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Synchronous generators have a natural different time scale dynamics. That is why, for
modelling and control design in such systems, the methods of singular perturbations are

widely used. In this paper the possibilities of sliding mode control design for synchronous
generators are analysed. With this aim the concept of singular perturbation is revised in
order to use it for relay control systems. The obtained results are used for sliding mode control

of synchronous generator.

1. Introduction

The synchronous generators have a natural different
time scale dynamics. That is why for modelling and
control design in such systems the methods of singular
perturbations are widely used. In this paper the
possibilities of sliding mode control design for synchro-
nous generators are analysed. With this aim the concept
of singular perturbation is revised in order to use it for
relay control systems. The obtained results are used
for sliding mode control of synchronous generators.
Simplifications of plant models is a classical tool for

electric power systems control design, and the most
typical way to obtain reduced models is the use of
the singular perturbation approach (Krause 1986,
Kokotovic et al. 1986, Sauer and Kokotovic 1998,
Sauer and Pai 1998). On the other hand, a fruitful and
relatively simple approach, especially when dealing
with non-linear plants subjected to perturbations,
is based on variable structure control technique with

sliding mode (Utkin 1977, 1992). First and foremost,
this enables high accuracy and robustness to distur-
bances and plant parameter variations to be obtained.
Second, the control variables of the basic sliding mode
control law rapidly switch between extreme limits, that
is ideal for the direct operation of the switched mode
power converters of synchronous generators. However,
applying discontinuous (relay) control to a plant
model with the singular perturbation leads to some
problems. Classical methods of singular perturbation
(Kokotovic et al. 1986, Vasil’eva et al. 1995) are based
on the spectrum separation and consequently these
approaches need the smoothness of the models and
control low. That is why the classical methods
of singular perturbations are not valid for singularly
perturbed relay control systems (SPRCS).

The decomposition methods for SPRCS were widely
developed in the last fifteen years. Heck and Haddad
(1989a, b, 2001) and Heck (1991) justified the motions
separation and composite control for linear SPRCS
with the first order sliding modes. Su (1999) decomposed
SPRCS in two reduced subsystems by means of
motion separation and a smooth approximation of a*Corresponding author. Email: louk@gdl.cinvestav.mx
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relay control. Some control algorithms for SPRCS were

also developed in Innocenti et al. (2003). Fridman (2001,
2002b) has dedicated the decomposition techniques

for the SPRCS with higher order sliding modes. In
the works of Fridman (2002a, c) the different classes

of periodic solutions were analysed.
The present paper discusses the advantages and

possibilities of sliding mode control design for a special

class of SPRCS describing synchronous generator
dynamics. For the synchronous generators it is natural

to use a two step control design (TSCD) procedure:

1. Eliminate the stator fast dynamics via singular

perturbation methods and derive the reduced (6th
order) model describing the slow mechanical and

rotor flux dynamics.
2. Design a sliding mode excitation control low using

block control technique (Loukianov 1998).

So the order of the original SPRCS is reduced in two

steps: first the elimination of the fast dynamics and
then the reduction of the slow dynamics model order

into the sliding domain.
To justify the proposed TSCD procedure, first it is

proved that the fast dynamics do not affect the entrance

point into the sliding domain and the sliding mode
equation of the slow dynamics outside of a boundary

layer. Hence, the motion into the boundary layer does
not affect the control design process. Then conditions

of the uniform asymptotic stability for the original

SPRCS, are found. The obtained results are used
to design a sliding mode control low for synchronous

generator angular speed and voltage.
This paper is organized as follows. Section 2

introduces the basic equations of the synchronous

generator. In section 3 the concepts of singularly
perturbed models with relay control are justified.

In section 4 the singular perturbation approach is
applied to design a synchronous generator controller.

Simulations results illustrating the effectiveness of the
proposed control are shown in section 5.

2. Synchronous generator models

2.1. Basic equations

The mathematical models for the synchronous generator

are based on the mechanical and electric equilibrium
equations (see for example Krause 1986). In electric

power system analysis it is customary to use the per
unit (p.u.) analysis that normalizes system variables,

reduces computational effort and gives more clarity

in the behaviour of the plant, Rankin (1945). The
mechanical equilibrium equations for a synchronous

generator are given by

d�

dt
¼ !� !b ð1Þ

d!

dt
¼
!b

2H
Tm � Teð Þ, ð2Þ

where � is the power angle (rad), ! is the angular
velocity (rad s�1), !b is the synchronous angular
velocity (rad s�1), H is the inertia constant (s), Tm is
the mechanical torque (p.u.), and Te is the
electromechanical torque (p.u.). On the other hand,
the electric equilibrium equations affected by the Park
transformations (Park 1929), are expressed as

V ¼ Riþ !G’þ
d’

d�tt
ð3Þ

’ ¼ Li ð4Þ

where �tt ¼ !bt, !b is the base angular velocity, t is the
time in seconds, �tt is the time in p.u.,

