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The problem of the realization of integral sliding mode controllers based only on output
information is discussed. The implementation of an output integral sliding mode controller
ensures insensitivity of the state trajectory with respect to the matched uncertainties from

the initial time moment. In the case when the number of inputs is more than or equal to
the number of outputs, the closed loop system, describing the output integral sliding mode
dynamics, is shown to lose observability. For the case when the number of inputs is less

than the number of outputs, a hierarchical sliding mode observer is proposed. The realization
of the proposed observer requires a filtration to obtain the equivalent output injections.
Assigning the first order low-pass filter parameter small enough (during this filter realization),

the convergence time and the observation error can be made arbitrarily small. The results
obtained are illustrated by simulations.

1. Introduction

1.1 Antecedents and motivation

Various areas of control, such as robotics or optimal

control, demand the compensation of arising

uncertainty effects. In this situation the special sliding

mode technique, namely, integral sliding mode (ISM),

seems to be useful, see, e.g., Utkin and Shi (1996). It

has two main properties: first, the ISM does not have

reaching phase; and second, resulting from the first

one, it ensures insensitivity of the desired trajectory

with respect to matched uncertainties starting from the

initial moment. These properties make attractive the

study of ISM, see, for example, Utkin et al. (1999),

Basin et al. (2002a, b, 2003, 2005), Poznyak et al.

(2004), Shtessel et al. (2004), Fridman et al. (2005),

Xu et al. (2005), and Castaños and Fridman (2006).

However, the main problem related to the implementa-
tion of this ISM concept is the requirement of the com-
plete knowledge of the state vector, including the initial
one. Obviously, when dealing with ISM and only output
(no states) information is available, it turns out to be
useless when being applied directly. Here, we present
a possible approach to the solution of this problem.

When only the output of a system is available, there
are two possibilities for sliding mode control design.
One is to use an output feedback control, i.e., design
a sliding surface using the output of the system in such
a way that the dynamics of the system, during the
corresponding sliding motion, has a property required
by the designer. This kind of controls can be seen in
Edwards and Spurgeon (1998), Sira-Ramı́rez and
Spurgeon (1996) and Bag et al. (1997). Another
possibility is to design an observer and with the follow-
ing use of the obtained estimates in a control law
instead of the real states of the system. To construct
an estimator, providing convergence of generated
estimates to real states, the corresponding sliding surface*Corresponding author. Email: lfridman@servidor.unam.mx
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should be specially designed. There are two main meth-
ods for designing sliding mode observers: one is aimed
to get a zero tracking error between the outputs of the
plant and the observer to be constructed (see, e.g.,
Edwards and Spurgeon (1998), Utkin et al. (1999),
Edwards et al. (2002) and Sira-Ramı́rez and Fliess
(2004)); the other one is to design several sliding surfaces
to estimate the state step by step (Hashimoto et al. 1990,
Barbot et al. 2003). Here we design a hierarchical obser-
ver which completely differs from the observers studied
in Hashimoto et al. (1990), Barbot et al. (2003) and
Barbot and Floquet (2004). We obtain a vector which
is the result of multiplying an observability matrix by
the state. Thus, at each k-level of the hierarchy we esti-
mate a sub-block of such vector and so on until we get
all the vector previously mentioned.

1.2 Main contribution

In this paper the OISM algorithm for uncertain linear
time invariant systems based only on the output infor-
mation is discussed. Some specific contributions are
enumerated below.

1. We design an ISM controller, using only output
information that compensates the matched uncertain-
ties from the initial time of the control process.

2. It is shown that when the number of inputs is
more than (or equal to) the number of outputs, the
corresponding ISM dynamics always lose
observability and therefore the application of ISM,
based only on output information, is useless when
state estimation is required.

3. We propose a hierarchical sliding mode observer for
the case when the number of inputs is less than the
number of outputs. The observation error can be
made arbitrarily small for an arbitrary short time
by the adjustment of the parameters of the filter
required during the realization.

1.3 Structure of the paper

In section 2, the model description is presented and the
purpose of the control law is formulated. Section 3 is
devoted to the design of the OISM control and the
design of the observer. In x 3.1 an output integral slid-
ing mode (OISM) controller rejecting the matched
uncertainty is proposed. Subsections 3.2 and 3.3 deal
with the observer design. Subsection 3.4 is related to
the realization of the observer. In x 3.5, the algorithm
of design is formulated. A case of study related to an
optimal control is given in section 4. Section 5 deals
with some numerical illustrations. In Appendix A, it
is shown that if an OISM is used, and the number of
outputs is less than or equal to the number of inputs,

the nominal closed system becomes unobservable. In
Appendix B the conditions, in terms of A, B and C,
under which the proposed observer can be carried
out, are formulated.

