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A method for identification of any even number of parameters of the transfer function

from the test of the process, which involves application of the modified twisting algorithm,

is proposed. Equations for determining the unknown parameters can be written separately

for the magnitude and the argument of the transfer function that simplifies the task of

the identification. As a result, the problem can be reduced to the iterative solution of a system

of algebraic equations.

1. Introduction

Antecedents. PID control is the main type of control
extensively used in various industrial applications. PID
controllers are usually implemented as configurable
software modules within the distributed control systems
(DCS). The DCS configuration software is constantly
evolving giving to the developers many new features.
One of most useful features would be the controller
autotuning feature. This trend can be seen in the
development of new releases of such popular DCS
software as Honeywell Experion PKS� and Emerson
DeltaV�. The autotuning feature heavily relies on
identification algorithms. Nowadays the use of first-
order plus dead time or other low order underlying
models may not be sufficient. Moreover, there is a
strong demand in identification methods that use
higher-order underlying models. One of the most
convenient tests on the process in terms of the simplicity
and accuracy of the identification is the relay feedback
test proposed in Astrom and Hagglund (1984).
This method has received a lot of attention from the
worldwide research community and the industry since
then. In comparison with the Astrom–Hagglund’s
approach, which was aimed at obtaining the values of
the ultimate gain and ultimate frequency for the PID
tuning in accordance with the Ziegler–Nichols rules
(Ziegler and Nichols 1942), in Luyben (1987) it was

proposed to use the relay feedback test for the process

parameters identification. This idea was further devel-

oped and extended to various models and types

of processes. In Kaya and Atherton (1999), for example,
it was proposed to use the amplitude of the oscillations

in addition to the imaginary part of the Tsypkin’s

locus (Tsypkin 1984). That resulted in a precise model

for two simple transfer functions. In Kaya and Atherton
(1998, 2001), it was shown how the parameters of the

first and second order process transfer functions with

time delay could be found exactly via the use of a locus

from the measurements of the asymmetric limit cycle.
In Majhi and Atherton (1999), exact parameters of the

first and second-order plus dead time models were

obtained from measurements of the asymmetric limit

cycle. In Majhi et al. (2001), a relay feedback and
wavelet based method for estimation of unknown

processes was proposed. In Boiko (2006), a method of

identification of the first-order plus dead time

model from a single relay feedback test, which is based
on the locus of a perturbed relay system (LPRS)

method (Boiko 2005), was proposed. The survey of

available tuning methods and techniques based on

the relay feedback test is presented in Astrom and
Hagglund (1984). The identification methods use both

the describing function (DF) (Atherton 1975) model and

exact models of the oscillations in the relay feedback

system. However, despite the obvious success of the
relay feedback test identification, it is known

that it offers finding only two model parameters from*Corresponding author. Email: mcastell@uacj.mx
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a single test. To identify a higher number of parameters
a few tests are needed, which can be done by introducing
and varying hysteresis of the relay. However, it is hard
to predict what the value of the hysteresis should be to
make the test efficient. In that respect, the use of the
parameter that reflects the angle (phase) of the
particular point of the Nyquist plot would be more
convenient.

Methodology. As it is well known that the presence of
unmodelled dynamics causes chattering in relay control
systems see Atherton (1975), Tsypkin (1984), Boiko
(2005) and Shtessel and Lee (1996), for example.
Recently, it was shown (Boiko et al. 2004) that the
second order sliding mode algorithms (Levant 1993,
Bartolini et al. 1999), originally designed for chattering
elimination, demonstrate similar oscillatory properties.
But the analysis of generalized sub-optimal second order
algorithm in the frequency domain shows that it is
possible to adjust chattering parameters (Pisano and
Usai 2003) changing the controller parameters.
In the present paper we will modify the second-order

sliding mode twisting algorithm (Levant 1993) in order
to make process parameter identification in a wider
range using DF and LPRS methods.

Contribution. A method for identification of any even
number of parameters of the transfer function from the
test of the process, which involves the application on a
modified twisting algorithm, is proposed. The twisting
algorithm is modified in order to be able to generate the
oscillations in a wide range of frequencies and ampli-
tudes of the process transfer function. It allows one to
calculate two parameters of the process from each test.
It is shown that equations for determining the unknown
parameters can be written separately for the magnitude
and the argument of the transfer function that simplifies
the task of the identification. As a result, the problem
can be reduced to the iterative solution of a system of
algebraic equations.