V ¼ Vd,Vq,Vf, 0, 0, 0
� �T

’ ¼ ’d, ’q, ’f, ’g, ’kd, ’kq
� �T

i ¼ id, iq, if, ig, ikd, ikq
� �T

,

R ¼

�rs

�rs 0

rf

rg

0 rkd

rkq

2
666666664

3
777777775
,

L ¼

�Ld 0 Lmd 0 Lmd 0

0 �Lq 0 Lmq 0 Lmq

�Lmd 0 Lf 0 Lmd 0

0 �Lmq 0 Lg 0 Lmq

�Lmd 0 Lmd 0 Lkd 0

0 �Lmq 0 Lmq 0 Lkq

2
666666664

3
777777775
,

G ¼

0 �1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
666666664

3
777777775
:

Vd and Vq are, respectively, the direct and quadrature
stator voltages; Vf is the field excitation voltage; id and
iq are, respectively, the direct and quadrature stator
currents; if is the field current; ikd, ig and ikq are,
respectively, the direct and quadrature axis damper
winding currents; �d and �q are, respectively, the direct
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and quadrature stator fluxes; �f is the field flux; �kd, �g
and �kq are, respectively, the direct and quadrature
damper winding fluxes; rs is the stator resistance; rf is
the field resistance; rkd, rg and rkq are, respectively, the
direct and quadrature damper winding resistances; Ld

and Lq are, respectively, the direct and quadrature self
inductances; Lmd and Lmq are, respectively, the direct
and quadrature magnetizing inductances; Lf is the field
self inductance; Lkd, Lg and Lkq are, respectively, the
direct and quadrature damper winding self inductances.
The equation for the electromechanical torque in

terms of the currents and fluxes, is governed by

Te ¼ ’diq � ’qid: ð5Þ

The outside generator network equation expressed in
p.u., is

Vgen ¼
d’s
dt
þ Gextis þ V1�ð�Þ ð6Þ

where

Gext ¼
Rext �!Lext

!Lext Rext

� �
, �ð�Þ ¼

sin �

cos �

� �
,

Vgen ¼
Vd

Vq

� �
, ’s ¼

’d

’q

� �
,

Lext and Rext are the transformer plus transmission line
resistance and inductance, respectively; V1 is the infinite
bus voltage set at 1ff0 (see Krause 1986).

2.2. Time scale modelling

To simplify the system model we will transform the
system to the singularly perturbed form. With this aim
it is necessary to find an adequate ‘‘parasite’’ parameter
multiplying the stator dynamics. For that reason we
scale the synchronous machine equations using the
per unit representation.

2.2.1. Per unit rotor basic equations. The electric
equilibrium equation for the field flux linkage in physical
values is governed by

�VVf ¼ �rrf �iif þ
d �’’f
dt

ð7Þ

where �VVf, �rrf, �iif and �’’f are variables in physical units.
Now from equation (7) using the variables in p.u. the

field flux dynamics can be represented as

1

!b

d’f
dt
¼ �rf if þ Vf: ð8Þ

Substituting in equation (8) the flux expression for if
obtained from equation (4), gives

T 0do _’’f ¼ �aa31’f þ �aa32’kd þ �aa33Vd þ
�bb3Vf, ð9Þ

where T 0do ¼ ð1=!bÞ=ðLf=rfÞ and T 0do is expressed in
seconds. In the same way, equations for dynamics of
�g, �kd and �kq can be obtained, respectively

T 0qo _’’g ¼ �bb11’g þ �bb12’kq þ �bb13Vq ð10Þ

T 00do _’’kd ¼ �bb21’f þ �bb22’kd þ �bb23Vd ð11Þ

T 00qo _’’kq ¼ �bb31’g þ �bb32’kq þ �bb33Vq, ð12Þ

where the time constants T 0qo ¼ ð1=!bÞ=ðLg=rgÞ,
T 00do ¼ ð1=!bÞ=ðL

0
kd=rkdÞ and T 0qo ¼ ð1=!bÞ=ðL

0
kq=rkqÞ are

expressed in seconds.

2.2.2. Per unit stator basic equations. Following
the same procedure as in subsection 2.2.1, using the
equations (3)–(4) and equations (9)–(12), the scale per
unit dynamic equations for the stator flux �d and �q
can be rewritten as

1

!b
_’’d ¼

!

!b
’q þ rsid þ Vd ð13Þ

1

!b
_’’q ¼ �

!

!b
’d þ rsiq þ Vq: ð14Þ

The coefficients in equations (9)–(14) are constants
calculated using the plant parameters, and are presented
in per unit except the time which is in seconds and the
angular velocity which is in radians/seconds, in order
to achieve the singularly perturbed form.

2.3. Complete model

After some routine calculations from equation (1)
to equation (14), we obtain the following model of
synchronous generator of the 8th order

_xx ¼
_xx1

_xx2

" #
¼

F1 x1, x2, z,Tmð Þ

F2 x1, x2, zð Þ

" #
þ

B1

B2

" #
Vf ð15Þ

�_zz ¼ F3 x1, x2, zð Þ, ð16Þ
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where x1¼ (x1, x2, x3)
T, x2¼ (x4, x5, x6)

T, z¼ (z1, z2)
T,

x1¼ �, x2¼!, x3¼�f, x4¼�g, x5¼�kd, x6¼�kq,
z1¼�d, z2¼�q, �¼ (1/!b),

The coefficients of equations (15)–(16) depend on the
plant parameters.