2. Model description and problem statement

2.1 Plant’s model

Let us consider a linear time invariant system with
uncertainties

_x tð Þ ¼ Ax tð Þ þ Bu tð Þ þ g x, tð Þ; x 0ð Þ ¼ x0

y tð Þ ¼ Cx tð Þ;

)
ð1Þ

where x tð Þ 2 R
n is the state vector, u tð Þ 2 R

m is the con-
trol law and y tð Þ 2 R

p (1 � p < n) is the output of the
system. The pair u tð Þ, y tð Þ

� �
is assumed to be measurable

(available) for all time t� 0. The current state x tð Þ and
the initial state x 0ð Þ are supposed to be non-available.
A, B, C are known matrices of appropriate dimension
with rank B ¼ m and rank C ¼ p. All the solutions of
the dynamic systems are defined in Filippov’s sense
(Filippov 1988).

Throughout the paper we will assume the following.

1. The pair A,Bð Þ is controllable and A,Cð Þ is
observable.

2. The plant (1) operates only under matched
uncertainties, that is,

g x, tð Þ ¼ B� x, tð Þ

with the function � x, tð Þ being bounded, that is,

� x, tð Þ
�� �� � qa yðtÞ, tð Þ: ð2Þ

3. The vector x0 is supposed to be unknown but
belonging to a given ball, that is

x0
�� �� � �: ð3Þ

4. rank CBð Þ ¼ m

2.2 Control challenge

Let the nominal state be

_x0 tð Þ ¼ Ax0 tð Þ þ Bu0 tð Þ; x0 0ð Þ ¼ x0 ð4Þ
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Now, for the system (1), we design the control law u
to be

u ¼ u0 þ u1 ð5Þ

where the control u0 2 R
m is the ideal control designed

for the system (4) and u1 2 R
m is designed to compensate

the matched uncertainty g x, tð Þ from the initial time.

3. OISM control and design of the observer

This section deals first with the design of control u1.
Then, a hierarchical integral sliding modes (HISM)
observer is suggested and it is shown that the estimation
error can be made arbitrarily small for an arbitrary short
time by the adjustment of the filter parameter used
during the realization of the observer.

3.1 Output integral sliding modes

Define the auxiliary affine sliding function s : Rp
! R

m

as follows:

s yð Þ :¼ Gyþ �: ð6Þ

Here, the matrix G 2 R
m�p must satisfy the condition

det GCBð Þ 6¼ 0:

The term � is a function of t and includes an integral
term which will be defined below. Thus, for the time
derivative _s we have

_s ¼ GC Axþ Bu0 þ Bu1 þ B�½ � þ _�:

Define _� as

_� ¼ �GCAx̂� GCBu0, � 0ð Þ ¼ �Gy 0ð Þ: ð7Þ

The vector x̂ represents an observer and its specific form
will be selected further. The substitution of _� in ( _S) yields

_s ¼ GCA x� x̂ð Þ þ GCBu1 þ GCB�; s 0ð Þ ¼ 0: ð8Þ

We propose the control u1 in the following form

u1 ¼ �� tð ÞD�1 sðtÞ

sðtÞ
�� �� , D :¼ GCB ð9Þ

with the � tð Þ being a scalar gain that satisfies the
condition

� tð Þ � Dk kqa y, tð Þ þ GCAk k x tð Þ � x̂ tð Þ
�� ��� �

� � > 0;

where � is a constant. Selecting the Lyapunov
function as V ¼ 1=2 sk k2 and in view of (9) and (2),
differentiating V yields

_V ¼ s, _sð Þ ¼ s,GCA x� x̂ð Þ � �
s

sk k
þD�

� �
� � sk k �� GCAk k x� x̂k k � Dk k qað Þð Þ � � sk k� � 0

( s, _sð Þ :¼ sT _s). It means that V does not increase in time
and since sð0Þ ¼ 0, this implies

1

2
s tð Þ

�� �� ¼ V s tð Þð Þ � V s 0ð Þð Þ ¼
1

2
s 0ð Þ

�� �� ¼ 0:

So, the identities

s y tð Þð Þ ¼ _s y tð Þð Þ ¼ 0 ð10Þ

hold for all t� 0, i.e., there is no reaching phase.
From (8) and in view of the equality in (10), the

equivalent control maintaining the trajectories on the
surface is

u1eq ¼ � GCBð Þ
�1GCA x tð Þ � x̂ tð Þð Þ � �: ð11Þ

The substitution of u1eq in (1) yields the sliding mode
equations

_x tð Þ¼Ax tð Þ�B GCBð Þ
�1GCA x tð Þ� x̂ tð Þ½ �þBu0

y tð Þ¼Cx tð Þ:

)
ð12Þ

Define the matrix ~A as

~A :¼ I� B GCBð Þ
�1GC

� 	
A: ð13Þ

Lemma 1: When the number of outputs is less than or
equal to the number of inputs, the matrix ~A in (13)
always belongs to the null space of the matrix C and,
consequently, the pair ð ~A,CÞ is not observable.

