ ¡‰H2…0; 0; x*0; 1†Š¡1 ·¼¼*1…T0†

³1 ˆ ¡‰H1…0; ·¼¼ ‡
0 …³0†; ·xx ‡

0 …³0†; 1†Š¡1·ss ‡
1 …³0†

Substituting the expressions for Y1 and ³1 in the con-
ditions for input in the sliding mode (9)

·¼¼*1…³0† ‡ P*1¼…0† ˆ ·¼¼‡
1 …³0† ‡ ³1H2…0; ·¼¼‡

0 …³0†; ·xx‡
0 …³0†; 1†

·xx*1…³0† ‡ P*1x…0† ˆ ·xx‡
1 …³0† ‡ ³1H3…0; ·¼¼‡

0 …³0†; ·xx‡
0 …³0†; 1†

)

…13†

and periodicity conditions

·xx‡
1 …0† ‡ P‡

1 x…0† ˆ ·xx*1…T0† ‡ Y1H3…0; 0; x*0; ¡1† …14†

Let us express the values ·¼¼‡
1 …³0†; ·xx‡

1 …³0†; ·xx*1…T0†; ³1; Y1

via ·xx‡
1 …0†; ·xx*1…³0†; form (11). After this it is possible to

express ·xx*1…³0† via ·xx‡
1 …0† from equation (14) and substi-

tuting this expression in (13), we have the system of
linear equations for ·xx‡

1 …0†: Moreover the determinant
of this system coincide with det @C=@x…x*0† 6ˆ 0:

Then initial condition ·xx‡
1 …0†; ·¼¼*1…³0†; ·xx*1…³0† are

de®ned uniquely. Now to ®nd Y1…t; ·† it is necessary
to de®ne functions ·yy‡

i …t†; i ˆ 0; 1 on segment ‰0; ~TT1…·†Š
as

·yyi…t† ˆ

·yy‡
i …t† ˆ …·zz‡

i …t†; ·ss‡
i …t†; ¼‡

i …t†; ·xx‡
i …t††

for t 2 ‰0; ~³³1…·†Š

·yy*i…t† ˆ …·zz*i…t†; 0; ¼*i…t†; ·xx*i…t††
for t 2 ‰~³³1…·†; ~TT1…·†Š

8
>>>>><

>>>>>:

The initial conditions P‡
1 z and P*1z are uniquely de®ned

by equations

·zz‡
1 …0† ‡ P‡

1 z…0† ˆ ·zz‡
1 …T0† ‡ Y1d·zz*0=dt…T0†

·zz*1…³0† ‡ P*1z…0† ˆ ·zz‡
1 …³0† ‡ ³1d·zz‡

0 =dt…³0†

Now the design of the ®rst approximation of asymptotic
representation of system (1) periodic solution is ®nished.
To design the ®rst approximation of the fast variables it
is necessary to ®nd the value of ³2 and substitute the
result in function P*1z…½2†:

Suppose now that the functions

y‡
j …t†; y*j…t†; P‡

j y…½†; P*jy…½†

and constants ³j; Yj; j ˆ 1; . . . ; k ¡ 1 was uniquely
de®ned.

Then one can ®nd the functions ·ss‡
k …t†; ·xx‡

k …t†; ·zz‡
k …t†

from the linear systems

·zz‡
k …t† ˆ ¡‰g 0

z
‡Š¡1…g 0

s
‡·ss‡

k ‡ g 0
¼

‡ ·¼¼‡
k ‡ g

0‡
x ·xx‡

k

‡ g‡
k …t††

d·ss‡
k =dt ˆ h 0

1z
‡…t†·zz‡

k …t† ‡ h 0
1s

‡·ss‡
k …t† ‡ h 0

1¼
‡ ·¼¼‡

k …t†

‡ h 0
1x

‡ ·xx‡
k …t† ‡ h‡

1k…t†

d·¼¼‡
k =dt ˆ h 0

2z
‡…t†·zz‡

k …t† ‡ h 0
2s
‡·ss‡

k …t† ‡ h 0
2¼

‡·¼¼‡
k …t†

‡ h 0
2x

‡ ·xx‡
k …t† ‡ h‡

2k…t†

d·xx‡
k =dt ˆ h 0

3z
‡…t†·zz ‡

k …t† ‡ h 0
3s

‡·ss ‡
k …t† ‡ h 0

3¼
‡·¼¼ ‡

k …t†

‡ h 0
3x

‡ ·xx‡
k …t† ‡ h‡

3k…t†

·zz*k…t† ˆ ¡‰g 0*z Š¡1…g 0*¼ ·¼¼*k ‡ g 0*x ·xx*k ‡ g*k…t††

d·¼¼*k=dt ˆ h 0*2z …t†·zz*k…t† ‡ h 0*1s¼ ·¼¼*k ‡ h 0*1x ·xx*k…t†

‡ h*1k…t†

d·xx*k=dt ˆ h 0*3z …t†·zz*k…t† ‡ h 0*3s ·ss*k…t† ‡ h 0*3x ·xx*k…t†

‡ h*2k…t†

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

…15†

Here the upper index ‡ means that the values of corre-
sponding functions are computed at the point