3. Singularly perturbed approach

3.1. Singularly perturbed model

In this paper we are dealing with the singularly
perturbed model having the form

dx

dt
¼ f ðx, z,�, uÞ, xð0Þ ¼ x0 ð17Þ

�
dz

dt
¼ gðx, z,�Þ, zð0Þ ¼ z0, ð18Þ

where x 2 Rn, z 2 Rm, u 2 R, � 2 R; f and g are smooth
functions of their arguments and linear on z and u,
�>0 is a small parameter, and � is a bounded control
vector

uj j � u0 with u0 > 0: ð19Þ

3.2. Control design procedure

The sliding mode control design procedure for original
system equations (17)–(18) consists of two steps.

Step 1: Setting �¼ 0 makes instantaneous the fast
dynamics equation (18)

0 ¼ gðx, z, 0Þ: ð20Þ

Suppose that there exists a smooth isolated solution of
equation (20) with respect z in the form

�zz ¼ hðxÞ ð21Þ

where �zz presents the quasi-steady state. Substituting

equation (21) in equation (17), we obtain the reduced

order model (ROM)

d �xx

dt
¼ f �xx, h �xxð Þ, 0, uð Þ ð22Þ

where �xxðtÞ defines the solution of equation (22) for a
fixed control uð �xxÞ.

Remark 1: Taking into account the specific feature of
the synchronous generator model equations (15)–(16),
we assume that equation (20) is linear with respect
to and u, and a corresponding solution equation (21)
do exist. Consequently, the ROM equation (22) is
linear on u.

Step 2: Design a non-linear sliding surface sð �xxÞ ¼ 0,
s 2 R for the system (22), such that there is a solution
of the equation

ds

dt
¼ �GGf �xx, h �xxð Þ, 0, ueq

� �
¼ 0, �GG ¼

ds

d �xx

� �

with respect to the equivalent control, ueqð �xxÞ (Utkin
1992), and the sliding mode equation (SME)

d �xx

dt
¼ f �xx, h �xxð Þ, 0, ueqð �xxÞ

� �
ð23Þ

s �xxð Þ ¼ 0 ð24Þ

has the desired properties. Select a discontinuous
control

u �xxð Þ ¼
uþ �xxð Þ

u� �xxð Þ

�
if

if

s �xxð Þ > 0,

s �xxð Þ < 0,

uþ �xxð Þ
		 		 � u0

u� �xxð Þ
		 		 � u0

, ð25Þ

that makes the sliding surface equation (24) to be
attractive.

F1 ¼

x2 � !b

dmTm � a21x3z2 þ a22x4z1 þ a23x5z2 þ a24x6z1 þ a25z1z2ð Þ

a31x3 þ a32x5 þ a33z1

2
64

3
75,

F2 ¼

b11x4 þ b12x6 þ b13z2

b21x3 þ b22x5 þ b23z1

b31x4 þ b32x6 þ b33z2

2
64

3
75,

F3 ¼
c11x2x4 þ c12x2x6 þ c13x2z2 þ c14z1 þ c15 sin x1

c21x2x3 þ c22x2x5 þ c23x2z1 þ c24z2 þ c25 cos x1

" #
, B1 ¼

0

0

b3

2
64

3
75 and B2 ¼ 0:
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Note that the synchronous machine model
equations (15)–(16) is a particular case of equations
(17)–(18), when the functions f and g depending on z
and u linearly and consequently the solution of system
equations (17)–(18) in Filippov sense exists at least for
a small t (see for example Utkin 1992). Moreover,
from equation (24) one of the vector �xx components
can be expressed as a function of other (n� 1)
components. Therefore, in fact, SME equation (23)
has the order (n� 1). So, the order of the original
system equations (17)–(18), is reduced first, by using
the motion separation due to different time scale, and
second, via sliding mode.
To justify the proposed control design (TSCD)

procedure (see steps 1 and 2), first we will analyse the
behaviour of the original SPRCS equations (17)–(18)
and equation (25) when the state vector crosses the
switching surface, and then investigate the entrance
of SPRCS solutions into the sliding mode domain
(see subsection 3.3). Finally, the stability condition for
original SPRCS will be derived (see subsection 3.4).

3.3. Analysis of SPRCS solutions
crossing sliding surface

In this subsection we will study the behaviour of the ori-
ginal closed-loop system (SPRCS) equations (17)–(18)
and equation (25) out from sliding mode domain. If a
solution of the SPRCS is not crossing the discontinuity
surface equation (24), it can be analysed by the classical
method of singular perturbations (see Vasil’eva et al.
1995, Kokotovic et al. 1986). On the other hand, the
specific feature of SPRCS describing the behaviour of
synchronous machines is that the equations of slow
variables depend on the relay control equation (25),
and consequently after a finite number of switches the
trajectory of original SPRCS will enter into the sliding
mode domain. In this subsection we will show that in
the case of finite switches we can use the reduced
order model to describe the slow motions in the
SPRCS. Doing so, we have to describe specific features
of SPRCS for both domains s>0 and s<0. Moreover,
it is necessary to verify the attraction condition for the
switching point.
Denote the domains of definition for variables z and x

as Z and X, respectively. The discontinuity surface
s(x)¼ 0 divides the domains X into the parts defined
as X� for s<0 and Xþ for s>0, respectively; and
define the system structure as

fþðx, z,�Þ ¼ f x, z,�, uþðxÞ
� �

for s � 0 and u ¼ uþðxÞ

and

f�ðx, z,�Þ ¼ f x, z,�, u�ðxÞð Þ for s � 0 and u ¼ u�ðxÞ

with

fþ 2 C2 �XXþ � ½0,�0�
� �

, f� 2 C2 �XX� � ½0,�0�
� �

:

3.3.1. System in the domain s<0. Denote

ds�

dt
ðx, z,�Þ ¼ Gf�ðx, z,�Þ,

dsþ

dt
ðx, z,�Þ ¼ Gfþðx, z,�Þ:

Suppose that x0 2 X�, z0 2 Z. It is natural to assume
that for the original system equations (17)–(18) and
(25), the following conditions of the Tikhonov theorem
hold (see, for example, Vasil’eva et al. 1995).

[a1] The function �zz ¼ hð �xxÞ is an isolated solution of
0¼ g(x, z, 0) for all x 2 X.

[a2] The Cauchy problem for slow dynamics

d �xx�

dt
¼ f� �xx�, h �xx�ð Þ, 0ð Þ, �xx�ð0Þ ¼ x0 ð26Þ

has a unique solution �xx�ðtÞ on ½0, �tts�, where �tts is
the switching point i.e. the smallest root of the
equation s �xx�ð�ttsÞ

� �
¼ 0.

[a3] The equilibrium point �z¼ 0 of the system

dð�zÞ

d�
¼ g �xx�,�zþ h �xx�ð Þ, 0ð Þ

where �z ¼ z� h �xxð Þ, �¼ (t/�) is asymptotically
stable, moreover,

Re Spec
@g

@�z
�xx�,hð �xx�Þ, 0ð Þ < ��, � > 0, for all x 2 X:

[a4] The trajectory of the reduced system equation (26)
crosses the switching surface s(x)¼ 0, without
tangential touch, i.e.

ds�

dt
¼ �GGf� �xx� �tts

� �
, h �xx�ð �ttsÞ
� �

, 0
� �

> 0:

Remark 2: In the system equations (15)–(16) the
function g depends on the fast variable z linearly. This
implies that every initial value of equation (18) belongs
to the domain of attraction for the equilibrium point
�z¼ 0.

Now from Vasil’eva theorem (Vasil’eva et al. 1995) and
implicit function theorem it follows that for sufficiently
small � there exists a time moment t¼ ts(�) such that
for the slow coordinate of the original SPRCS we have

s xðtsð�Þ,�Þð Þ ¼ 0

Variable structure of synchronous generator 5



and moreover, for all � 2 0,�0½ �

ds�

dt
¼ Gf� xðtsð�Þ,�Þ, z tsð�Þ,�ð Þ,�ð Þ > 0, G ¼

ds

dx

� �
:

Now we have to consider two alternative variants for
SPRCS solution behaviour

. a solution of original SPRCS will enter into the
domain Xþ�Z;

. a solution of original SPRCS will enter into the sliding
domain.

3.3.2. Entrance into the domain s>0. From the
condition [a4] and the boundary layer method
(Vasil’eva et al. 1995), it follows that a solution of
the original SPRCS will reach the switching surface
s(x(ts(�),�))¼ 0 at the switching point

xðtsð�Þ,�Þ, z tsð�Þ,�ð Þð Þ

¼ �xx� �tts
� �
þOð�Þ, h �xx� �tts

� �� �
þOð�Þ

� �
:

This means that the point (x(ts(�),�), z(ts(�),�)) does
not belong to the sliding mode domain, and the solution
of equations (17)–(18) and equation (25) will enter into
the domain Xþ�Z. We can consider the coordinate
of the switching point (x(ts(�),�), z(ts(�),�)) as the
initial condition for SPRCS into the domain Xþ�Z
and suppose that for the original SPRCS, in the
domain Xþ�Z the following conditions are satisfied:

½b1�
dsþ

dt
¼ �GGfþ �xx� �tts

� �
, h �xx� �tts

� �� �
, 0

� �
> 0

then from the Tikhonov theorem it follows that
for sufficiently small �

dsþ

dt
¼ Gfþ xðtsð�Þ,�Þ, z tsð�Þ,�ð Þ,�ð Þ > 0:

[b2] Suppose that the Cauchy problem

d �xxþ

dt
¼ fþ �xxþ, h �xxþ

� �
, 0

� �
, �xxþ �tts

� �
¼ �xx� �tts

� �
has a unique solution on �tts,T

� �
.

The following Lemma is true (Fridman 2002a):

Lemma 1: Suppose that the original SPRCS
equations (17)–(18) and equation (25) satisfies the
conditions [a1]–[a4] and [b1]–[b2]. Then there exists
small �0>0 such that for all � 2 ½0,�0� there is

a unique solution (x(t,�), z(t,�)) of Cauchy problem
equations (17)–(18) on [0,T ], and

lim
�!0

xðt,�Þ ¼ �xxðtÞ ¼
�xx�ðtÞ

�xxþðtÞ

for

for

t 2 0, �tts
� �

t 2 �tts,T
� �

(
,

lim
�!0

zðt,�Þ ¼ h �xxðtÞð Þ for t 2 ð0,T �:

Remark 3: In the same way, we can prove that it is
possible to use the equations for slow motions to analyse
the system equations (17)–(18) and equation (25)
dynamics in the case when the solution leaves the
domain Xþ�Z and enters into the domain X��Z.

