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SUMMARY

This paper presents an integral sliding mode technique robustifying the optimal controller for linear
stochastic systems with input and observation delays, which is based on integral sliding mode compen-
sation of disturbances. The general principles of the integral sliding mode compensator design are modified
to yield the basic control algorithm oriented to time-delay systems, which is then applied to robustify the
optimal controller. As a result, two integral sliding mode control compensators are designed to suppress
disturbances in state and observation equations, respectively, from the initial time moment. Moreover,
it is shown that if certain matching conditions hold, the designed compensator in the state equation
can simultaneously suppress observation disturbances, as well as the designed compensator in the
observation equation can simultaneously suppress state disturbances. The obtained robust control
algorithm is verified by simulations in the illustrative example, where the compensator in the observa-
tion equation provides simultaneous suppression of state and observation disturbances. Copyright # 2005
John Wiley & Sons, Ltd.
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1. INTRODUCTION

This paper presents an integral sliding mode technique robustifying the optimal controller for
unobserved states of a linear stochastic system with input delay over delayed observations. The
integral sliding mode technique was introduced as a method for disturbance suppression from
the very beginning of the system functioning [1–3] and has been successfully applied to
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robustification of some optimal filters and regulators for time delay systems in References [4–6],
where a detailed comment on the up-to-date state of the control and filtering theory for time
delay systems has also been given. Other original modifications of the sliding mode control
applicable to disturbance suppression were suggested in References [7–10]. Comprehensive
reviews of theory and algorithms for time delay systems can be found in References [11–15].

The principal result of this paper is the design of an integral sliding mode regulator
robustifying the obtained optimal controller for linear systems with input and observation
delays and a quadratic criterion, which has recently been obtained in References [16–18]. The
idea is to add two compensators, one to the optimal control and another to the observation
process, to suppress external disturbances in the state and observation equations, respectively,
that deteriorate the optimal system behaviour. The integral sliding mode compensators are
realized as relay controls in such a way that the sliding mode motion starts from the initial
moment, thus solving the problem of compensation for external disturbances from the
beginning of system functioning, without any transitional phase. This constitutes the crucial
advantage of the integral sliding modes in comparison to the conventional ones. Moreover, if
certain matching conditions hold, the designed compensator in the state equation can simul-
taneously suppress observation disturbances, as well as the designed compensator in the observation
equation can simultaneously suppress state disturbances. Note that in the framework of this modi-
fied (in comparison to References [5, 6]) integral sliding mode approach, the optimal control is
not required to be differentiable and the sliding mode manifold matrix is always invertible.

The paper is organized as follows. In Section 2, the optimal controller problem is stated and
its solution is given for an unobserved linear stochastic system with input and observation
delays. Section 3 outlines the general principles of the integral sliding mode compensator design,
which yield the basic control algorithm oriented to time-delay systems. This basic algorithm is
then applied to robustify the optimal controller. As a result, two integral sliding mode control
compensators are designed in Section 4 to suppress disturbances in state and observation
equations, respectively, from the initial time moment. Section 5 presents an example illustrating
the quality of simultaneous disturbance suppression in state and observation equations,
provided by one robust integral sliding mode control compensator in the observation equation,
in comparison to performance of the optimal controller in the presence of disturbances. The
obtained results are discussed.

2. OPTIMAL CONTROLLER PROBLEM

Let ðO;F ;PÞ be a complete probability space with an increasing right-continuous family of
s-algebras Ft; t50; and let ðW1ðtÞ;Ft; t5t0Þ and ðW2ðtÞ;Ft; t5t0Þ be independent Wiener
processes. The partially observed Ft-measurable random process ðxðtÞ; yðtÞÞ is described by
delay-differential equations for the system state

dxðtÞ ¼ aðtÞxðtÞ dtþ BðtÞuðt� tÞ dtþ bðtÞ dW1ðtÞ ð1Þ

with the initial condition xðsÞ ¼ fðsÞ; s 2 ½t0 � t; t0�; and the observation process

dyðtÞ ¼ ðA0ðtÞ þ AðtÞxðt� hÞÞ dtþ FðtÞ dW2ðtÞ ð2Þ

Here, xðtÞ 2 Rn is the state vector, uðtÞ 2 Rm is the control input, yðtÞ 2 Rp is the observation
process, fðsÞ is a mean square piecewise-continuous Gaussian stochastic process (see Reference
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[19] for definition) given in the interval ½t0 � t; t0� such that fðsÞ; W1ðtÞ; and W2ðtÞ are
independent.