…’‡…·ss ‡
0 …t†; ·¼¼ ‡

0 …t†; ·xx ‡
0 …t††; ·ss ‡

0 …t†; ·¼¼ ‡
0 …t†; ·xx ‡

0 …t†; 1†

but index * means that the values of corresponding func-
tions are compute at the point

…’*…·¼¼*0…t†; ·xx*0…t††; 0; ·¼¼*0…t†; ·xx*0…t†; ·uu…·¼¼*0…t†; ·xx*0…t†††

g‡
k …t†; h‡

ik…t†; i ˆ 1; 2; 3; g*k…t†; h*jk…t†; j ˆ 2; 3 are uniquely
de®ned functions depending only on

·zz‡
j …t†; ·ss‡

j …t†; ·¼¼‡
j …t†; ·xx‡

j …t†; ·zz*j…t†; ·¼¼*j…t†; ·xx*j…t†; ³j; Yj;

j ˆ 1; . . . ; k ¡ 1

The functions P‡
k y and P*ky are de®ned by system

dP‡
k z=d½ ˆ g 0

z
‡P‡

k z ‡ g 0
s
‡P‡

k s ‡ g 0
x

‡P‡
k x ‡ P‡

k g…½†

dP‡
k s=d½ ˆ P‡

k¡1h1; dP‡
k ¼=d½ ˆ P‡

k¡1h2

dP‡
k x=d½ ˆ P‡

k¡1h3

dP*kz=d½ ˆ g 0*z P*kz ‡ g 0*¼ P*k¼ ‡ g 0*x P*kx ‡ P*kg…½†

dP*k¼=d½ ˆ P*k¡1h2; dP*kx=d½ ˆ P*k¡1h3

where the upper index ‡ means that the values of deri-
vatives of function g are computed at the point

…·zz ‡
0 …0† ‡ P ‡

0 z; 0; 0; ·xx0; 1†

but the corresponding derivative with upper index * is
computed at the point

…·zz*0…³0† ‡ P*0z; 0; ·¼¼*0…³0†; ·xx*0…³0†;

ueq…·zz*0…³0† ‡ P*0z; ·¼¼*0…³0†; ·xx*0…³0††

The functions P*k¡1h2; P*k¡1h3 depend on

P*jz…½†; P*j¼…½†; P*jx…½†; j ˆ 1; . . . ; k ¡ 1 only.
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The initial conditions for boundary layer functions
for the slow variables are de®ned by equations

P‡
k s…0† ˆ

…0

1
P‡

k¡1h1…Y† dY

P‡
k ¼…0† ˆ

…0

1
P ‡

k¡1h2…Y† dY

P‡
k x…0† ˆ

…0

1
P‡

k¡1h3…Y† dY

P*k¼…0† ˆ
…0

1
P*k¡1h2…Y† dY

P*kx…0† ˆ
…0

1
P*k¡1h3…Y† dY

Consequently ·ss‡
k …0† ˆ ¡P‡

k s…0†; ·¼¼*k…³† ˆ ¡P*k¼…0†:
System (15) is uniquely de®ned in the functions
·xx ‡

k …t†; ·xx*k…t†:
Considering kth order members in asymptotic repre-

sentation of ¼…T…·†; ·† ˆ 0 and s…³…·†; ·† ˆ 0 we have

YkH2…0; x*0; 1† ‡ ·¼¼*k…T0† ‡ S*k ˆ 0

³kH1…0; ·xx ‡
0 …³0†; 1† ‡ ·ss ‡

k …³0† ‡ S‡
k ˆ 0

¼
…16†

Let us substitute the expressions for Yk and ³k obtaining
from equations (16) in the conditions for input in the
sliding mode (9) and conditions of periodicity we have

·¼¼*k…³0† ‡ P*k¼…0† ˆ ·¼¼‡
k …³0† ‡ ³kH2…0; ·xx ‡

0 …³0†;
·¼¼ ‡

0 …³0†; 1† ‡ §‡
k

·xx*k…³0† ‡ P*kx…0† ˆ ·xx ‡
k …³0† ‡ ³kH3…0; 0; ·¼¼ ‡

0 …³0†;
·xx‡

0 …³0†; 1† ‡ X ‡
k

9
>>>=

>>>;
…17†

·xx‡
k …0† ‡ P‡

k x…0† ˆ ·xx*k…T0† ‡ YkH2…0; 0; x*0; 1† ‡ X*k

…18†

Here S‡
k ; X ‡

k are the functions dependent only on

·ss‡
j …³0†; ·¼¼ ‡

j …³0†; ·xx‡
j …³0†; ·¼¼*j…T0†; ·xx*j…T0†; j ˆ 1; . . . ; k ¡ 1

Now from condition (i) one can conclude that the values

³k; Yk it is possible to express uniquely via ·xx‡
k …0† ·¼¼*k…³0†

in the form

Yk ˆ ¡‰H2…0; 0; x0*; 1†Š¡1‰·¼¼*k…T0† ‡ S*kŠ

³k ˆ ¡‰H1…0; ·¼¼ ‡
0 …³0†; ·xx ‡

0 …³0†; 1†Š¡1‰·ss ‡
k …³0† ‡ S‡

k Š

The values ·xx‡
k …³0†; ·¼¼*k…T0†; ·xx*k…T0† can be uniquely

expressed via ·xx ‡
k …0†; ·xx*k…³0† from equations (15).