3.3.3. Transition into sliding domain. In this subsection
the behaviour of the original SPRCS equations (17)–(18)
and equation (25) into the sliding domain, is described.
Denote as

S0 ¼ x :
ds�

dt
�xx, h �xxð Þ, 0ð Þ > 0,

dsþ

dt
�xx, h �xxð Þ, 0ð Þ < 0

� �
,

S� ¼ ðx, z,�Þ :
ds�

dt
ðx, z,�Þ > 0,

dsþ

dt
ðx, z,�Þ < 0

� �

the sliding domains for the systems equation (22)
and equations (17)–(18), respectively. Suppose that the
control resources allow us to achieve the following
sliding mode existence conditions (Utkin 1992):

½c1�
ds�

dt
�xx� �tts
� �

, h �xx� �tts
� �� �

, 0
� �

> 0,

dsþ

dt
�xx�ð�ttsÞ, h �xx� �tts

� �� �
, 0

� �
< 0:

Now from the Tikhonov theorem it follows that for
sufficiently small �

ds�

dt
¼ Gf� xðtsð�ÞÞ, zðtsð�ÞÞ,�ð Þ > 0 and

dsþ

dt
¼ Gfþ xðtsð�ÞÞ, zðtsð�ÞÞ,�ð Þ < 0:

This means that, a solution of the original system
equations (17)–(18) and equation (25) enter into the
sliding domain S� without tangential touch. Therefore,
we can consider the coordinate of the switching point
(x(ts(�),�), z(ts(�),�)) as the initial condition for
SPRCS into the sliding domain S�. Hence, a solution
of the Cauchy problem equations (17)–(18) with
equation (25) into S� is described by the following

6 A. Soto-Cota et al.



system (Utkin 1992):

dx�

dt
¼ f x�, z�,�, ueqðx

�, z�,�Þ
� �

, �
dz�

dt
¼ g x�, z�,�ð Þ

x� tsð�Þ,�ð Þ ¼ x tsð�Þ,�ð Þ,

z� tsð�Þ,�ð Þ ¼ z tsð�Þ,�ð Þ, s x�ð Þ ¼ 0,

9>>=
>>;

ð27Þ

where t 2 t0ð�Þ,T½ �, x� 2 Rn�1, z� 2 Rm, u 2 R,

� 2 0,�0½ �, and ueqðx
�, z�,�Þ is the equivalent control

calculated as a solution of

ds

dt
¼ Gf x�, z�,�, ueq

� �
¼ 0, s x�ð Þ ¼ 0: ð28Þ

Similar to the above case (x 3.3.2) we suppose that for

the system (27)–(28) the following conditions of the

Tikhonov theorem hold:

[c2] The reduced (by �¼ 0) sliding mode equation

d �xx�

dt
¼ f �xx�, hð �xx�Þ, 0, �uueqð �xx

�Þ
� �

, �xx�ð�ttsÞ ¼ x�0

with �uueqð �xx
�Þ ¼ ueqð �xx

�, hð �xx�Þ, 0Þ has a unique

solution �xx�ðtÞ on ½�tts,T �, and �xx�ðtÞ 2 S0 for all

t 2 ½ �tts,T �.

The following Lemma is true (Fridman 2002c):

Lemma 2: Suppose that the original SPRCS equations

(17)–(18) and (25) satisfies the conditions [a1]–[a4] and

[c1]–[c2]. Then there exists a small �0>0 such that for

all � 2 0,�0½ � there is a unique solution (x(t,�), z(t,�))
of equations (17)–(18) and equation (25) on [0,T ] and

lim
�!0

ueq x t,�ð Þ,z t,�ð Þ,�ð Þ ¼ �uueq �xx�ðtÞð Þ, for t 2 �tts,T
� �

,

ð29Þ

lim
�!0

x t,�ð Þ ¼ �xx tð Þ ¼
�xx�ðtÞ

�xx�ðtÞ

for

for

t 2 0, �tts
� �

t 2 �tts,T
� �

(
, ð30Þ

lim
�!0

z t,�ð Þ ¼ h �xxðtÞð Þ for t 2 ð0,T �: ð31Þ

Remark 4: If a solution of equations (17)–(18) and

equation (25) will leave the sliding modes then it will

not affect the zero approximation of the fast and

the slow dynamics equations, since in this case the

slow motion integral manifold is continuous (Fridman

2002c).