The observation process yðtÞ depends on the delayed state xðt� hÞ; where h is an observation
delay, which assumes that collection of information on the system state for the observation
purposes is possible only after a certain time h: It is assumed that AðtÞ is a non-zero matrix and
FðtÞFTðtÞ is a positive definite matrix. All coefficients in (1)–(2) are deterministic functions of
appropriate dimensions. The control function uðtÞ regulates the system state employing the
values of uðtÞ at the previous time moment t� t; where t is a control delay, which assumes that
there is a certain time lag t between the moment of elaborating the control signal by the actuator
and the moment of reaching the system input by it. This situation is frequently encountered in,
for example, network control systems.

In addition, the quadratic cost function J to be minimized is defined as follows:

J ¼E
1

2
xTðTÞFxðTÞ þ

1

2

Z T

t0

uTðsÞRðsÞuðsÞ ds
�

þ
1

2

Z T

t0

xTðsÞLðsÞxðsÞ ds
�

ð3Þ

where K is positive definite and F; L are non-negative definite symmetric matrices, T > t0 is a
certain time moment, the symbol E½ f ðxÞ� means the expectation (mean) of a function f of a
random variable x; and aT denotes transpose to a vector (matrix) a:

The optimal controller problem is to find the control unðtÞ; t 2 ½t0;T �; that minimizes the
criterion J along with the unobserved trajectory xnðtÞ; t 2 ½t0;T �; generated upon substituting
unðtÞ into the state equation (1).

The following solution to this problem was obtained (see References [16–18]). The optimal
control law is given by

unðt� tÞ ¼ ðRðtÞÞ�1BTðtÞ exp �
Z t

t�t
aTðsÞ ds

� �
QðtÞmðt� tÞ ð4Þ

where matrix function QðtÞ is the solution of the Riccati equation

’QðtÞ ¼ � aTðtÞQðtÞ �QðtÞaðtÞ þ LðtÞ �QðtÞ exp �
Z t

t�t
aðsÞ ds

� �

� BðtÞR�1ðtÞBTðtÞ exp �
Z t

t�t
aTðsÞ ds

� �
QðtÞ ð5Þ

with the terminal condition QðTÞ ¼ F: Upon substituting the optimal control (4) into the
optimal estimate equation, the following optimally controlled state estimate equation is
obtained

dmðtÞ ¼ ðaðtÞmðtÞ þ BðtÞðRðtÞ�1BTðtÞ exp �
Z t

t�t
aTðsÞ ds

� �

�QðtÞmðt� tÞÞ dtþ PðtÞ exp �
Z t

t�h

aTðsÞ ds
� �

� ATðtÞðFðtÞFTðtÞÞ�1 dyðtÞ � ðA0ðtÞ þ AðtÞmðt� hÞÞ dtð Þ ð6Þ
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with the initial condition mðsÞ ¼ EðfðsÞÞ; s 2 ½t0 � t; t0Þ and mðt0Þ ¼ Eðfðt0ÞjFY
t0
Þ; s ¼ t0; where

the error variance matrix PðtÞ satisfies the Riccati equation

dPðtÞ ¼ ðPðtÞaTðtÞ þ aðtÞPðtÞ þ bðtÞbTðtÞ

� PðtÞ exp �
Z t

t�h

aTðsÞ ds
� �

ATðtÞðFðtÞFTðtÞÞ�1

� AðtÞ exp �
Z t

t�h

aðsÞ ds
� �

PðtÞ dt ð7Þ

with the initial condition Pðt0Þ ¼ Eððxðt0Þ �mðt0ÞÞðxðt0Þ �mðt0ÞÞ
Tjyðt0ÞÞ:

Thus, the optimally controlled state estimate equation (6), the gain matrix constituent
equation (5), the optimal control law (4), and the variance equation (7) give the complete
solution to the optimal controller problem for unobserved states of linear systems with control
and observation delays.