Substituting ³k; Yk into (17) and (18), one can have
the system of linear equations on ·xx‡

k …0†; ·xx*k…³0†: Then
expressing ·xx*k…³0† via ·xx‡

k …0† from equation (18) and sub-
stituting this expression in (17), one has the system of
linear equations for ·xx ‡

k …0†: Moreover the determinant of
this system coincides with det …@C=@x†…x*0† 6ˆ 0:

This means that the initial conditions

·ss‡
k …0†; ·¼¼‡

k …0†; ·xx‡
k …0†; ·¼¼*k…³0†; ·xx*k…³0†

are uniquely de®ned. Now to ®nd Yk…t; ·† it is necessary
to de®ne functions ·yy‡

i …t†; i ˆ 0; . . . ; k on segment
‰0; ~TTk…·†Š as

·yyi…t† ˆ

·yy ‡
i …t† ˆ …·zz ‡

i …t†; ·ss ‡
i …t†; ·¼¼ ‡

i …t†; ·xx ‡
i …t††

for t 2 ‰0; ~³³k…·†Š
·yy*…t† ˆ …·zz*i…t†; 0; ·¼¼*i…t†; ·xx*i…t††

for t 2 ‰~³³k…·†; ~TTk…·†Š

8
>>>><

>>>>:

The initial conditions for P‡
k z; P*kz are uniquely de®ned

from equations

·zz‡
k …0† ‡ P‡

k z…0† ˆ ·zz*k…T0† ‡ Yk d·zz*0=dt…T0† ‡ Z*k

·zz*k…³0† ‡ P*kz…0† ˆ ·zz‡
k …³0† ‡ ³k d·zz ‡

0 =dt…³0† ‡ Z‡
k

where Z‡
k ; Z*k are functions depending only on

·zz‡
j …³0†; ·zz*j…T0†; j ˆ 1; . . . ; k ¡ 1:

Now the design of the kth approximation for the
slow part of asymptotic representation for system (1)
periodic solution is ®nished. To design the kth approx-
imation of the fast variables it is necessary to ®nd the
value of ³k‡1 and substitute the result in function
P*1z…½k‡1†:

Theorem 2: Under conditions (i)±(vii)

j ~TTk…·† ¡ T…·†j < C·k‡1

and uniformly on t 2 ‰0; T̂T…·†Š; where T̂T…·† ˆ
maxfT…·†; ~TTk‡1…·†g; the following inequalities hold

ky…t; ·† ¡ Yk…t; ·†k < C·k‡1;

kv…t; ·† ¡ Vk…t; ·††k < C·k‡1 …19†

The proof of this theorem is in the Appendix.

6. Example

Let us show the existence and stability and design the
asymptotic representation for slow periodic solution
with internal sliding mode for SPRS in form

· dz=dt ˆ ¡z ‡ u; ds=dt ˆ 2s ‡ ¼ ‡ 5 ¡ 5u

d¼=dt ˆ ¡6s ¡ ¼ ‡ x ‡ 4z

dx=dt ˆ ¡x ‡ ·z; u ˆ sign ‰s…t†Š

9
>>=

>>;
…20†

where z; s; ¼; x 2 R; · is the small parameter. Let us
show that for system (20) the conditions of theorem 1
and 2 are true. For · ˆ 0 system (20) takes the form

·zz0 ˆ u; d·ss0=dt ˆ 2·ss0 ‡ ·¼¼0 ‡ 5 ¡ 5u

d·¼¼0=dt ˆ ¡6·ss0 ¡ ·¼¼0 ‡ ·xx0 ‡ 4u; d·xx0=dt ˆ ¡·xx0

¼
…21†

Than for system s > 0 instead of (21) one has
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d·ss‡
0 =dt ˆ 2·ss‡

0 ‡ ·¼¼‡
0 ;

d·¼¼‡
0 =dt ˆ ¡6·ss‡

0 ¡ ·¼¼‡
0 ‡ ·xx‡

0 ‡ 4;

d·xx‡
0 =dt ˆ ¡·xx‡

0

9
>>=

>>;
…22†

The set

S ˆ f¼ : ¡10 < ¼ < 0 g

is a stable sliding mode domain for system (21). The
motions into S; are described

d¼*0=dt ˆ ¡ ·¼¼*0
5

‡ ·xx*0 ‡ 4; d·xx*0=dt ˆ ¡·xx*0 …23†

Then for the solution of the system (22) with initial con-
ditions

·ss ‡
0 …0† ˆ 0; ·¼¼ ‡

0 …0† ˆ 0; ·xx ‡
0 …0† ˆ ¹

we have

·ss ‡
0 …t; ¹† ˆ 1 ‡ e¡t¹

6
‡

³ �����
15

p

15
‡ ¹

�����
15

p ´
et=2 sin

�����
15

p
t

2

¡
³

¹

6
‡ 1

´
et=2 cos

�����
15

p
t

2

·¼¼‡
0 …t; ¹† ˆ ¡2 ¡

e¡t¹

2
‡

³
2

�����
15

p

5
‡ ¹

�����
15

p

30

´
et=2 sin

�����
15

p
t

2

‡
³

2 ‡ ¹

2

´
et=2 cos

�����
15

p
t

2

·xx‡
0 …t; ¹† ˆ e¡t¹

The last equation of (21) is independent and only the
solution of the equation ·xx0…t† ² 0 can correspond to the
periodic solution of (21). Then to ®nd ³0 as the input
moment into the sliding mode we have the equation