3.4. Stability analysis

Consider the case when the original SPRCS has
an equilibrium into S�. Solving equation (28) for
u�eqðxðt,�Þ, zðt,�ÞÞ and substituting it in equation (17),
we obtain the smooth algebraic-differential system
described the sliding mode dynamics. Express
one coordinate of x as a function of other (n� 1) coor-
dinates. Then a sliding mode dynamics are governed
by the following singularly perturbed (nþm� 1)th
order system:

dx�

dt
¼ f � x�, z�,�

� �
�
dz�

dt
¼ g� x�, z�,�

� �
, ð32Þ

where the vector x� 2 Rn�1 consists of the (n� 1)-
independent coordinates of x, z� ¼ z, g�, and f� 2 Rn�1

are the values of g and the corresponding component of
f computed at u ¼ ueqðx

�, z�,�Þ. For the case of syn-
chronous machine the equation g�ð �xx�, h�ð �xx�Þ, 0Þ ¼ 0
has a unique solution �zz� ¼ h�ð �xx�Þ, consequently the
slow dynamics in equation (32) are described by
the system

dx�

dt
¼ �ff� �xx�

� �
¼ f� �xx�,h� �xx�

� �
,0

� �
0¼ g� �xx�,h� �xx�

� �
,0

� �
:

ð33Þ

Let us denote x�eq as an equilibrium point of equation
(33). Then from the Klimushchev–Krasovskii theorem
(Klimushchev and Krasovskii 1962), Theorem 1 follows.

Theorem 1: Suppose that the equilibrium point of the
system equations (17)–(18) belongs to S�, x

�
eq 2 S0, and

@ �ff�

@x�
x�eq, h

� x�eq


 �
, 0


 �
ð34Þ

@g�

@z�
x�eq, h

� x�eq


 �
, 0


 �
ð35Þ

are Hurwitz matrices. Then there exists �0>0 such that
the equilibrium point to the system equations (17)–(18)
is uniformly asymptotically stable with respect to
� 2 0,�0½ �.

Therefore we can conclude that in order to verify
correctness of the proposed control design procedure
(steps 1 and 2) it is enough to check the conditions
presented in the subsection 3.2–3.3.

4. Control of generator

In this section, following the proposed in section 3
control design procedure, we will derive a reduced

Variable structure of synchronous generator 7



model which describes the generator slow dynamics.
Then, based on this a discontinuous control law for
the generator will be designed, and the conditions
presented in section 3 will be checked.

4.1. Reduced model of synchronous machine

The fast dynamics equation (16) rewritten as

� _zz1 ¼ c11x2x4 þ c12x2x6 þ c13x2z2 þ c14z1 þ c15 sin x1

ð36Þ

� _zz2 ¼ c21x2x3 þ c22x2x5 þ c23x2z1 þ c24z2 þ c25 cos x1

ð37Þ

is linear with respect to fast variables and it can be
neglected by making �¼ 0, that is

0 ¼ ARzþ FR, ð38Þ

where

AR ¼
c14 c13x2

c23x2 c24

� �
,

FR ¼
c11x2x4þ c12x2x6þ c15 sinx1

c21x2x3þ c22x2x5þ c25 cosx1

� �
, and rank AR ¼ 2:

The fast dynamics equations (36)–(37) do not depend on
the control u directly, and the matrix AR has full rank,
that is why a solution of equation (38) for z1 and z2
can be calculated as

z ¼ �A�1R FR :¼ h x1, x2ð Þ :¼
h1ðx1, x2Þ
h2ðx1, x2Þ

� �
: ð39Þ

So, the condition [a1] is satisfied. Substitution of
equation (39) into equation (15) gives the following
reduced (6th order) model:

_xx1

_xx2

� �
¼

�FF1 x1,x2,Tm,h1 x1,x2ð Þ,h2 x1,x2ð Þð Þ

�FF2 x1,x2,h1 x1,x2ð Þ,h2 x1,x2ð Þð Þ

" #
þ

B1

0

� �
Vf,

ð40Þ

where

4.2. Angular speed control

The first subsystem of equation (40) has the Nonlinear
Block Controllable form consisting of three blocks.
Therefore in order to design the non-linear sliding
surface we use the block control technique (Loukianov
1998). To satisfy the control objective, namely, rotor
angle stability enhancement, we define the control
error as

&2 ¼ x2 � !b: ð41Þ

The time derivative of equation (41) along the trajec-
tories of equation (40), takes the form

_&&2 ¼ f2 x1, x2,Tmð Þ þ b2 x1, x2ð Þx3 ð42Þ

where f2¼ dmTm� (a22x4h1( 	 )þ a23x5h2( 	 )þ a24x6h1�
( 	 )þ a25h1( 	 )h2( 	 )), b2¼ a21h2( 	 ), and b2(t) is a positive
function of the time. To introduce a new desired
behaviour we put

x3 ¼ � b2 x1, x2ð Þ½ �
�1 f2 x1, x2,Tmð Þ þ k0&2 � s!½ �, k0 > 0:

ð43Þ

Then using equation (43) the switching surface can be
defined as

s! ¼ 0, s! ¼ b2 x1,x2ð Þx3 þ f2 x1, x2,Tmð Þ þ k0 x2 � !bð Þ:

ð44Þ

The projection motion on the subspace s! can be
derived using equation (44) and equation (40) of the
form

_ss! ¼ fs x1, x2,Tmð Þ þ bs x1, x2ð ÞVf,

where fs is a continuous function, bs( 	 )¼ b3b2( 	 ), and
bs(t) is a positive function of the time.