Structure of the paper. At first the idea of modification
of the twisting algorithm via its DF analysis is suggested.
Then the LPRS method is considered as a tool for
finding the exact values of parameter of periodic
oscillation. After that a methodology of identification
is presented. And finally, simulation and experimental
tests illustrating obtained results are presented.

2. Idea of the twisting algorithm modification

Consider the control system

_x ¼ Axþ Bu
y ¼ Cx,

�
ð1Þ

where A and B are matrices of corresponding dimen-

sions, x2Rn, u2R1 and y2R1 can be treated as the

output of the plant. We shall also use the plant

description in the form of a transfer function W(s),

which can be obtained from (1) as follows:

WðsÞ ¼ CðsI� AÞ�1B: ð2Þ

Consider the control algorithm

uðtÞ ¼ �c1sign ð yÞ � c2sign ð _yÞ, c1 4 0: ð3Þ

This algorithm with c1> c2>0 was proposed in Levant

(1993). Let us relax the constraint on the sign of c2 in

comparison with the original formulation and name

algorithm (3) the modified twisting algorithm (MTA);

see figure 1. This allows us to increase the range of

generated frequencies to the second and third quadrant

of the Nyquist plot of the plant.
To explain the idea of the proposed method let us

apply the DF analysis to the system (2), (3). Replace the

relay functions with the DF, which for the first relay is

(DF for ideal relay)

N1 ¼
4c1
�A1

, ð4Þ

where A1 is the amplitude of y; and for the second relay

N2 ¼
4c2
�A2

, ð5Þ

where A2 is the amplitude of dy/dt. Also, take into

account the relationship between y and dy/dt in the

Laplace domain, which gives the relationship between

the amplitudes A1 and A2: A2¼A1 �� where � is the

frequency of the oscillation. As a result, the DF of the

twisting algorithm can be given by the following

formula:

N ¼ N1 þ j�N2 ¼
4c1
�A1
þ j�

4c2
�A2
¼

4

�A1
ðc1 þ jc2Þ: ð6Þ

Let us note that the DF of the MTA does not contain

the frequency and depends only on the amplitude value.

Figure 1. Diagram of twisting algorithm.

Parameter identification via modified twisting algorithm 789
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This suggests the technique of finding the parameters of

the limit cycle via the solution of the complex equation

�
1

NðA1Þ
¼Wðj�Þ, ð7Þ

where the function at the left-hand side is given by

�
1

N
¼

�A1

4ðc21 þ c22Þ
� ð�c1 þ jc2Þ: ð8Þ

The graphical illustration of this technique for

the solution of the equation (7) is given in

figure 2. The function �1/N is a straight line the slope

of which depends on the c2/c1 ratio. It is located in

the second or third quadrant of the complex plane. The

point of the intersection of this function and of the

Nyquist plot W(j!) provides the solution of the periodic

problem. This point gives the frequency of the oscilla-

tion � and the amplitude A1.
The angle of ffWðj!Þ is defined by equation (9)

ffWðj!Þ ¼ ff �
1

N
¼ ��� arctan

c2
c1
: ð9Þ

From the figure 2 and equations (7), (8) it is easy to

conclude that the twisting algorithm in its original form

(with c1> c2>0), allows only the values of the

frequency corresponding to the Nyquist plot in

the domain �5=4�5ffWðj!Þ5 ��. The use of the

MTA provide the possibility of utilization of all

frequencies of the Nyquist plot of the plant correspond-

ing to the angle �3=2�5 ffWðj!Þ5 ��=2.
Furthermore, if we need to identify the points Nyquist

plot at lower frequencies an integrator can be introduced

in series with the MTA. That would allow one to excite

oscillation in the controller-plant loop at frequencies

from the 4th quadrant of the plant Nyquist plot

(this can also be considered as clockwise rotation of

the Nyquist plot by �/2 rad). However, the resolution

of the method decreases as the generated frequency of

the oscillations approaches zero—due to low influence

of higher time constants on the frequency in this case.
The DF analysis provides a very demonstrative

proof of the possible existence of a periodic solution in

the system with the MTA. The DF method is an

approximate one and more exact values of parameters

would be desirable. This can be provided using the
LPRS method (Boiko 2005).