·ss ‡
0 …t; 0† ˆ 1 ‡

�����
15

p

15
et=2 sin

�����
15

p
t

2
¡ et=2 cos

�����
15

p
t

2
ˆ 0

Then ³0 º 2:45; ·¼¼ ‡
0 …³0; 0† º ¡7:03:

The solution of system (21) on the switching surface
takes the form

·¼¼*0…t; ·¼¼ ‡
0 …³0; 0†† ˆ 20 ¡ …20 ¡ ·¼¼‡

0 …³0; 0†

¡ 5
4

·xx ‡
0 …³0; 0†† e¡…t¡³0†=5

¡ 5
4

·xx‡
0 …³0; 0† e¡…t¡³0†

·xx*0…t; ·¼¼‡
0 …³0; 0†† ˆ ·xx‡

0 …³0; 0† e¡…t¡³0†

Now the period of system (21) periodic solution is
de®ned by equation

·¼¼*0…T0; ·¼¼ ‡
0 …³0; 0†† ˆ 20 ¡ …20 ¡ ·¼¼‡

0 …³0; 0†† e¡…T0¡³0†=5 ˆ 0

And consequently

T0 º 3:96;
@·xx*0
@¹

…0† ˆ e¡T0 º e¡3:96 º 0:019 6ˆ 0

This means that for system (20) the conditions of
Theorems 1 and 2 are true.

To ®nish with zero approximation of the desired
periodic it is necessary to de®ne

·zz0…t† ˆ
·zz ‡

0 …t† ˆ 1 for 0 µ t µ ³0

·zz*0…t† ˆ ·¼¼*0…t; ·¼¼ ‡
0 …³0; 0†† ‡ 5

5
for ³0 µ t µ T0

8
<

:

Then

dP‡
0 z=d½ ˆ ¡P‡

0 z; P‡
0 z…0† ˆ ¡ ·¼¼ ‡

0 …³0; 0†
5

;

P‡
0 z…½† ˆ ¡ ·¼¼ ‡

0 …³0; 0†
5

e¡½

Let us compute the ®rst approximation of desired peri-
odic solution. Equations for the slow part of ®rst
approximation for u ˆ 1 have the form

·zz‡
1 ˆ 0; d·ss‡

1 =dt ˆ 2·ss‡
1 ‡ ·¼¼‡

1

d·¼¼‡
1 =dt ˆ ¡6·ss‡

1 ¡ ·¼¼‡
1 ‡ ·xx‡

1 ; d·xx‡
1 =dt ˆ ¡·xx‡

1 ‡ 1

)

…24†

Than the solution of (24) with initial conditions

·ss‡
1 …0† ˆ ·¼¼‡

1 …0† ˆ 0; ·xx‡
1 …0† ˆ x*1

takes the form

·ss ‡
1 …t† ˆ 1

4
‡ 1

6
e¡t…x*1 ¡ 1†

‡
³

¡
�����
15

p

60
‡

�����
15

p

30
x¤

1

´
et=2 sin

�����
15

p
t

2

¡
³

x*1
6

‡ 1

12

´
et=2 cos

�����
15

p
t

2

·¼¼‡
1 …t; x*1† ˆ ¡ 1

2
¡ 1

2
e¡t…x*1 ¡ 1†

‡
�����
15

p

30

³
x*1 ‡ 2

´
et=2 sin

�����
15

p
t

2

‡
x*1
2

et=2 cos

�����
15

p
t

2

·xx‡
1 …t; x*1† ˆ …x*1 ¡ 1†e¡t ‡ 1

Then taking into account that we have

³0 º 2:45; ·ss ‡
1 …³0† º 0:45 ¡ 0:45x*1

·¼¼ ‡
1 …³0† º ¡1:34 ¡ 0:42x*1; ·xx‡

1 …³0† º 0:91 ‡ 0:09x*1
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Then

³1 ˆ ¡‰·¼¼ ‡
0 …³0†Š

¡1·ss ‡
1 …³0†>³1 º 0:063 ¡ 0:063x*1

P*1¼…½† ˆ 4

…½

1
P‡

0 z…Y† dY ˆ 4
·¼¼ ‡

0 …³0; 0†
5

e¡½

P*1¼…0† ˆ 4
·¼¼‡

0 …³0; 0†
5

P*1x…½† ² 0

The initial conditions for the ®rst approximation of slow
variables on the sliding surface are de®ned by equations