4.3. Singularly perturbed analysis of
synchronous generator

4.3.1. Stability analysis outside the sliding surface. Let
us show the conditions of Lemmas 1 and 2 and
Tikhonov Theorem in the synchronous generator

�FF1 ¼

x2 � !b

dmTm � a22x4 þ a24x6ð Þ 	 h1ð 	 Þ þ a21x3 þ a23x5ð Þ 	 h2ð 	 Þ þ a25h1ð 	 Þh2ð 	 Þ½ �

a41x3 þ a42x4 þ a43x5 þ a44x6 þ a45 sin x1 þ a46 cos x1

2
64

3
75,

�FF2 ¼

b11x4 þ b12x6 þ b13h2 x1, x2ð Þ

b21x3 þ b22x5 þ b23h1 x1, x2ð Þ

b31x4 þ b32x6 þ b33h2 x1, x2ð Þ

2
64

3
75, B1 ¼

0

0

b3

2
64

3
75:
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control problem. The matrix AR in equation (38) for all
real synchronous generators known for the authors is
Hurwitz. This ensures that the conditions [a1]–[a3] and
(35) are satisfied.

4.3.2. Sliding mode existence. Design the relay control
law as follows:

Vf ¼ �u0 sign s!ð Þ, u0 > 0: ð45Þ

Then we can see that condition

u0 � Vfeq x1,x2,Tmð Þ
		 		, Vfeq ¼ bs x1,x2ð Þ½ �

�1fs x1,x2,Tmð Þ,

ensures the existence of the sliding domains with
nonzero measure for the systems equation (16) and
equation (40) with control equation (45). This means
that the assumptions [a4], [b1] or [c1] are true for all
solutions to the system equation (16) excluding the set
of initial condition of zero measure, and after some
time ts a sliding mode motion occurs.

4.3.3. Slow dynamics stability. Once the sliding mode
motion is achieved, this motion is governed by the
reduced order system

_&&2 ¼ �k0&2 ð46Þ

_xx2 ¼ �FF2 x1, x2, h1 x1, x2ð Þ, h2 x1, x2ð Þð Þ ð47Þ

where the linear subsystem equation (46) describing
the linearized mechanical dynamics, has the desired
eigenvalue �k0, while equation (47) represents the
rotor flux dynamics. The subsystem equation (46) is
asymptotically stable, that is, limt!1 &2ðtÞ ¼ 0 and the
angle x1ðtÞ ¼ x1ð0Þ þ

Ð t
0&2ð�Þd� tends to a steady state

x1ss¼ �ss as the control error &2ðtÞ tends to zero.
On the invariant subspace f� ¼ ðx1ss, 0, 0Þ

T, x2 2 R3g,
where � ¼ ðx1, &2, s!Þ

T, the dynamics of x2 are referred
to as the zero dynamics. To derive this dynamics,
we put x1¼ �ss and x2¼!b, then equation (47) can
be rewritten as a linear system with non-vanishing
perturbation

_xx2 ¼ Asmx2 þ Fsm x2, �ss,!b,Tmð Þ

where

Asm ¼

b11 � b13ar21c11 �b13ar22c22 b12 � b13ar21c12
�b23ar11c11 b22 � b23ar12c22 �b23ar11c12

b31 � b33ar21c11 �b33ar22c22 b32 � b33ar21c12

2
64

3
75,

and Fsm(x2, �ss,!b,Tm) is a bounded non-linear function.

The matrix Asm is Hurwitz by virtue of rotor flux
dynamics (see plant parameters). Hence, a solution
of equations (46)–(47) can exponentially converges to

a steady state x2¼ x2ss defined by value of Tm

(Loukianov et al. 2000, Khalil 1996). So condition (34)

is satisfied.

5. Simulation results

The performance of the proposed control algorithm was

tested on the complete 8th order model of synchronous
generator connected to an infinite bus through a trans-
mission line, figure 1.

The parameters of the synchronous machine and

external network in p.u. are

Ld ¼ 1:81, L0d ¼ 0:3, L00d ¼ 0:23, Lq ¼ 1:76,

L0q ¼ 0:6, Lext ¼ 0:1, Rext ¼ 0:001,

T 0do ¼ 8:0 sec , T 0qo ¼ 1:0 sec , T 00do ¼ 0:03 sec ,

T 00qo ¼ 0:07 sec:

t

rad

δ

Figure 2. Power angle affected by a mechanical perturbation.

Synchronous
Generator

Turbine

Lext Rext Infinite Bus

Line

V∞∠0Vgen ∠φ

Figure 1. Single machine connected to an external network
infinite bus.
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For these parameters we obtain the parameters of

mathematical model equations (15)–(16). The controller

gain was adjusted to k0¼ 10. The eigenvalues of Asm

was calculated as, 	4¼�38.77, 	5¼�0.5024
and 	6¼�27.04. Figures 3–10 depict results under two

different events

(a) in t¼ 0.5 s, Tm experienced a pulse increment of 7%

for 0.5 s, (figures 3 to 5 and 9), and
(b) in t¼ 1.7 s, a three-phase short circuit for a period

of 150ms is simulated at the transformer terminals

(figures 6–10).