3. LPRS analysis of MTA

The LPRS can provide an exact solution of the periodic
problem in a relay feedback system having a plant (1)

and the control being the hysteretic relay function

u ¼
c if � � b or ð�4 � b and _�5 0Þ

�c if � � b or ð�5 b and _�4 0Þ,

(
ð10Þ

where � is the error signal (�¼ f0� y), f0 is the system

input (subscript ‘‘0’’ denotes the constant input).
The LPRS for such a system is defined as follows

(Boiko 2005):

Jð!Þ ¼ �
1

2
lim
f0!0

�0
u0
þ j

�

4c
lim
f0!0

yðtÞ

����t¼0: ð11Þ

where t¼ 0 is the time of the switch of the relay from

‘‘�c’’ to ‘‘þc’’, ! is the frequency of the self-excited
oscillations varied by changing the hysteresis 2b while all

other parameters of the system are considered constant.

�0, u0 are average (over the period of the oscillations)

values of the error signal and of the control respectively
�0, u0 and yðtÞ t¼0j are, therefore, functions of !, u. Thus,
J(!) specifies the response of the linear plant to its

non-symmetric pulse waveform input u(t) subject to

f0! 0 as the frequency ! is varied. The real part of J(!)
contains the information about the equivalent gain of

the relay, and the imaginary part of J(!) comprises the

condition of the switching of the relay and, conse-

quently, contains information about the frequency
of the oscillations. It is worth mentioning that although

the LPRS is defined via the parameters of the oscilla-

tions, it is a function of the plant parameters only. A few

techniques of the LPRS computing were developed.
One of them (that will be used further in this paper)

offers computing of the LPRS as a series of the real and

imaginary parts of the plant transfer function

Jð!Þ ¼
X1
k¼1

ð�1Þkþ1ReWðk!Þ

þ j
X1
k¼1

ImW½ð2k� 1Þ!�=ð2k� 1Þ: ð12Þ
Figure 2. Finding the periodic solution.

790 M. I. Castellanos et al.
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With the LPRS computed analysis of periodic
motions in a relay feedback system becomes an easy
task. The frequency of the periodic motion is found
from the following equation:

Imð�Þ ¼ �
�b

4c
: ð13Þ

However, to be able to use this method for the MTA, we
need to transform the original problem into an
equivalent one that can be solved with the use of the
LPRS. Let us take a closer look at figure 1. We can
see that the functions of the two relays are different.
The function of the first relay is to generate a regular
asymptotic sliding mode control like every relay feed-
back system. The function of the second relay in the
frequency domain can be described as providing a phase
lead by injecting a control that depends on the derivative
of the output variable. Moreover, c1 is always greater
than c2. This enables us to consider that the first relay is
the main one and the second relay is of secondary
function and to transform the original diagram figure 1
into the following structure figure 3.
In figure 3 we are going to treat the part of the system

denoted by the dashed line as a new plant of the relay
system (the equivalent plant). This structure completely
complies with the relay feedback system structure.
The equivalent plant, however, is nonlinear with the
nonlinear function being the second relay. For that
reason, the LPRS method needs to be modified to

accommodate the nonlinearity of the plant. Let us begin
from considering the imaginary part of the LPRS.
The imaginary part of the LPRS is the value of the

output of the plant at the instant of the relay switch
from ‘‘�’’ to ‘‘þ’’ (with a coefficient). This follows from

the LPRS definition (11). Therefore, the imaginary part
of the LPRS can be found as the output of the plant at
the switching instant if a periodic square-wave pulse
signal u1 is applied to the plant input. Note also that the
signal u2 is also applied to the plant input and the output
of the plant y can be considered as a sum of two outputs
y1 and y2, each of them is a response to the control u1
and u2 respectively. Moreover, y2 can be obtained by
time shifting and scaling of y1. Introduce the following
function that can be helpful for the LPRS computing.
Let L(!, �) be the function that denotes a linear plant
output (with a coefficient) at the instant t¼ �T (with T
being half a period) if a periodic square-wave pulse
signal of amplitude c is applied to the plant:

Lð!, �Þ ¼
�

4c
yðtÞ

����
t¼� ð2�=!Þ

ð14Þ

where � 2 ½�1, þ1�, !2 ½0,1�. Positive values of �
correspond to the time following the switching instant,
negative values to the time preceding the switching

instant. If we compare this formula with the LPRS

definition we would find that: ImJ(!)¼L(!, 0).
Analysis of the Fourier series of a linear plant output

leads to the following expression for L(!, �):

Lð!, �Þ ¼
X1
k¼1

1

2k� 1
fsin½ð2k� 1Þ2��� � ReW½ð2k� 1Þ!�

þ cos½ð2k� 1Þ2��� � ImW½ð2k� 1Þ!�g: ð15Þ

With the formula of L(!, �) available we can easily write

an expression for Im J(!) of our system

ImJð!Þ ¼ Lð!, 0Þ þ
c2
c1

Lð!, �Þ: ð16Þ

In formula (16), the value of time shift � between

the switching of the first and second relays is unknown.