·¼¼*1…³0; x*1† ‡ P*1¼…0† ˆ ·¼¼‡
1 …³0; x*1† ‡ ³1…x*1† ·¼¼‡

0

dt
…³0; 0†

>·¼¼*1…³0; x*1† ˆ ·¼¼‡
1 …³0; x*1† ‡ ³1…x*1†…4¡ ·¼¼‡

0 …³0; 0††

¡ 4
·¼¼‡

0 …³0; 0†
5

·xx*1…³0; x*1† ˆ ·xx‡
1 …³0; x*1† ¡ ³1…x*1†·xx‡

0 …³0†

·¼¼*1…³0; x*1† º ¡1:12x*1 ‡ 4:98;

·xx*1…³0; x*1† º 0:086x*1 ‡ 0:91

At the same time the slow coordinates of system (21)
periodic solution are describing by equations

d·¼¼*1=dt ˆ ¡ ·¼¼*1
5

‡ ·xx*1 ¡ 4d·zz*0…t†=dt;

d·xx*1=dt ˆ ¡·xx*1 ‡ ·zz*0

Now

·¼¼*1…t; x*1† ˆ 25 ¡ …3:34 ‡ 0:11x*1†e¡…t¡³0†

¡ …1:01x*1 ‡ 16:67 ‡ 11:08t† e¡…t¡³0†=5

·xx*1…t† ˆ 5 ¡ 6:76 e¡…t¡³0†=5 ‡ e¡…t¡³0†…2:67 ‡ 0; 086x*1†

Taking into account that t ˆ T0 we have

·¼¼*1…T0; x*1† º 4:38 ¡ 0:77x*1;

·xx*1…T0; x*1† º 0:59 ‡ 0:019x*1

The value x*1 is determined by equation ·xx*1…T0† ˆ x*1;
which means that

x*1 º 0:60; ³1 º 0:025; Y1 º 0:22; T1 º 0:25

7. Conclusions

Singularly perturbed relay systems (SPRS) for which
the reduced systems have stable periodic motions with
internal sliding modes are studied. For such systems a
theorem about existence and stability of the periodic
solutions is proved. The algorithm for the asymptotic
representation of these periodic solutions using bound-
ary functions method is presented. It is proved that in
the asymptotic representation of periodic solutions with
internal sliding modes there are two boundary layers:

. the boundary layer at the point of input into the
sliding mode which corresponds to the jump of
solution to the small neighbourhood of the slow
motion integral manifold of singularly perturbed
system describing the behaviour of original SPRS
into the sliding domain;

. the boundary layer at the break away point in
which the solution is leaving the sliding domain.

It is proved that the zero order boundary function in
the asymptotic representation of the periodic solution at
the break away point is equal to zero because the zero
approximation of the slow motion integral manifold at
this point is continuous.
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original system (line) and its ®rst order asymptotic
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Appendix: Asymptotic representation for solutions of
SPRS

A.1. Asymptotic representations for solutions of
singularly perturbed systems with perturbed initial
conditions

Consider the smooth singularly perturbed system in
form

· da=dt ˆ F…a; b; t†; db=dt ˆ f …a; b; t†; …25†

where …a; b† 2 « » Rn £ Rm; · 2 ‰0; ·0Š is the small
parameter, t 2 ‰·tt; T Š; ·tt ˆ minft0; t0 ‡ min·2‰0;·0 Š t̂t…·†g;
t0 < T : For system (1) consider two di� erent initial
problems

a…t0; ·† ˆ a0; b…t0; ·† ˆ b0 …26†

a…t0 ‡ t̂t…·†; ·† ˆ a0 ‡ âa…·†; b…t0; ·† ˆ b0 ‡ b̂b…·† …27†

where âa…·†; b̂b…·†; t̂t…·† are smooth functions on

· 2 ‰0; ·0Š:
Assume the following hypothesis:

(A1) F ; f 2 Ck‡2…« £ ‰·tt; T Š†; k ¶ 0:
(A2) Equation F…a; b; t† ˆ 0 has the unique isolated

solution a0 ˆ ¿…b; t† with the same smoothness
as F :

(A3) The reduced system

d·bb0=dt ˆ f …¿…·bb0; t†; ·bb0; t†; ·bb0…t0† ˆ b0 …28†

has unique solution

…¿… ·bb0…t†; t†; ·bb0…t†; t† 2 « £ ‰·tt; T Š:
(A4) There is a ® > 0 such that for all t 2 ‰·tt; T Š

Re Spec
@F

@z
…¿…·bb0…t†; t†; ·bb0…t†; t† < ¡® < 0

(A5) Let a0 be in interior of the attraction domain
of the asymptotically stable equilibrium point

¿…b0; ·tt† of the associated system
da=d½ ˆ F…a; b0; t0†:

(A6) âa…·† ˆ O…·k‡1†, b̂b…·† ˆ O…·k‡1†, t̂t…·† ˆ
O…·k‡2†:

Lemma 2: Assume hypotheses (A1)±(A6). Let us de-
note by

L…t; ·† ˆ …A…t; ·†; B…t; ·††; N…t; ·† ˆ …ÂA…t; ·†; B̂B…t; ·††

the solutions of the Cauchy problems (25), (26) and (25),
(27). Then for su� ciently small ·1 the functions L…t; ·†
and N…t; ·† are the unique solutions of the corresponding
Cauchy problems and uniformly on t 2 ‰·tt; T Š it holds

kLk…t; ·† ¡ N…t; ·†jj ˆ O…·k‡1†

where

Lk…t; ·† ˆ S·i…·lli…t† ‡ Pil…½††

is the asymptoti c representation of Cauchy problem (25),
(26) according boundary function method Vasil’eva et al.
(1995).