3. ROBUST CONTROL PROBLEM

In practical applications, a control system operates under uncertainty conditions that may be
generated by parameter variations or external disturbances. Consider a real trajectory of the
disturbed control system

’xðtÞ ¼ f ðxðtÞÞ þ BðtÞuþ g1ðxðtÞ; tÞ þ g2ðxðt� tÞ; tÞ ð8Þ

Here u 2 Rm is the control input, the rank of matrix BðtÞ is complete and equal to m for any
t > t0; and the pseudoinverse matrix of B is uniformly bounded

jjBþðtÞjj4bþ; bþ ¼ const > 0; BþðtÞ :¼ ½BTðtÞBðtÞ��1BTðtÞ

and BþðtÞBðtÞ ¼ I ; where I is the m-dimensional identity matrix. Uncertain inputs g1 and g2
represent smooth disturbances corresponding to perturbations and nonlinearities in the system.
For g1; g2; the standard matching conditions are assumed to be held: g1; g2 2 spanB; or, in other
words, there exist smooth functions g1; g2 such that

g1ðxðtÞ; tÞ ¼ BðtÞg1ðxðtÞ; tÞ

g2ðxðt� tÞ; tÞ ¼ BðtÞg2ðxðt� tÞ; tÞ

jjg1ðxðtÞ; tÞjj4 q1jjxðtÞjj þ p1; q1; p1 > 0

jjg2ðxðt� tÞ; tÞjj4 q2jjxðt� tÞjj þ p2; q2; p2 > 0

ð9Þ

The last two conditions provide reasonable restrictions on the growth of the uncertainties.
Let us also consider the nominal control system

’x0ðtÞ ¼ f ðx0ðtÞÞ þ BðtÞu0ðx0ðt� tÞ; tÞ ð10Þ

where a certain delay-dependent control law u0ðxðt� tÞ; tÞ is realized. The problem is to
reproduce the nominal state motion determined by (10) in the disturbed control system (8).

The following initial conditions are assumed for the system (10):

xðsÞ ¼ fðsÞ ð11Þ

where fðsÞ is a piecewise continuous function given in the interval ½t0 � t; t0�:
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Thus, the control problem now consists in robustification of control design in the nominal
system (10) with respect to uncertainties g1; g2: to find such a control law u ¼ u0ðxðt� tÞ; tÞ
þu1ðtÞ that the disturbed trajectories (8) with initial conditions (11) coincide with the nominal
trajectories (10) with the same initial conditions (11).

3.1. Design principles for state disturbance compensator

Let us design the control law for (8) in the form

uðtÞ ¼ u0ðxðt� tÞ; tÞ þ u1ðtÞ ð12Þ

where u0ðxðt� tÞ; tÞ is the nominal feedback control designed for (10), and u1ðtÞ 2 Rm is the relay
control generating the integral sliding mode in some auxiliary space to reject uncertainties g1; g2:
Substitution of the control law (12) into the system (8) yields

’xðtÞ ¼ f ðxðtÞÞ þ BðtÞu0ðxðt� tÞ; tÞ þ BðtÞu1ðtÞ þ g1ðxðtÞ; tÞ þ g2ðxðt� tÞ; tÞ ð13Þ

Define the auxiliary function

sðtÞ ¼ zðtÞ þ s0ðxðtÞ; tÞ ð14Þ

where s0ðxðtÞ; tÞ ¼ BþðtÞxðtÞ; and zðtÞ is an auxiliary variable defined below. Then