The proof of Lemma 1 is given in Appendix A.

Remark 1: Lemma 1 means that in the case when
p � m, the ISM control using only output information
should not be realized.

The following lemma establishes the condition, in terms
of A, B and C, providing the observability of the pair
ð ~A,CÞ.

Lemma 2: The pair ð ~A,CÞ is observable if and only if
the triple A,B,Cð Þ does not have any invariant zeros, i.e.,

s 2 C : rank P sð Þð Þ < nþm
� �

¼ ;; ð14Þ
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where P sð Þ is the Rosenbrock’s matrix system defined as

P sð Þ ¼
sI� A B
�C 0


 �
: ð15Þ

A proof of Lemma 2 is given in Appendix B.

Remark 2: Note that ~A defined in (13) depends on
a matrix G, which can be designed in a non-unique
form. However, due to the Lemma 2, the observability
of the pair ð ~A,CÞ depends only on the matrices A, B
and C. In other words, the design of G does not affect
the observability of ð ~A,CÞ.

3.2 Design of the observer

Define G as G ¼ CBð Þ
þ:¼ CBð Þ

T CBð Þ
� 	�1

CBð Þ
T which

is the pseudo-inverse of CB. Substitution of G in (12)
leads to the following expression:

_x tð Þ ¼ ~Ax tð Þ þ Bu0 þ B CBð Þ
þCAx̂ tð Þ

y tð Þ ¼ Cx tð Þ;

)
ð16Þ

where the matrix ~A in (13) becomes

~A ¼ I� B CBð Þ
þC

� 	
A:

Now, it is assumed that the pair ð ~A,CÞ is observable.
The observer will be based on the recovery of the vec-

tors Cx tð Þ, C ~Ax tð Þ and so on until get C ~Al�1x tð Þ. After
arranging the vectors C ~Akx tð Þ, we will have obtained
the vector f tð Þ :¼ Hx tð Þ, where

H ¼

C
C ~A
..
.

C ~Al�1

2
664

3
775, H 2 R

nl�n: ð17Þ

By definition l (the observability index) is the least
positive integer such that rank Hð Þ ¼ n. Since ð ~A,CÞ is
observable, such a index l always exists, see, e.g., Chen
(1999). So to obtain the vector x tð Þ, we only need to
solve the set of algebraic equations f tð Þ ¼ Hx tð Þ.
Before designing the observer we find a bound that

we will need later. Design the following dynamic system

_~xðtÞ ¼ ~A ~xðtÞ þ Bu0ðtÞ þ B CBð Þ
þCAx̂ tð Þ

þ K y tð Þ � C ~x tð Þð Þ, ð18Þ

where K must be designed such that the eigenvalues of
Â :¼ ð ~A� KCÞ have negative real part.
Let r tð Þ ¼ x tð Þ � ~x tð Þ, then, from (16) and (18), the

dynamic equations governing r tð Þ are

_r tð Þ ¼ ~A� KC
h i

r tð Þ ¼ Âr tð Þ: ð19Þ

Since the eigenvalues of Â have negative real part, the
equation (19) is exponentially stable i.e., there exist
some constants �, �>0 such that

kr tð Þk � � exp ��tð Þkr 0ð Þk

� � exp ��tð Þ �þ k ~x 0ð Þkð Þ: ð20Þ

Below, it is shown that in the design of the observer we
need a bound of kr tð Þk. Thus (20) ensures that we can
always satisfy such a requirement.

3.2.1 Auxiliary dynamic systems and output

injections. The principal goal in the design of the
observer is to recover the vectors

C ~Aix, i ¼ 1, l� 1

where l is defined as the observability index see e.g.
Chen (1999). First, to recover C ~Ax tð Þ, let us introduce
an auxiliary state vector x 1ð Þ

a tð Þ governed by

_x 1ð Þ
a tð Þ ¼ ~A ~x tð Þ þ B u0ðtÞ þ CBð Þ

þCAx̂ tð Þ
� 	

þ L CLð Þ
�1v 1ð Þ tð Þ; ð21Þ

where x 1ð Þ
a ð0Þ satisfies

Cx 1ð Þ
a ð0Þ ¼ y 0ð Þ:

For the variable s 1ð Þ 2 R
p defined by

s 1ð Þ y tð Þ, x 1ð Þ
a tð Þ

� �
¼ Cx tð Þ � Cx 1ð Þ

a tð Þ ð22Þ

we have

_s 1ð Þ tð Þ ¼ C ~A x tð Þ � ~x tð Þð Þ � v 1ð Þ tð Þ ð23Þ

with v 1ð Þ tð Þ defined as

v 1ð Þ ¼
M1

s 1ð Þ

ks 1ð Þk
if s 1ð Þ 6¼ 0

0 if s 1ð Þ ¼ 0:

8<
:

Here the gain scalar M1 should satisfy the condition

kC ~Ak x� ~xk k < M1 ð24Þ

to obtain the sliding mode regime. From (20),

M1 ¼ kC ~Ak � exp ��tð Þ �þ ~x 0ð Þ
�� ��� �� 	

446 F. J. Bejarano et al.



satisfies (24). Then, repeating the same procedure as in
x 3.1, we get

s 1ð Þ tð Þ ¼ 0, _s 1ð Þ tð Þ ¼ 0; 8t � 0: ð25Þ

Thus, in view of (25) and (22) we have

Cx tð Þ ¼ Cx 1ð Þ
a tð Þ ð26Þ

and from (25) and (23), the equivalent output injection is

v 1ð Þ
eq tð Þ ¼ C ~Ax tð Þ � C ~A ~x tð Þ, 8t > 0:

Thus, C ~Ax tð Þ is recovered by means of the following
representation:

C ~Ax tð Þ ¼ C ~A ~x tð Þ þ v 1ð Þ
eq tð Þ, 8t > 0: ð27Þ

Now, the next step is to recover the vector C ~A2x tð Þ . To
do that, let us design the second auxiliary state vector
x 2ð Þ
a ðtÞ generated by

_x 2ð Þ
a ðtÞ ¼ ~A2 ~xðtÞ þ ~AB u0ðtÞ þ CBð Þ

þCAx̂ tð Þ
� 	

þ L CLð Þ
�1v 2ð Þ tð Þ;

where x 2ð Þ
a ð0Þ satisfies

v 1ð Þ
eq 0ð Þ þ C ~A ~xð0Þ � Cx 2ð Þ

a ð0Þ ¼ 0:

Again, for s 2ð Þ 2 R
p defined by

s 2ð Þ v 1ð Þ
eq tð Þ, x 2ð Þ

a tð Þ
� 


¼ C ~A ~xðtÞ þ v 1ð Þ
eq tð Þ � Cx 2ð Þ

a tð Þ

in view of (27), it follows that

s 2ð Þ v 1ð Þ
eq tð Þ, x 2ð Þ

a tð Þ
� 


¼ C ~Ax tð Þ � Cx 2ð Þ
a tð Þ ð28Þ

and hence, the time derivative of s 2ð Þ is

_s 2ð Þ tð Þ ¼ C ~A2 x tð Þ � ~xðtÞð Þ � v 2ð Þ tð Þ: ð29Þ

Take the output injection v 2ð Þ tð Þ as

v 2ð Þ ¼
M2

s 2ð Þ

ks 2ð Þk
if s 2ð Þ 6¼ 0

0 if s 2ð Þ ¼ 0

8<
:

kC ~A2k x� ~xk k < M2:

9>>=
>>; ð30Þ

Again, from (20),

M2 ¼ kC ~A2k � exp ��tð Þ �þ k ~x 0ð Þkð Þ½ �

satisfies (30). So, the procedure followed in x 3.1 yields

s 2ð Þ tð Þ ¼ _s 2ð Þ tð Þ ¼ 0: ð31Þ

From (31) and (29) the equivalent output injection v 2ð Þ
eq tð Þ

could be represented in form

v 2ð Þ
eq tð Þ ¼ C ~A2 x tð Þ � ~xðtÞð Þ

and the vector C ~A2x tð Þ can be recovered by means of
the equality:

C ~A2x tð Þ ¼ C ~A ~xðtÞ þ v 2ð Þ
eq tð Þ, t > 0: ð32Þ

Thus, iterating the same procedure, all the vectors
C ~Aix can be retrieved. The above mentioned procedure
could be summarized as follows.

(a) The dynamics of the auxiliary state x kð Þ
a ðtÞ at the kth

level is governed by

_x kð Þ
a ðtÞ ¼ ~Ak ~xðtÞ þ ~Ak�1B u0ðtÞ þ CBð Þ

þCAx̂ tð Þ
� 	

þ L CLð Þ
�1v kð Þ; ð33Þ

where L 2 R
n�p is a matrix so that det CLð Þ 6¼ 0 for all k

and the output injection v kð Þ at the kth level is

v kð Þ ¼

Mk
s kð Þ

s kð Þ
�� �� if s kð Þ 6¼ 0

0 if s kð Þ ¼ 0:

8>><
>>:

kC ~Ak rk k < Mk; r ¼ x� ~x

9>>>>>>=
>>>>>>;