Proof: Assume that ·tt ˆ t0: Existence and uniqueness
of L and N follow from the Tikhonov theorem (see
for example Vasil’eva et al. 1995). Moreover from hy-
potheses (A1) it follows that it is possible to continue
N on ‰t0; T Š:

Then for all t 2 ‰t0; t0 ‡ t̂t…·†Š we get

kA…t0 ‡ t; ·† ¡ a0k µ
1

·

…t0‡t

t0

F…A…¹; ·†; B…¹; ·†; ¹†d¹

®®®®

®®®®

µ K1 O…·k‡1†

kB…t0 ‡ t; ·† ¡ b0k µ
…t0‡t

t0

f …A…¹; ·†; B…¹; ·†; ¹† d¹

®®®®

®®®®

µ K2 O…·k‡2†

where

K1 ˆ sup
…a;b;t†2·««£‰·tt;T Š

kF…a; b; t†k;

K2 ˆ sup
…a;b;t†2·««£‰·tt;T Š

k f …a; b; t†k:

Then it is possible to conclude that for every
t 2 ‰t0; t0 ‡ t̂t…·†Š

L…t; ·† ˆ N…t; ·† ‡ O…·k‡1†

Hence asymptotical representations for L and N coin-
cide on ‰t0; t0 ‡ t̂t…·†Š and consequently uniformly on
‰·tt0; T Š

kLk…t; ·† ¡ N…t; ·†k µ kLk…t; ·† ¡ Nk…t; ·†k

‡ kNk…t; ·† ¡ N…t; ·†k ˆ O…·k‡1†

The proof for the case t̂t…·† < t0 can be make analo-
gously. &

A.2. Asymptotic representations for solutions of
singularly perturbed systems in small
neighbourhood of slow motion manifold

Lemma 3: Assume hypothesis (A1)±(A5) but in hy-
potheses (A6) t̂t…·† ˆ O…·k‡1†: Let us denote

P…t; ·† ˆ … ·AA…t; ·†; ·BB…t; ·††; R…t; ·† ˆ … ~AA…t; ·†; ~BB…t; ·††

the solutions of Cauchy problems for system (25) with
initial condition

a…t0; ·† ˆ ¿…b0; t0†; b…t0; ·† ˆ b0 …29†

and
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a…t0 ‡ t̂t…·†; ·† ˆ ¿…b0; t0† ‡ âa…·†; b…t0; ·† ˆ b0 ‡ b̂b…·†
…30†

Then for su� ciently small ·2 the functions P…t; ·† and
R…t; ·† are the unique solutions of corresponding Cauchy
problems and uniformly on t 2 ‰·tt; T Š it holds

kPkp…t; ·† ¡ R…t; ·†k ˆ O…·k‡1†

where

Pk…t; ·† ˆ
Xk

iˆ0

·ppi…t†·i ‡
Xk

iˆ1

Pip…½†·i

is the asymptotic representation of the Cauchy problem
(25) and (29) according boundary function method
(Vasil’eva et al. 1995).

Proof: Assume that ·tt ˆ t0: Existence and uniqueness
of P and R follow from the Tikhonov theorem (see for
example Vasil’eva et al. 1995). Moreover, from the hy-
pothesis (A.1) it is possible to continue R on ‰t0; T Š: It
follows from the boundary function method that the
zero representation in P0c…½† ² 0: Then for all
t 2 ‰t0; t0 ‡ t̂t…·†Š we get

k ·BB…t0 ‡ t; ·† ¡ b0k µ
…t0‡t

t0

f … ·AA…¹; ·†; ·BB…¹; ·†; ¹†d¹

®®®®

®®®®

µ K2 O…·k‡1†

k ·AA…t; ·† ¡ ¿…b0; t0†k ˆ k ·AA…t; ·† ¡ Pkp…t; ·†k

‡ kPkp…t; ·† ¡ ¿…b0; t0†k

µ O…·k‡1† ‡ k¿…B…t0 ‡ t; ·†; t0 ‡ t†

¡ ¿…b0; t0†k ˆ O…·k‡1†:

This means that

kÂA…t0 ‡ t̂t…·†; ·† ¡ ·AA…t0 ‡ t̂t…·†; ·†k ˆ O…·k‡1†

and consequently the asymptotic representations of
ÂA…t0 ‡ t̂t…·†; ·† and ·AA…t0 ‡ t̂t…·†; ·† coincide up to the
kth order. &

A.3. Transition into the sliding mode

Consider the Cauchy problems

· da=dt ˆ F…a; s; b; u…s†; t†

ds=dt ˆ h…a; s; b; u…s†; t† …31†

db=dt ˆ f …a; s; b; u…s†; t†

a…t0† ˆ a0; s…t0† ˆ s0 > 0; b…t0† ˆ b0 …32†

where

…a; s; b† 2 ¥ » Rn £ R £ Rm;

t 2 ‰t0; T Š; · 2 ‰0; ·0Š; u…s† ˆ sign …s†:

Suppose that for system (31) the following hypothesis
are true:

(B0) …a0, b0, s0, t0† 2 ¥‡ £ ‰t0; ·TT Š,
¥‡ ˆ f…a; s; b† 2 ¥; s > 0g; ·TT < T :

(B1) F ; h; f 2 Ck‡2…·¥¥ £ ‰¡1; 1Š £ ‰t0; T Š†; k ¶ 0:
(B2) The equation F…a; s; b; 1; t† ˆ 0 has an isolated

solution z ˆ ¿‡…s; b; t†; F and ¿‡…s; b; t† have
the same smoothness.

(B3) The Cauchy problem

d·ss ‡
0

dt
ˆ h…¿‡…·ss ‡

0 ; ·bb‡
0 ; t†; ·ss ‡

0 ; ·bb‡
0 ; 1; t†

d ·bb‡
0

dt
ˆ f …¿‡…·ss ‡

0 ; ·bb‡
0 ; t†; ·ss ‡

0 ; ·bb‡
0 ; 1; t†

·ss ‡
0 …t0† ˆ s0; ·bb‡

0 …t0† ˆ b0

9
>>>>>>>=

>>>>>>>;

…33†

has the unique solution on t 2 ‰t0; ·TT0Š:
(B4) There is a ® > 0 such that for all t 2 ‰t0; ·TT Š

Re Spec
@F

@z
…¿‡… ·bb‡

0 …t†; t†; ·bb‡
0 …t†; t† < ¡® < 0:

(B5) a0 is located in the interior of the domain of
attraction of the asymptotically stable equilib-
rium point ¿‡…s0; b0; t† of the associated system

da

d½
ˆ F…a; s0; b0; 1; t0†

(B6) There exists a moment t ˆ ³0 2 ‰t0; ·TT Š; where
the trajectory arrives on surface s ˆ 0 with

. ·ss ‡
0 …³0† ˆ 0;

. h…¿‡…0; ·bb‡
0 …³0†; ³0†; 0; ·bb‡

0 …³0†; 1; ³0† < 0;

. h…¿‡…0; ·bb‡
0 …³0†; ³0†; 0; ·bb‡

0 …³0†; ¡1; ³0† > 0:

Equation

h…a*; 0; b*; ueq ; t† ˆ 0

has a unique, smooth solution u ˆ ueq…a*; b*; t† for

¥ £ ‰³0; T Š: The behaviour of system (31) into sliding
domain is uniquely de®ned by equivalent control
method and the sliding motions are described by the
system

· da*=dt ˆ F…a*; 0; b*; ueq…a*; b*; t†; t†
db*=dt ˆ f …a,0; b,ueq…a,b,t†; t†
h…a*; 0; b*; ueq…a*; b*; t†; t† ˆ 0

9
>=

>;
…34†

Suppose that the equation F…a*; 0; b*; ueq…a*; b*; t†; t† ˆ 0
has a unique solution a* ˆ ¿*…b*; t† and the reduced
system for system (34) takes the form

d ·bb*0=dt ˆ f …¿*…·bb*0; t†; 0; ·bb*0; ·uueq ; t†; …35†

where ·uueq ˆ ueq…¿*…t; ·bb*0†; ·bb*; t†:
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(B7) The Cauchy problem for system (35) with the
initial conditions ·bb0*…³0† ˆ ·bb‡

0 …³0† has a unique
solution ·bb*0…t†; t 2 ‰³0 ¡ ¯; T Š and

h…¿*…·bb*0…t†; t†; 0; ·bb*0…t†; 1; t† < 0;

h…¿*…·bb0*…t†; t†; 0; ·bb0*…t†; ¡1; t† > 0

(B8) For t 2 ‰³0; T Š there exists ® > 0 such that

Re Spec
@F

@z
…¿*… ·bb*0…t†; t†; 0; ·bb*0…t†; ·uueq; t† < ¡® < 0

(B9) The point ¿‡…0; ·bb‡
0 …³0†; ³0† is situated in the

interior of attractivity domain of equilibrium
point ¿*… ·bb‡

0 …³0†; ³0† for system

da*=d½ ˆ F…a*; 0; b*; ueq; t†

where ½ ˆ …t ¡ ³0†=·; and moreover for all

¶ 2 ‰0; 1Š it holds

h…¶…¿‡…0; ·bb‡
0 …³0†; ³0† ‡ …1 ¡ ¶†

£ …¿*…·bb‡
0 …³0†; ³0†; 0; ·bb‡

0 …³0†; 1; ³0† < 0

h…¶…¿‡…³0; 0; ·bb‡
0 …³0†; ³0† ‡ …1 ¡ ¶†

£ …¿*…·bb‡
0 …³0†; ³0†; 0; ·bb‡

0 …³0†; ¡1; ³0† > 0

Theorem 3: Let system (31) satisfy the conditions
…B1†-…B9†: Then there exists a ·2 such that for all