’sðtÞ ¼ ’zðtÞ þ GðtÞ½ f ðxðtÞÞ þ BðtÞu0ðxðt� tÞ; tÞ þ Bðg1ðxðtÞ; tÞÞ

þ g2ðxðt� tÞ; tÞÞ þ BðtÞu1ðtÞ� þ ð@s0ðxðtÞ; tÞ=@tÞ ð15Þ

GðtÞ ¼ @s0ðxðtÞ; tÞ=@x ¼ BþðtÞ and @s0ðxðtÞ; tÞ=@t ¼ ðdðBþðtÞÞ=dtÞxðtÞ: Note that in the framework
of this modified (with respect to References [5, 6]) integral sliding mode approach, the optimal
control u0ðxðtÞÞ is not required to be differentiable and the sliding mode manifold matrix
GB ¼ BþB ¼ I is always invertible.

The philosophy of integral sliding mode control is the following: in order to achieve
xðtÞ ¼ x0ðtÞ at all t 2 ½t0;1Þ; the sliding mode should be organized on the surface sðtÞ; since the
following disturbance compensation should have been obtained in the sliding mode motion:

BþðtÞBðtÞu1eqðtÞ ¼ BþðtÞBðtÞg1ðxðtÞ; tÞ � BþðtÞBðtÞg2ðxðt� hÞ; tÞ

that is

u1eqðtÞ ¼ �g1ðxðtÞ; tÞ � g2ðxðt� hÞ; tÞ

Note that the equivalent control u1eqðtÞ can be unambiguously determined from the last equality
and the initial condition for xðtÞ:

Define the auxiliary variable zðtÞ as the solution to the differential equation

’zðtÞ ¼ �BþðtÞ½ f ðxðtÞÞ þ BðtÞu0ðxðt� tÞ; tÞ� þ dððBþðtÞÞ=dtÞxðtÞ

with the initial condition zð0Þ ¼ �s0ð0Þ ¼ �Bþð0Þjð0Þ: Then, the sliding manifold equation takes
the form

’sðtÞ ¼BþðtÞ½BðtÞðg1ðxðtÞ; tÞÞ þ g2ðxðt� tÞ; tÞÞ þ BðtÞu1ðtÞ�

¼ g1ðxðtÞ; tÞ þ g2ðxðt� tÞ; tÞ þ u1ðtÞ ¼ 0
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Finally, to realize sliding mode, the relay control is designed

u1ðtÞ ¼ �MðxðtÞ;xðt� tÞ; tÞ sign½sðtÞ�

M ¼ qðjjxðtÞjj þ jjxðt� tÞjjÞ þ p
ð16Þ

q > q1; q2; p > p1 þ p2; where sign½sðtÞ� ¼ ½signðs1ðtÞÞ; . . . ; signðsmðtÞÞ� for sðtÞ 2 Rm:
The convergence to and along the sliding mode manifold sðtÞ ¼ 0 is assured by the Lyapunov

function VðtÞ ¼ sTðtÞsðtÞ=2 for system (9) with the control input u1ðtÞ of (16)

’VðtÞ ¼ sTðtÞ½g1ðxðtÞ; tÞ þ g2ðxðt� hÞ; tÞ þ u1ðtÞ�

4 � jsðtÞjð½qðjjxðtÞjj þ jjxðt� tÞjjÞ þ p�

þ ½g1ðxðtÞ; tÞ þ g2ðxðt� tÞ; tÞ�Þ50

where jsðtÞj ¼
Pm

i¼1 jsiðtÞj:

3.2. Design principles for observation disturbance compensator

Let the observation process (2) be corrupted with unknown disturbances

dyðtÞ ¼ ðA0ðtÞ þ AðtÞxðt� hÞÞ dtþ FðtÞ dW2ðtÞ þ ðk1ðxðtÞ; tÞ þ k2ðxðt� hÞ; tÞÞ dt ð17Þ

where k1ðxðtÞ; tÞ and k2ðxðt� hÞ; tÞ are non-Gaussian and, possibly, deterministic noises not
bearing any useful information and depending on the current and delayed states. Such
disturbances obviously deteriorate the quality of estimation and should be eliminated.