ð34Þ

Mk is selected as Mk � kC ~Akk � exp ��tð Þ �þ ~x0
�� ��� �� 	

þ�, � > 0:

(b) Define the sliding surface s kð Þ at the k-level of the
hierarchy as

s kð Þ v k�1ð Þ
eq tð Þ, x kð Þ

a tð Þ
� 


¼

y tð Þ�Cx 1ð Þ
a tð Þ for k ¼ 1

v k�1ð Þ
eq tð ÞþC ~A

k�1
~x tð Þ�Cx kð Þ

a tð Þ for k > 1;

8<
: ð35Þ
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where v k�1ð Þ
eq is the equivalent output injection whose

general expression will be obtained in the lemma
below, but v k�1ð Þ

eq 0ð Þ and s kð Þ 0ð Þ should satisfy

s kð Þ 0ð Þ

¼
Cy 0ð Þ�Cx 1ð Þ

a ð0Þ ¼ 0 for k¼ 1

v k�1ð Þ
eq 0ð ÞþC ~Ak�1 ~xð0Þ�Cx kð Þ

a ð0Þ ¼ 0 for k> 1
:

(
ð36Þ

Here, v kð Þ tð Þ is treated as a ‘‘sliding mode’’ output
injection. The equivalent output injection of v kð Þ

eq tð Þ is
given in the next lemma.

Lemma 3: If the auxiliary state vector x kð Þ
a and the

variable s kð Þ are designed as in (33) and (35), respectively,
then for all t� 0

v kð Þ
eq tð Þ ¼ C ~Akx tð Þ � C ~Ak ~xðtÞ ð37Þ

and each k ¼ 1, l� 1.

Proof: As it was shown before, the following identity
holds

v 1ð Þ
eq tð Þ ¼ C ~Ax tð Þ � C ~A ~xðtÞ, 8t > 0:

Now, suppose that the equivalent output injection v k�1ð Þ
eq

is as in (37). Then substitution of v k�1ð Þ
eq in (35) gives

s kð Þ v k�1ð Þ
eq tð Þ, x kð Þ

a tð Þ
� 


¼ C ~Ak�1x tð Þ � Cx kð Þ
a tð Þ: ð38Þ

The derivation of (38) yields

_s kð Þ v k�1ð Þ
eq tð Þ,x kð Þ

a tð Þ
� 


¼ C ~Ak x tð Þ � ~x tð Þð Þ � v kð Þ tð Þ: ð39Þ

Thus, selecting the Lyapunov function V ¼ 1
2ks

kð Þk2 and
v kð Þ tð Þ as in (34), for any t� 0 one gets

s kð Þ tð Þ � 0, _s kð Þ tð Þ � 0: ð40Þ

Therefore, from (40) and (39) it follows that

v kð Þ
eq tð Þ � C ~Akx tð Þ � C ~Ak ~x tð Þ œ

3.3 Observer in the algebraic form

From (26) and (37), we have the following set of
equations

Cx tð Þ ¼ C ~x tð Þ þ Cxð1Þa ðtÞ � C ~x tð Þ
� �

C ~Ax tð Þ ¼ C ~A ~x tð Þ þ v 1ð Þ
eq

..

.

C ~Al�1x tð Þ ¼ C ~Al�1 ~x tð Þ þ v l�1ð Þ
eq

9>>>>>>=
>>>>>>;

ð41Þ

or, in a matrix representation

Hx tð Þ ¼ H ~x tð Þ þ veq tð Þ, 8t > 0; ð42Þ

where

H ¼

C
C ~A
..
.

C ~Al�1

2
664

3
775, veq ¼

Cxð1Þa � C ~x tð Þ
v 1ð Þ
eq

..

.

v l�1ð Þ
eq

2
6664

3
7775: ð43Þ

Since the pair ð ~A,CÞ is observable, the matrix H has
rank n. Thus, the left multiplication of (42) by Hþ :¼
HTH
� 	�1

HT implies

x tð Þ � ~x tð Þ þHþveq tð Þ, 8t > 0 ð44Þ

That is why an observer, based on the Hierarchical ISM
can be suggested as follows

x̂ tð Þ :¼ ~x tð Þ þHþveq tð Þ ð45Þ

Remark 3: Notice, that in general,

x� :¼ arg min
x2Rn

kf�Hxk2 ¼ Hþf

where the limit Hþ ¼ lim�!0 �2IþHTH
� ��1

HT always
exists (see Albert 1972) and, moreover,

f�Hx�
�� ��2¼ I�HHþ

� �
f

�� ��2:
This norm is not obligatory equal to zero. In the parti-
cular case, when f ¼ Hx, one has

min
z2Rn

f�Hz
�� ��2¼ f�Hx�

�� ��2¼ I�HHþ
� �

f
�� ��2

¼ I�HHþ
� �

Hx
�� ��2¼ H�HHþH

� �
x

�� ��2¼ 0

for any z.