· 2 ‰0; ·2Š there is a unique solution c…t; ·† ˆ
…a…t; ·†; s…t; ·†; b…t; ·†† of Cauchy problem (31), (32) and
uniformly on ‰t0; T Š the following estimation holds

kc…t; ·† ¡ Ck…t; ·†k ˆ O…·k‡1†

Ck…t; ·† ˆ
Xk

iˆ0

‰·cci…t† ‡ P*ic…½ k‡1†Š·i

‡
Xk

jˆ1

P‡
j c…½†·i; ½k‡1 ˆ …t ¡ ·³³k‡1…·†=·

where ·³³k‡1…·† ˆ ³0 ‡ ³1· ‡ ¢ ¢ ¢ ‡ ³k‡1·k‡1 is the
…k ‡ 1†th order approximation of the switching moment

³…·†:

Proof: Assumptions (B0)±(B5) allows one to apply
the Tikhonov theorem and boundary functions method
for Cauchy problem (31), (32) and at least for
s…t; ·† > 0: Taking into account the condition (B6) and
using the implicit function theorem one can conclude
that there exists arrival time moment t ˆ ³…·† for
which

s…³…·†; ·† ˆ 0;
ds

dt
…³…·†; ·† 6ˆ 0; lim

·>0
³…·† ˆ ³0

Conditions (B7)±(B9) together with the Tikhonov
theorem and boundary functions method ensure the
existence and uniqueness of solutions of (31) into the

sliding mode on s ˆ 0: This means that we can reduce
the solution of the Cauchy problem (31), (32) on the
segment t 2 ‰0; T Š to the solution of two consequent
Cauchy problems. First it is necessary to ®nd the sol-
ution c‡…t; ·† problem (31), (32) on ‰t0; ³…·†Š: Then it is
necessary to ®nd ³…·† and the solution of the Cauchy
problem for system (35) on t 2 ‰³…·†; T Š with initial con-
ditions

a*…³…·†; ·† ˆ a‡…³…·†; ·†; b*…³…·†; ·† ˆ b‡…³…·†; ·†
…36†

This means that to ®nd the asymptotic representations
of the Cauchy problem (31), (32) on ‰t0; T Š it is necessary
to ®nd ®rst the asymptotic representation for ³…·†:
Suppose the we have found ·ss‡

i ; i ˆ 0; . . . ; k ‡ 1 the
regular terms of asymptotic representation of s…t; ·†
according boundary functions method for t 2 ‰t0; ³…·†Š:
Then to ®nd asymptoic representation ³…·† we have

·ss ‡
0 …³0 ¢ ¢ ¢ ‡ ·i³i ‡ ¢ ¢ ¢† ‡ ··ss ‡

1 …³0 ‡ ¢ ¢ ¢ ‡ ·i³i ‡ ¢ ¢ ¢†

‡ ¢ ¢ ¢ ‡ ·i·ss‡
i …³0 ‡ ¢ ¢ ¢ ‡ ·i³i ‡ ¢ ¢ ¢† ‡ ¢ ¢ ¢ ˆ 0

(the terms P‡s…³…·†=·† are exponentially small).
Expanding functions ·ss‡

i as series near t ˆ ³0 and con-
sidering ith order members we have the equations for
de®ning ³i in the form

³ih…¿‡…0; ·bb‡
0 …³0†; ³0†; 0; ·bb‡

0 …³0†; 1; ³0†

‡ pi…³0; ³1; . . . ; ³i¡1† ˆ 0

where pi is the function depending only on
³0; ³1; . . . ; ³i¡1: From the condition (B6) it follows that

h…¿‡…0; ·bb‡
0 …³0†; ³0†; 0; ·bb‡

0 …³0†; 1; ³0† < 0

which means it is possible to de®ne ³0; ³1; . . . ; ³i; . . .
uniquely.

Suppose that we have found ³0; ³1; . . . ; ³k‡1 and the
coe� cients of regular parts of asymptotic representa-
tions of Cauchy problem (31), (32) ·cc‡

i …t†; …i ˆ 1; . . . ; k†
for ‰t0; ³…·†Š: From lemma 2 it follows that to ®nd
asymptotic representation of the initial time moment
in (36) it is necessary to use the value ·³³k‡1…·† instead
of ³…·†: But for asymptotic representation of state vari-
able it is enough to have kth order approximation of the
regular part for asymptotic representation of value
c‡…·³³k…·†; ·† in the form

·CC‡
k …~³³k…·†; ·† ˆ

Xk

iˆ0

·cc‡
i …·³³k…·††·i

Moreover, for asymptotic representation of the state
variable in (36) it is reasonable to use only the terms
of orders ·0; ·; ·2; . . . ; ·k in the expansion of

·CC‡
k …·³³k…·†; ·† ˆ ·cc ‡

0 …³0† ‡ ·…·cc ‡
1 …³0† ‡ ³1d·cc ‡

0 =dt…³0†† ‡ ¢ ¢ ¢

instead of ·CC‡
k …·³³k…·†; ·†:
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Now Theorem 3 follows from the boundary func-
tions method and Lemma 2. &

The proof of Theorem 2 follows from Lemma 3 and
Theorem 3.
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