It can be found from the following equation:

_yð�Þ ¼ 0, ð17Þ

which can be expressed via the function L(!, �) as

follows:

c1L1ð!, ��Þ þ c2L1ð!, 0Þ ¼ 0: ð18Þ

In (18), L1 is the function L(!, �) for which the transfer

function in formula (15) is W1(s)¼ sW(s) (transfer

function from the control to dy/dt). Therefore, the

methodology of analysis of the periodic motions in the

system with the twisting algorithm is as follows. At each

frequency point of the LPRS, equation (18) is solved for

the time shift � (in parts of the period) between the

switches of the two relays, where function L(!, �) is

computed as per (15). After that the imaginary part of

the LPRS is computed as per (16). With the imaginary

part available, the frequency of the oscillations is found

from equation (13) with c¼ c1.
We shall now develop a technique for computing

the real part of the LPRS. Although the real part is

not explicitly used in our analysis it would be useful

to see how the addition of the second relay changes

the location of the LPRS on the complex plane.

Assume that the plant transfer function does not

contain integrators (poles with zero real part).

Figure 3. Transformed system with twisting algorithm.

Parameter identification via modified twisting algorithm 791
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Formula (12) consists of two converging series in which
every next term adds accuracy to the LPRS computing.
Usually the convergence at high frequencies (close to the
frequency of the periodic solution) is very fast and even
the first term provides a relatively high accuracy. Using
only the first terms in (12) would be equivalent to the
DF method formula.
For the objectives stated in this paper the use of only

first term of (12) for the real part computing would be a
reasonable approach. We should note also that the
frequency of the oscillations is computed exactly.
Therefore, the real part of the LPRS can be computed
as follows:

ReJð!Þ � Re
Wðj!Þ

1þ j! � q2ðA2Þ �Wðj!Þ

� �
, ð19Þ

where q2¼ 4c2/�A2, A2 ¼ ð4c1=�Þ! Wðj!Þ
�� ��.

4. Parameter identification via MTA

Varying c1 and c2 we can change the parameters of the
oscillations. Each combination of c1 and c2 provides
a certain amplitude and frequency of a periodic motion.
Therefore, n tests are needed to identify 2n process
parameters.
A possible way of choosing the relay amplitudes is to

use c1/c2 ratio of the same magnitude and different signs
for two different tests. This would allow us to identify
the plant (process) at the phase characteristic equally
distances from �� rad (symmetric with respect to the
real axis).
For example if we need to identify six parameters

we can select the values of c2=c1 ¼ 1=2, 0 and �1/2
corresponding to the angles �7�/6 rad, �� rad, and
�5�/6 rad.
Suppose that each test provides the amplitude Ai

and the frequency �i (i¼ 1, . . . , n) of the oscillations.
Assume that the underlying model of the process is given
in the form of the following transfer function
(which provides a relatively universal model if allow
for complex values of the time constants):

WðsÞ ¼
Kð�1sþ 1Þ � � � ð�msþ 1Þ

ðT1sþ 1Þ � � � ðTksþ 1Þ
, ð20Þ

where m< k, mþ k¼ 2n� 1. It is a function with k
poles, m zeros and gain K. From the describing function
(7), rewriting equations (8) and (7) we obtain the
equation of harmonic balance for each test point:
W(j�i)N(Ai)¼�1. Rewriting this equation into the
format more convenient for the solution, we obtain the
following set of equations:

Wðj�iÞ ¼ �NðAiÞ
�1: ð21Þ

Taking the magnitude and the argument yields

Wðj�iÞ
�� �� ¼ �NðAiÞ

�1
�� �� ¼ A1i�

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21i þ c22i

q ð22Þ

ffWðj�iÞ ¼ ��� arctan
c2i
c1i

� �
: ð23Þ

Further, taking the logarithms of both parts of the

equation for the magnitudes leads to the following

equation:

ln Wðj�iÞ
�� �� ¼ ln

Kð�1i�i þ 1Þ � � � ð�mi�i þ 1Þ

ðT1i�i þ 1Þ � � � ðTki�i þ 1Þ

����
���� ð24Þ

which simplifies to

ln Wðj�iÞ
�� �� ¼ lnKþ

Xm
l¼1

ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

l �
2
l þ 1

q
�
Xm
l¼1

ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
l �

2
l þ 1

q

¼ ln
A1i�

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21i þ c22i

q ð25Þ

and yields

lnKþ
1

2

Xm
l¼1

lnð�2
l �

2
i þ 1Þ �

1

2

Xm
l¼1

lnðT2
l �

2
l þ 1Þ

¼ ln
1

4

A1i�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21i þ c22i

q : ð26Þ

In the same way, we can write for the arguments of (21)

Xm
l¼1

�ð�lj�i þ 1Þ �
Xk
l¼1

�ðTlj�i þ 1Þ ¼ ��� arctan
c2i
c1i

� �
:

ð27Þ

Evaluating the angle for each test point, and simplifying

we obtain

Xm
l¼1

arctan�l�i�
Xk
l¼1

arctanTl�i ¼ ��� arctan
c2i
c1i

� �
:

ð28Þ

Solving the set of equations (26) and (28) obtain the

unknown parameters K,�1, . . . �m,T1, . . . ,Tk.
It is known that the DF technique does not provide

exact results. The LPRS technique can be used to obtain

an exact solution.
Once we measure the amplitude and frequency of the

oscillations at each test point, we can solve the equation

for the imaginary part (16) and the equation for the shift

between the switches of the relays (17) and find the

parameters of the plant (20).

792 M. I. Castellanos et al.
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For each test point i, and known c2i and c1i the
following equation has be to solved:

Lð�i, 0Þ þ
c2i
c1i

Lð�i, �iÞ ¼ 0: ð29Þ

Substituting (15) in (16) we have

X1
k¼1

1

2k� 1
� ImW½ð2k� 1Þ�i�

þ
c2i
c1i

X1
k¼1

1

2k� 1
fsin½ð2k� 1Þ2��i� � ReW½ð2k� 1Þ�i�

þ cos½ð2k� 1Þ2��i� � ImW½ð2k� 1Þ�i�g ¼ 0: ð30Þ

For each test we will have a system of equations
that allow us to find the exact plant parameters. The set
of equations for the DF identification (26) and (28) or
LPRS identification equations (30) and (19) can be
solved by means of the Newton–Raphson method:

xjþ1 ¼ xj � � � JðfðxjÞÞ
�1
� fðxjÞ, ð31Þ

where f(K,�1, . . . ,�m,T1, . . . ,Tk)¼ 0, J(f(xj)), is the
Jacobian of f, at the points xj¼ [(Kj,�1j, . . . ,
�mj,T1j, . . . ,Tkj)]

T, � is parameter determine the speed
of convergence. The proposed algorithm converges, if
detjJðfðxjÞÞj 6¼ 0. It can be noted that there may exist
some nonminimum phase or unstable plants that would
provide multiple intersections of the line �N�1(a) by the
Nyquist plot of the plant. This potentially might result
in using a wrong periodic solution and obtaining wrong
parameters of the plant. Should this situation be
possible (which follows from the plant model) a few
different initial points for solving the equations should
be used to make sure that the solution matches to the
generated periodic motion. However, we do not consider
this kind of situation and assume the uniqueness of
the Nyquist plot with respect to a radial direction
(uniqueness of the phase characteristic).

5. Examples

Example 1: Identification parameters of an inverted
pendulum.