Now we are ready to formulate the main result.

Theorem 1: Under the assumptions 1–4 and supposing
the ideal output integral sliding mode exists, the following
identity holds:

x̂ tð Þ � x tð Þ 8t > 0 ð48Þ

Proof: It follows directly from (44) and (45). œ
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Remark 4: The realization of the observer (45)
requires filters whose parameters affect convergence
time of the observer.

3.4 Observer realization

To carry out the observer in the form (45), the surface
s kð Þ must be realizable. Thus, to guarantee the realization
of s kð Þ, the equivalent output injection v kð Þ

eq must be avail-
able. However, the non-idealities in the implementation
of v kð Þ cause the, so-called, chattering phenomenon.
So, we will have a high frequency signal. Therefore,
v kð Þ
eq cannot be directly obtained from v kð Þ. Nevertheless,
v kð Þ
eq could be computed via filtration. Namely, the first
order low-pass filter

� _v kð Þ
av tð Þ þ v kð Þ

av tð Þ ¼ v kð Þ tð Þ; v kð Þ
av 0ð Þ ¼ 0 ð47Þ

gives an approach of v kð Þ
eq (Utkin 1992). Or, in other

words,

lim
�!0
��!0

v kð Þ
av tð Þ ¼ v kð Þ

eq
tð Þ, t > 0;

where � is proportional to the sampling time (the time
that v	, k lasts to pass from one state (M) to other
(�M)). So, selecting � ¼ �� (0 < � < 1), we have the
following conditions to realize the OISM observer.

1. Use a sampling interval � very small.

2. Substitute v kð Þ

eq
tð Þ in (35) by v kð Þ

av tð Þ.

3. Substitute v kð Þ

eq
0ð Þ in (36) by v kð Þ

av 0ð Þ � 0, i.e., the initial
conditions x kð Þ

a 0ð Þ should satisfy the equations

C ~Ak�1x k�1ð Þ
a ð0Þ � Cx kð Þ

a ð0Þ ¼ 0 for k > 1,
Cy 0ð Þ � Cx 1ð Þ

a ð0Þ ¼ 0 for k ¼ 1:

So, the realization of the observer in (45) takes the form

x̂ tð Þ :¼ ~x tð ÞþHþvavðtÞ

vav ¼


�
Cxð1Þa �C ~x tð ÞÞT ðvð1Þav Þ

T
� � � vðl�1Þ

av

� �T�T
9>=
>;
ð48Þ

3.5 OISM algorithm

The proposed OISM algorithm can be summarized
as follows.

1. Design the matrix K such that the eigenvalues of
Â :¼ ð ~A� KCÞ have negative real part.

2. Compute the scalar gain � tð Þ as in (9).
3. Design the auxiliary systems x kð Þ

a as in (33) with the
sliding surfaces s kð Þ as in (35) and compute the
constants Mk, k ¼ 1, . . . , l� 1: Recall that v kð Þ

eq
tð Þ

should be substituted in (35) by v kð Þ
av tð Þ.

4. Run simultaneously the observer x̂ according to (48)
and the controllers u0, u1 according to (52) and (9)
respectively.

4. Case of study: LQ control law

In order to show an application of the OISM suggested
in this paper, we propose to design the nominal control
u0 as an optimal control based on the standard LQ-index
for a finite horizon. In view of (46) and (12), the
sliding dynamics equations for the state x have the form

_x tð Þ ¼ Ax tð Þ þ Bu0, x 0ð Þ ¼ x0 ð49Þ

Note that now the dynamic equations (49) of the state x
are the same as those ones of the nominal state (4). Here,
u0 is an admissible control (belonging to a set Uadm of
piecewise continuous functions) which minimizes the
following standard LQ-index:

Jtf u0 �ð Þð Þ :¼ x> tf
� �

Fx tf
� �

þ

Z tf

t¼0

x> tð ÞQx tð Þ þ u>0 tð ÞRu0 tð Þ
� �

dt;

where F ¼ F> � 0, Q ¼ Q> � 0, R ¼ R> > 0. Thus,
the aim of the control u0 is: to minimize the index
J u �ð Þð Þ, i.e.,

u�0 �ð Þ ¼ arg min
u02Uadm

Jtf u0 �ð Þð Þ: ð50Þ

Thus, the control law solving (50) for (49) (e.g. see
Anderson and Moore (1990)) is of the form

u�0 x tð Þð Þ ¼ �R�1B>P tð Þx tð Þ

with P tð Þ 2 R
n�n satisfying the differential Riccati

equation

_P tð ÞþP tð ÞAþA>P tð Þ�P tð ÞBR�1B>P tð ÞþQ¼0

PðtfÞ¼F

)
ð51Þ

From (46), the estimated state x̂ is used to realize the
control u0, i.e., the control u0 should be designed as

u0 tð Þ ¼ �R�1B>P tð Þx̂ tð Þ ð52Þ

with x̂ tð Þ being designed as in (45). That is, since we have
compensated the matched uncertainties and we can
ensure the estimation error being arbitrarily small

Output integral sliding mode control 449



after an arbitrarily small time, we can design the control
u0 for the nominal system but being applied to the
system (1).