V

p.u.

t 

Vgen

Figure 4. Generator voltage affected by a mechanical

perturbation.

t 

rad/s

ω

Figure 3. Rotor velocity affected by a mechanical

perturbation.

t 

rad 

δ

Figure 5. Power angle affected by a 0.15 s short circuit.

t 

ω

rad/s 

Figure 6. Rotor angular velocity affected by a 0.15 s short
circuit.

V 

p.u.

t 

Short circuit

Figure 7. Generator voltage affected by a 0.15 s short circuit.
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These figures reveal some important aspects:

1. State variables hastily reach a steady state condition
after small and large disturbances, exhibiting the
stability of the closed-loop system.

2. The terminal voltage recovers their steady state value
after the short circuit.

6. Conclusions

In this paper the possibility of apply a sliding mode
control algorithm for non-linear SPRCS described the
synchronous generator model dynamics is analysed.
The main specific feature of synchronous machine
models is the following: the actuator is inside the field
flux dynamics. For SPRCS described the behaviour
of synchronous machines this means that the slow
equations depend on relay control. For such system
the following two steps control design (TSCD) are
proposed: firstly, the natural two scale properties of
synchronous generator are used to obtain the reduced
order model, and then based on this reduced model
a sliding mode control algorithm ensuring the desired
behaviour of the generator is designed. The effectiveness
of proposed algorithm is illustrated by simulations with
the parameters of a real generator.

Proposed control ideology could be useful for
complete models of electrical machines networks because
the corresponding SPRCS models will have the same
structure.
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Appendix

Coefficients of the generator

a21 ¼
!b

2H

X00d � ‘s
X0d � ‘s

Xmd

Xf

� �
, a22 ¼ �

!b

2H

X00q � ‘s

X0q � ‘s

Xmq

Xg

" #
,

a23 ¼
!b

2H

X0d � X00d
X0d � ‘s

� �
, a24 ¼ �

!b

2H

X0q � X00q
X0q � ‘s

" #
,

t 

p.u. 

Figure 8. Voltage Vf performance.

t 

p.u. 

x7

x7

Figure 10. Short circuit fast motion response: Full model.

p.u. 

x7

x7

t 

Figure 9. Natural response of high motions.
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a25 ¼
!b

2H
X00q � X00d


 �h i
,

a31 ¼ �
1

T 0do
1þ

Xd � X0d
� �

X0d � X00d
� �

X0d � ‘s
� �2

 !" #
,

32 ¼
1

T 0do

Xd � X0d
� �

X0d � X00d
� �

X 0d � ‘s
� �2 Xf

Xmd

" #
,

a33 ¼
1

T 0do

Xd � X0d
� �

X0d � X00d
� �

X0d � ‘s
� � � Xd � X0d

� � !
Xf

Xmd

" #
,

b3 ¼ !b, �aa31 ¼ T 0doa31,

�aa32 ¼ T 0doa32, �aa33 ¼ T 0doa33,
�bb11 ¼ T 0qob11,

b11 ¼ �
1

T 0qo
1þ

Xq � X0q


 �
X0q � X00q


 �
X0q � ‘s


 �2
0
B@

1
CA

2
64

3
75,

b12 ¼
1

T
0

qo

Xq � X0q


 �
X0q � X00q


 �
X0q � ‘s


 �2 Xg

Xmq

2
64

3
75,

�bb12 ¼ T 0qob12,
�bb13 ¼ T 0qob13,

�bb21 ¼ T 00dob21,

b13 ¼
1

T 0qo

Xq � X0q


 �
X0q � X00q


 �
X0q � ‘s


 � � Xq � X0q


 �0
@

1
A Xq

Xmq

2
4

3
5,

b21 ¼
1

T 00do

Xmd

Xf
, b22 ¼ �

1

T 00do
,

b23 ¼ �
1

T 00do
X0d � ‘s
� �

, b31 ¼
1

T 00qo

Xmq

Xg
, b32 ¼ �

1

T 00qo
,

b33 ¼ �
1

T 00qo
X0q � ‘s


 �
,

c11 ¼
X00q � ‘s


 �
Xmq

X0q � ‘s


 �
Xg!b

2
4

3
5, c12 ¼

X0q � X00q


 �
X0q � ‘s


 �
!b

2
4

3
5,

c13 ¼ �
X00q
!b

� �
, c14 ¼ rs, c15 ¼ V1,

c21 ¼
X00d � ‘s
� �

Xmd

X0d � ‘s
� �

Xf !b

" #
, c22 ¼ �

X0d � X00q


 �
X0d � ‘s
� �

!b

2
4

3
5,

c23 ¼
X00d
!b

� �
, c24 ¼ rs, c25 ¼ V1,

�bb22 ¼ �1, �bb23 ¼ T00dob23,
�bb31 ¼ T00qob31,

�bb33 ¼ �1,

�bb33 ¼ T00qob33:

For the reduced order model

A�1R ¼
ar11 ar12

ar21 ar22

" #

¼

c24
c14c24� c13c23

�c13
c14c24� c13c23

�c23
c14c24� c13c23

c14
c14c24� c13c23

2
664

3
775,

h1 x1, x2ð Þ

h2 x1, x2ð Þ

� �
¼ �

ar11 ar12

ar21 ar22

� �

�
c11x4 þ c12x6 þ c15 sin x1

c21x3 þ c22x5 þ c25 cos x1

� �
:
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