For this purpose, assume that the disturbances satisfy the following conditions (note that no
matching conditions are assumed)

jjk1ðxðtÞ; tÞjj4 q3jjxðtÞjj þ p3; q3; p3 > 0

jjk2ðxðt� hÞ; tÞjj4 q4jjxðt� hÞjj þ p4; q4; p4 > 0

providing reasonable restrictions on their growth.
The observation process (17) consists of the useful and parasitic parts, yðtÞ ¼ yuðtÞ þ ypðtÞ;

where dyuðtÞ ¼ ðA0ðtÞ þ AðtÞxðt� hÞÞ dtþ BðtÞ dW2ðtÞ and dypðtÞ ¼ ðg1ðxðtÞ; tÞ þ g2ðxðt� hÞ; tÞÞ
dt: If only the useful signal yuðtÞ is present, the optimal filter based on the observations
yuðtÞ yields the desirable estimate muðtÞ for the unobserved state xðtÞ: At this point, the problem
is to suggest a tuning adjustment y1ðtÞ that, being added to the actual observations yðtÞ ¼
yuðtÞ þ ypðtÞ; compensates for observation disturbances k1; k2:

The following sliding mode technique solves this problem: define the sliding manifold sðtÞ as
sðtÞ ¼ zðtÞ þ s0ðtÞ; where s0ðtÞ ¼ mðtÞ and zðtÞ is an auxiliary variable to be assigned. The
condition of motion along the sliding manifold, dsðtÞ=dt ¼ 0; yields

dsðtÞ ¼ dzðtÞ þ ðEð f ðxðtÞÞjFY
t0
Þ þ BðtÞuðt� tÞÞ dt

þ CðtÞ½dyðtÞ � ðA0ðtÞ þ AðtÞmðt� hÞÞ dtþ y1ðtÞ dt� ¼ 0 ð18Þ

where yðtÞ is the disturbed observation process (17), CðtÞ ¼ PðtÞ expð�
R t

t�h
aTðsÞ dsÞATðtÞ

ðFðtÞFTðtÞÞ�1 is the filter gain matrix, and y1ðtÞ is the tuning adjustment to observations, whose
values on the sliding manifold are denoted by y1eqðtÞ: The value of the tuning adjustment on the
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sliding manifold must be equal to

y1eqðtÞ ¼ �ðk1ðxðtÞ; tÞ þ k2ðxðt� hÞ; tÞÞ

thus compensating for unknown disturbances. In doing so, in view of dsðtÞ=dt ¼
dz ðtÞ=dtþ ds0ðtÞ=dt; the auxiliary variable zðtÞ is assigned by the equation

dzðtÞ ¼ ð�Eð f ðxðtÞÞjFY
t0
Þ � BðtÞuðt� tÞÞ dt

� CðtÞ½dyuðtÞ � ðA0ðtÞ þ AðtÞmðt� hÞÞ dt� ð19Þ

with the initial condition zð0Þ ¼ �s0ð0Þ ¼ �mð0Þ; where yuðtÞ is an average of some a priori
known realizations of the useful signal. Thus, the estimate mðtÞ based on the disturbed
observations with compensator yðtÞ þ y1ðtÞ and the desired estimate muðtÞ coincide in the mean
square as random variables on the sliding manifold sðtÞ ¼ 0; and the sliding manifold equation
takes the form

’sðtÞ ¼ k1ðxðtÞ; tÞ þ k2ðxðt� hÞ; tÞ þ y1eqðtÞ ¼ 0

thus assuring compensation of the observation disturbances.
Finally, to realize sliding mode, the relay compensator control is designed

y1ðtÞ ¼ �M1ðxðtÞ;xðt� hÞ; tÞÞ sign½sðtÞ� ð20Þ

where M1 ¼ *qðjjxðtÞjj þ jjxðt� hÞjjÞ þ *p; *q > q3; q4; *p > p3 þ p4: The mean square convergence to
and along the sliding mode manifold is proved using the same Lyapunov function as in the
preceding subsection.