5. Example

To illustrate the procedure given above, let us take the
linearized model of a inverted pendulum with a trolley
considered in Utkin et al. (1999, pp. 90–91). A control
force is applied to the cart so that the pendulum remains
in a vertical line. The motions equations are

_x tð Þ ¼ Ax tð Þ þ B u0 þ u1ð Þ þ B� x, tð Þ

y tð Þ ¼ Cx tð Þ

)
ð53Þ

A ¼

0 0 1 0

0 0 0 1

0 1:2586 0 0

0 7:5514 0 0

2
6664

3
7775 B ¼

0

0

0:1905

0:1429

2
6664

3
7775,

C ¼
1 0 0 0

0 0 0 1


 �

�ðtÞ ¼
�0:4 n� 5 � t < n� 2:5

0:4 n� 2:5 < t

�
n ¼ 5, 10, . . . :

The vector state x consist of four state variables: x1 is
the distance between a reference point and the center
of inertia of the trolley; x2 represents the angle between
the vertical and the pendulum; x3 represents the linear
velocity of the trolley; finally, we have that x4 is equal
to the angular velocity of the pendulum. As can be
verified, the pair (A, C) has no invariant zeros.
Lemma 2, implies that ( ~A, C) is observable
( ~A ¼ I� B CBð Þ

þC
� 	

A).
The initial conditions are considered as

x 0ð Þ ¼ 0:3 0:2 0:1 �0:1
� 	>

; and as a consequence

we have y 0ð Þ ¼ ½ 0:3 �0:1 �>. The matrix ~A takes the
form

~A ¼

0 0 1 0
0 0 0 1
0 �8:81 0 0
0 0 0 0

2
664

3
775:

As it can be verified, the pair ( ~A,C) is observable.
The matrix K was calculated as follows:

K ¼

4:6234 �0:3148
�1:3423 0:5548
10:2373 �1:7542
�0:3148 0:9492

2
664

3
775:

The weighing matrices Q, R and F were chosen as

Q ¼ 20I, R¼ 0.5 and F ¼ 20I.
The simulations were carried out with two sampling

steps: � ¼ 2 � 10�5 and � ¼ 2 � 10�4. In both cases, as

the filter constant, the value � was chosen as

� ¼ 150�4=5. The trajectories of the state vector, when

x̂ (called xe in the graph) is used in the control u,

and when x is used in the control u, are depicted in

figures 1 and 2.
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Figure 1. Trajectories of x using � ¼ 2�10�5. Trolley
position (TP), pendulum position (PP), trolley velocity (TV)

and pendulum angular velocity (PAV).
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Figure 2. Trajectories of x using � ¼ 2�10�4. Trolley
position (TP), pendulum position (PP), trolley velocity (TV)
and pendulum angular velocity (PAV).
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To realize the suggested observer, the filters suggested

in (47) must be used. The simulations show that those

filters are not affecting too much the observation process
(see the observation error e tð Þ ¼ x tð Þ � x̂ tð Þ in figures 3

and 4. As we can see in those figures, the convergence

to zero is better when � is smaller, i.e., the convergence
depends only on �.

6. Conclusions

In this paper we discussed the possibilities to realize
the output integral sliding mode control, ensuring

insensitivity of the state trajectory (optimal in this
paper) with respect to matched uncertainties from the
initial time.

It was shown that the use of output integral sliding
mode control, for the case when the number of
inputs is more than or equal to the number of outputs,
immediately causes the loss of observability, and so
the output integral sliding mode control could not be
realized if any observation process is required. It was
shown that, for the case when the number of inputs is
less than the number of outputs, the use of output
integral sliding mode allows: first, the matched uncer-
tainties from the initial time (independently of the obser-
vation process) to be compensated, and second, design
of the hierarchical sliding mode observer reconstructing
the system states. Using a low-pass filter for the observer
realization, we showed that the estimation error depends
only on the sampling time and the filter time constant. It
is proved that time of convergence of the observation
error can be made arbitrarily small after a short time
by decreasing the sampling step and filter time constant.