The advantage of using the MTA is the possibility of
ensuring the intersection of the Nyquist plot of the
process transfer function by the negative reciprocal of
the describing function in the second and third quad-
rants of the complex plane (but not only on the real axis
as in the case of the relay feedback test). The pendulum
parameters are as follows: M¼ 0.5 kg is the mass of the
cart, m¼ 0.2 kg is the mass of the pendulum, b¼ 0.1
N �m�1 � s�1 is the friction of the cart, l¼ 0.3m is the
length of the pendulum (between the center of mass and

the axel), I¼ 0.006 kg �m2 is the inertia of the pendulum,

F is the force applied to the cart, x is the cart position,

� is the pendulum angle from vertical. The linearized

system of equations can be represented in state-space

form as follows:

A¼

0 1 0 0

0 �
ðIþml2Þb

ðIðMþmÞ þMml2Þ

ðm2gl2Þ

ðIðMþmÞ þMml2Þ
0

0 0 0 1

0 �
mlb

ðIðMþmÞ þMml2Þ

mglðMþmÞ

ðIðMþmÞ þMml2Þ
0

2
666664

3
777775
ð32Þ

B ¼

0

iþml2

IðMþmÞ þMml2

0

ml2

IðMþmÞ þMml2

2
6666664

3
7777775

C ¼ ½0 0 1 0�:

9>>>>>>>>>=
>>>>>>>>>;

ð33Þ

Therefore, the plant transfer function can be obtained as

follows:

P¼ ðMþmÞðIþml2Þ� ðmlÞ2

�ðsÞ

UðsÞ
¼

ml=Pð Þs

s3þ bðIþml2Þ=Pð Þs2� ðMþmÞmgl=Pð Þs� bmgl=Pð Þ

ð34Þ

which yields (considering the given parameter values):

�ðsÞ

UðsÞ
¼

4:5455s

s3 þ 0:1818s2 � 31:1818s� 4:4545
ð35Þ

or in the form containing the time constants:

�ðsÞ

UðsÞ
¼ �

1:020 4s

ð�0:1858sþ 1Þð0:178 44sþ 1Þð7:001 3sþ 1Þ
:

ð36Þ

Run the test for two different combinations of c1 and c2.

If we analyse the system with plant (36) by means of the

DF and the LPRS the values of the frequency and the

amplitude would be as given in tables 1 and 2.

Table 1. The DF analysis.

Test point Frequency (rad/s) Amplitude

i c1 c2 �i A

1 5 �1 0.717 0.1406
2 10 �1 1.453 0.1359
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Replacing the frequency and the amplitude in (26)

and (28) for the first test point we have (with c1¼ 5,

c2¼�1)

1

2
lnð0:98842 � �2

l Þ �
1

2

X3
l¼1

lnð0:98842 � T2
l þ 1Þ

¼ ln
� � 0:1408

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
52 þ 12
p ð37Þ

�
�

2
�
X3
l¼1

arctanð0:9884 � TlÞ þ �þ arctan
�1

5

� �
¼ 0

ð38Þ

and for the second test point (c1¼ 10, c2¼�1).

1

2
lnð1:81622 � �2

l Þ �
1

2

X3
l¼1

lnð1:81622 � T2
l þ 1Þ

¼ ln
� � 0:1316

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
102 þ 12
p ð39Þ

�

2
�
X3
l¼1

arctanð1:8162 � TlÞ þ �þ arctan
�1

10

� �
¼ 0:

ð40Þ

The parameters (table 3) obtained via solving the DF of

equations (37)–(40), are as follows: �1¼�0.7122,

T1¼�0.1858, T2¼ 0.1920, T3¼ 4.823, therefore, the

transfer function of the identified plant is (figure 4)

WDF1ðsÞ ¼
�0:7122s

ð�0:1858sþ 1Þð0:192sþ 1Þð4:823sþ 1Þ
ð41Þ

and the parameters obtained via solving the

LPRS equations are �1¼�1.0204, T1¼�0.1796,

T2¼ 0.1796, T3¼ 7.001. The transfer function of the

identified plant is

WLPRS1ðsÞ ¼
�1:0204s

ð�0:1796sþ 1Þð0:1796sþ 1Þð7:001sþ 1Þ
:

ð42Þ

Example 2: Experimental identification parameters

of the RC third-order low-pass filter

The circuit of the RC third-order low-pass filter with

decoupling amplifiers, can be seen in the figure 5. The

experimental setup is implemented with operational

amplifiers LM741 of Texas Instruments and ceramic

capacitors, the bipolar source of variable voltage is a

programmable power supply HM 8142, in order to

verify the measurements of the frequency and amplitude

of the control and the output signal in the circuit we

used an oscilloscope Agilent 54621A. The experimental

setup includes a PC equipped with an Dspace1103 data

control and acquisition card. The controller was

implemented using Matlab and Dspace programming

language allowing debugging, virtual oscilloscope,

automation functions, and data storage during

the experiments. The sampling frequency for control

implementation has been set to 10 kHz.