The next section presents the robustification of the designed optimal controller (4)–(7).
This robust regulator is designed assigning the sliding mode manifolds according
to (14)–(15) and (18)–(19) and subsequently moving to and along this manifold using relay
control (16), (20).

4. ROBUST SLIDING MODE CONTROLLER DESIGN FOR LINEAR SYSTEM
WITH INPUT AND OBSERVATION DELAYS

Consider the disturbed state equation (1), whose behaviour is affected by uncertainties g1; g2;
presenting perturbations and nonlinearities in the system

dxðtÞ ¼ aðtÞxðtÞ dtþ BðtÞuðt� tÞ dtþ bðtÞ dW1ðtÞ þ g1ðxðtÞ; tÞ þ g2ðxðt� hÞ; tÞ ð21Þ

with the initial condition xðsÞ ¼ fðsÞ; s 2 ½t0 � t; t0�; and the observation equation (2), which
is now affected by uncertainties k1; k2; presenting perturbations and nonlinearities in the
observations (2)

dyðtÞ ¼ ðA0ðtÞ þ AðtÞxðt� hÞÞ dtþ FðtÞ dW2ðtÞ þ ðk1ðxðtÞ; tÞ þ k2ðxðt� hÞ; tÞÞ dt ð22Þ

It is also assumed that the uncertainties satisfy the standard matching and growth conditions (9)
given in Section 3, and the quadratic cost function (2) is the same as in Section 2.
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The optimally controlled estimate equation (7) for the state (21) over the observations (22)
takes the form

dmðtÞ ¼ ðaðtÞmðtÞ þ BðtÞðRðtÞ�1BTðtÞ

� exp �
Z t

t�t
aTðsÞ ds

� �
QðtÞmðt� tÞ þ Bg1ðxðtÞ; tÞ

þ Bg2ðxðt� hÞ; tÞÞ dtþ PðtÞ exp �
Z t

t�h

aTðsÞ ds
� �

ATðtÞ

� ðFðtÞFTðtÞÞ�1ðdyðtÞ � ðA0ðtÞ þ AðtÞmðt� hÞÞ dtÞ ð23Þ

with the initial condition mðsÞ ¼ EðfðsÞÞ; s 2 ½t0 � t; t0Þ and mðt0Þ ¼ Eðfðt0ÞjFY
t0
Þ; s ¼ t0:

The problem is to robustify the obtained optimal controller (4)–(7), using the methods
specified by (14)–(16) and(18)–(20). First, define the new control (12) as follows: uðtÞ ¼
u0ðxðt� tÞ; tÞ þ u1ðtÞ; where the optimal control u0ðxðt� tÞ; tÞ coincides with (4) and the
robustifying component u1ðtÞ is obtained according to (16)

u1ðtÞ ¼ �MðxðtÞ;xðt� tÞ; tÞ sign½sðtÞ�

M ¼ qðjjxðtÞjj þ jjxðt� tÞjjÞ þ p

q > q1; q2; p > p1 þ p2: Consequently, the sliding mode manifold function sðtÞ is defined as

sðtÞ ¼ zðtÞ þ s0ðxðtÞ; tÞ

where s0ðmðtÞ; tÞ ¼ BþðtÞmðtÞ; and the auxiliary variable zðtÞ satisfies the delay differential
equation

dzðtÞ ¼ � BþðtÞ aðtÞmðtÞ dtþ BðtÞðRðtÞ�1BTðtÞ exp �
Z t

t�t
aTðsÞ ds

� �
QðtÞmðt� tÞ dt

�

þCðtÞðdyðtÞ � ðA0ðtÞ þ AðtÞmðt� hÞÞ dtÞ�

with the initial condition zð0Þ ¼ �Bþð0Þjð0ÞÞ; where CðtÞ ¼ PðtÞ expð�
R t

t�h
aTðsÞ dsÞATðtÞ

ðFðtÞFTðtÞÞ�1:
Note that the compensator u1ðtÞ introduced at this step can also compensate for observation

disturbances k1; k2; if the filter gain matrix CðtÞ belongs to the matrix BðtÞ span, i.e. CðtÞ ¼
BðtÞMðtÞ: This fact readily follows from the sliding mode equation (15) and the structure of the
disturbed controlled estimate equation (23).