Appendix

A. Proof of Lemma 1

Proof: Consider system (1) with p � m and
rank CBð Þ ¼ p. Suppose that the control law u is
designed in the following way

u ¼ u0 þ u1;

where u0 is the nominal control used after the compensa-
tion of the perturbation g and u1 is designed to compen-
sate the perturbation g. At first we will consider the case
when p¼m and next the case when p<m.

1. Consider the case when p ¼ m:

Define auxiliary function s as follows:

s yð Þ :¼ G yþ zð Þ, s 2 Rm ð54Þ

the matrix G 2 R
m�m must satisfy rank GCBð Þ ¼ m, but

this is only satisfied when det Gð Þ 6¼ 0: Following the
same process as in x 3.1, one has

u1eq ¼ � GCBð Þ
�1GCAx� �:

Substitution of u1eq in the system (1) yields

_x tð Þ ¼ I� B GCBð Þ
�1GC

� 	
Ax tð Þ þ Bu0

y tð Þ ¼ Cx tð Þ
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Figure 3. Observation error e ¼ x� x̂ using � ¼ 2� 10�5.
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Figure 4. Observation error e ¼ x� x̂ using � ¼ 2� 10�4.
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recall ~A ¼ I� B GCBð Þ
�1GC

� 	
A, then pre-multiply ~A by

GC one gets

GC ~A ¼ GC I� B GCBð Þ
�1GC

� 	
A ¼ 0:

This means ~A belongs to the null space of GC and since
G is a non-singular matrix, then ~A belongs to the null
space of C and it implies that ð ~A,CÞ is not observable.

2. Now suppose that p<m.
Let the auxiliary function s as in (83) but, since

rank CBð Þ ¼ p and p<m, then there is not any
matrix G 2 R

m�p satisfying rank GCBð Þ ¼ m: That
is why the sliding surface s yð Þ can not be designed
in a space of dimension bigger than p. Let us
define s yð Þ in the space R

p, that is,

s yð Þ :¼ G yþ zð Þ;

where the matrix G 2 R
p�p: Thus, the time derivative

_s is as follows

_s ¼ GC Axþ Bu0 þ Bu1 þ B�½ � þ G _z:

Define _z as follows

_z ¼ �CBu0, z 0ð Þ ¼ y 0ð Þ

the substitution of _z in _s gives as result

_s ¼ GCAxþ GCBu1 þ GCB�:

Now, in order to produce the sliding mode, the control
u1 should be designed as u1 :¼ F �u, where the matrix
F 2 R

m�p should satisfy rank GCBFð Þ ¼ p. Thus
BF can be considered as the new matrix of input
distribution B, and �u as the new control u1. In this
form, we can consider that the number of inputs is p,
that is we have the same number of inputs as number
of outputs. Hence, we can follow the same proof used
for case 1. œ

B. Proof of Lemma 2

Proof: Recall ~A :¼ I� B GCBð Þ
�1GC

� 	
A, hence,

Lemma 2 asserts that for every complex scalar s the
equivalence

rank
sI� A B

�C 0


 �

¼ nþm if and only if rank
sI� ~A

C

" #
¼ n

is satisfied. So, define the matrices V and U in the
following form

V :¼
B?�

GCBð Þ
�1GC


 �
,

V�1 ¼ I� B GCBð Þ
�1GC

� 	
B?þ B

� 	
U :¼

CBð Þ
?

G

" #
,

U�1 ¼ I� CB GCBð Þ
�1GC

� 	
CBð Þ

?þ CB GCBð Þ
�1

� 	
:

Now, before to prove the required equivalence we need
to express the following matrices into the expanded form

VAV�1 ¼
A11 A12

A21 A22


 �
, UCV�1 ¼

C1 0
0 GCB


 �
;

ð55Þ

where A11 2 R
n�m�n�m and C1 2 R

p�m�n�m. We obtain

V ~AV�1 ¼
A11 A12

A21 A22


 �

�
0

I


 �
A21 A22

� 	
¼

A11 A12

0 0


 �
: ð56Þ

Then, from (55), (56), and since det GCBð Þ 6¼ 0 we have
the following equivalences

rank
sI�A B

�C 0


 �
¼ nþm, rank

sI�VAV�1 VB

�UCV�1 0


 �

¼ nþm, rank

sI�A11 �A12 0

�A21 sI�A22 I

�C1 0 0

0 �GCB 0

2
6664

3
7775

¼ nþm, rank
sI�A11

�C1


 �

¼ n�m, rank

sI�A11 �A12

0 sI

�C1 0

0 �GCB

2
6664

3
7775

¼ n, rank
sI�V ~AV�1

�UCV�1

" #

¼ n, rank
In 0

0 U


 �
V 0

0 Ip


 �
sI� ~A

�C

" #
V�1

( )

¼ n, rank
sI� ~A

�C

" #
¼ n ð57Þ

and so the Lemma is proven. œ
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