Figure 4. Nyquist plot for inverted pendulum transfer

function.

Figure 5. RC third-order low-pass filter with decoupling

amplifiers.

Table 3. The parameters identified.

Parameters

�1 T1 T2 T3

Original parameters �1.0204 �0.1858 0.1784 7.0013

DF identification �0.7122 �0.1858 0.1920 4.823
LPRS identification �1.0204 �0.1796 0.1796 7.001

Table 2. The LPRS analysis.

Test point Frequency (rad/s) Amplitude

i c1 c2 �i A

1 5 �1 0.9884 0.1408
2 10 �1 1.8162 0.1316
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The filter transfer function is as follows:

WRCLPðsÞ ¼
1

ðR1 �C1 � sþ1ÞðR2 �C2 � sþ1ÞðR3 �C3 � sþ1Þ
:

ð43Þ

The measured values of R and C are as follows:
R1¼ 9.947 K�, R2¼ 9.886 K�, R3¼ 9.887 K�,
C1¼ 0.968 mF, C2¼ 1.381 mF and C3¼ 1.968 mF, so
the parameters K¼ 1.0204, T1¼ 0.0096, T2¼ 0.0136 and
T3¼ 0.0194. Therefore, the actual transfer function is

WREALðsÞ ¼
1

ð0:0096 � sþ 1Þð0:0136 � sþ 1Þð0:0194 � sþ 1Þ
:

ð44Þ

Considering two test points, in which the values of c1
and c2 are 5 and 0 respectively for the first test and c1¼ 5
and c2¼�1 for the second test, the experimental
frequencies shown in table 4 and amplitudes were
obtained.
The parameters (table 5) identified via the DF model

are K¼ 1.043, T1¼ 0.0108, T2¼ 0.0108, T3¼ 0.0228,
therefore, the transfer function of the identified plant is

WDFðsÞ ¼
1:043

ð0:0108 � sþ 1Þð0:0108 � sþ 1Þð0:0228 � sþ 1Þ

ð45Þ

and the parameters found via the LPRS based identi-
fication are K¼ 1.0204, T1¼ 0.0104, T2¼ 0.0104 and
T3¼ 0.0238.

WLPRSðsÞ ¼
1:0204

ð0:0104 � sþ 1Þð0:0104 � sþ 1Þð0:0238 � sþ 1Þ

ð46Þ

Now analyse the parameters of the oscillations in
the system having the plant transfer function
(obtained via the DF and the LPRS models) and the
twisting algorithm in the test point c1¼ 5 and c2¼�2.5
(see tables 6–8 and figure 6).

Figure 6. Nyquist plots of transfer functions of RC third-

order low-pass filter

Table 5. The parameters identified.

Parameters

K T1 T2 T3

Original parameters 1.0204 0.0096 0.0136 0.0194
DF Identification 1.0430 0.0108 0.0108 0.0228

LPRS Identification 1.0204 0.0104 0.0104 0.0238

Table 4. Experimental data.

Test point Frequency (rad/s) Amplitude

i c1 c2 �i A

1 5 0 125.72 0.78
2 5 �1 113.09 0.96

Table 8. LPRS data.

Test point Frequency (rad/s) Amplitude

c1 c2 �i A

5 �2.5 91.8 1.42

Table 6. Experimental data.

Test point Frequency (rad/s) Amplitude

c1 c2 �i A

5 �2.5 96.8 1.45

Table 7. DF data.

Test point Frequency (rad/s) Amplitude

c1 c2 �i A

5 �2.5 91 1.63

Parameter identification via modified twisting algorithm 795
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6. Conclusions

A method for identification of any even number of
parameters of the transfer function from the test on the
process is proposed. With this aim the modification of
the twisting algorithm is proposed allowing to enlarge
the bandwidth of frequencies which could be used
for the identification. Each test allows one to define two
algebraic equations for the process transfer function
parameters. The equations for determining the unknown
parameters can be written separately for the magnitude
and the argument of the transfer function that simplifies
the task of the identification. As a result, the problem
can be reduced to the iterative solution of a system of
algebraic equations.
The advantage of the proposed approach is the

possibility of the excitation of the oscillations at a
given argument (phase lag) of the process transfer
function. It is demonstrated that the proposed technique
is feasible and provides a satisfactory accuracy of
identification.
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