Thus, the introduced control u1ðtÞ can compensate for state disturbances g1; g2 and
observation disturbances k1; k2; if the matching condition CðtÞ ¼ BðtÞMðtÞ holds. However,
the compensator (20) should still be applied to compensate for observation disturbances in the
unmatched case. For this purpose, define the new observation process yðtÞ þ y1ðtÞ; where yðtÞ are
actual observations, and the robustifying component y1ðtÞ is obtained according to (20)

y1ðtÞ ¼ �M1ðxðtÞ;xðt� hÞ; tÞÞ sign½sðtÞ�

where M1 ¼ *qðjjxðtÞjj þ jjxðt� hÞjjÞ þ *p; *q > q3; q4; *p > p3 þ p4: Consequently, the sliding mode
manifold function sðtÞ is defined a

sðtÞ ¼ zðtÞ þ s0ðtÞ
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where s0ðtÞ ¼ mðtÞ; and the auxiliary variable zðtÞ satisfies the delay differential equation

dzðtÞ ¼ ð�aðtÞmðtÞ � BðtÞðRðtÞ�1BTðtÞ exp �
Z t

t�t
aTðsÞ ds

� �
QðtÞmðt� tÞÞ dt

� CðtÞ½dyuðtÞ � ðA0ðtÞ þ AðtÞmðt� hÞÞ dt�

with the initial condition zð0Þ ¼ �s0ð0Þ ¼ �mð0Þ: The undisturbed observations yuðtÞ could be
determined from the nominal system corresponding to (21), (22), where all disturbances and
white noises are absent and the initial condition for (21) coincides with m0:

Note that the compensator y1ðtÞ introduced at this step can also compensate for state
disturbances g1; g2; if the state disturbances satisfy the matching conditions with the filter gain
matrix CðtÞ; i.e.

g1ðxðtÞ; tÞ ¼CðtÞb1ðxðtÞ; tÞ

g2ðxðt� hÞ; tÞ ¼CðtÞb2ðxðt� hÞ; tÞ

This fact readily follows from the sliding mode equation (18) and the structure of the disturbed
controlled estimate equation (23). A case of joint compensation of state and observation
disturbances using the only observation disturbance compensator (20) is presented in the next
section.

5. EXAMPLE

This section presents an example of designing the controller for a linear system with input and
observation delays using the scheme (4)–(7), disturbing the obtained controller by noises in state
and observation equations, and designing a robust sliding mode observation disturbance
compensator for those noises using the scheme (18)–(20).

Let us consider a scalar linear system

’xðtÞ ¼ xðtÞ þ uðt� 0:1Þ; xðsÞ ¼ fðsÞ; s 2 ½�0:1; 0� ð24Þ

where fðsÞ ¼ Nð0; 1Þ for s 2 ½�0:1; 0�; and Nð0; 1Þ is a Gaussian random variable with zero mean
and unit variance. The observation process is given by

yðtÞ ¼ xðt� 0:2Þ þ cðtÞ ð25Þ

where cðtÞ is a white Gaussian noise, which is the weak mean square derivative of a standard
Wiener process (see Reference [19]). Equations (24) and (25) present the conventional form for
Equations (1) and (2), which is actually used in practice [20].

The control problem is to find the control uðtÞ; t 2 ½0;T �; that minimizes the criterion

J ¼ E
1

2
½xðTÞ � xn�2 þ

1

2

Z T

0

u2ðtÞ dt
� �

ð26Þ

where T ¼ 0:45; and xn ¼ 25 is a large value of xðtÞ; which would a priori be unreachable for the
optimally controlled system at the time T : In other words, the control problem is to maximize
the unobserved state xðtÞ using the minimum energy of control u:

Let us apply the optimal controller (4)–(7) for linear systems with control and observation
delays to system (24), (25). Since expð�

R t

t�h a
TðsÞ dsÞ ¼ expð�0:2Þ and expð�

R t

t�t a
TðsÞ dsÞ ¼
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expð�0:1Þ; the control law (4) takes the form

unðt� 0:1Þ ¼ ðexpð�0:1ÞÞQðtÞmðt� 0:1Þ ð27Þ

where

’mðtÞ ¼ mðtÞ þ uðt� 0:1Þ þ ðexpð�0:2ÞÞPðtÞðyðtÞ �mðt� 0:2ÞÞ

mðsÞ ¼ 0; s50; mð0Þ ¼ m0 ð28Þ

’QðtÞ ¼ �2QðtÞ � ðexpð�0:1ÞQðtÞÞ2; Qð0:45Þ ¼ 1 ð29Þ

’PðtÞ ¼ 2PðtÞ � ðexpð�0:2ÞPðtÞÞ2; Pð0Þ ¼ P0 ð30Þ

Upon substituting the control (27) into (28), the optimally controlled estimate equation takes
the form

’mðtÞ ¼ mðtÞ þ ðexpð�0:1ÞÞQðtÞmðt� 0:1Þ þ ðexpð�0:2ÞÞPðtÞðyðtÞ �mðt� 0:2ÞÞ

mðsÞ ¼ 0; s50; mð0Þ ¼ m0 ð31Þ

For numerical simulation of system (24), (25), the initial value xð0Þ ¼ 0:05 is assigned for
realization of the Gaussian variable xð0Þ ¼ fð0Þ in (24), the values m0 ¼ 1:9 and P0 ¼ 10 are
assigned as the initial conditions of the estimate mðtÞ and the filter gain PðtÞ; respectively, and
the disturbance cðtÞ in (25) is realized using the built-in MatLab white noise function.

The results of applying the controller (4)–(7) to the system (24), (25) are shown in Figure 1,
which presents the graphs of the state (24) xðtÞ controlled by (27), the controlled estimate (31)
mðtÞ; the criterion (26) JðtÞ; the control (27) unðtÞ; the variance (30) PðtÞ; and the control gain
(29) QðtÞ; in the interval ½0;T �: The values of the state (24), the controlled estimate (28), and the
criterion (26) at the final moment T ¼ 0:45 are xð0:45Þ ¼ 6:87; mð0:45Þ ¼ 6:876; and
Jð0:45Þ ¼ 215:43:

The next task is to introduce state and observation disturbances into the controlled system
(24). These disturbances are realized as a constant: gðtÞ ¼ kðtÞ ¼ 100: The matching conditions
are valid, because state xðtÞ; control uðtÞ; and observations yðtÞ have the same dimension:
dimðxÞ ¼ dimðuÞ ¼ dimðyÞ ¼ 1: The restrictions on the disturbance growth hold with q1 ¼ q2 ¼
p2 ¼ q3 ¼ q4 ¼ p4 ¼ 0 and p1 ¼ p3 ¼ 100; since jjgðtÞjj ¼ jjkðtÞjj ¼ 100: The disturbed controller
equation (31) takes the form

’mðtÞ ¼mðtÞ þ ðexpð�0:1ÞÞQðtÞmðt� 0:1Þ þ 100þ ðexpð�0:2ÞÞPðtÞðyðtÞ �mðt� 0:2Þ þ 100Þ

mðsÞ ¼ 0; s50; mð0Þ ¼ m0 ð32Þ

The system behaviour significantly deteriorates upon introducing the disturbances. Figure 2
presents the graphs of the state (24) xðtÞ controlled by (27), the controlled estimate (32) mðtÞ; the
criterion (26) JðtÞ; and the control (27) uðtÞ; in the interval ½0;T �: The value of the state (24), the
controlled estimate (32) and the criterion (26) at the final moment T ¼ 0:45 are xð0:45Þ ¼ 255:7;
mð0:45Þ ¼ 511; and Jð0:45Þ ¼ 96660: The deterioration of the criterion value in comparison to
that obtained using the optimal controller (28) is more than 300 times.
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Let us finally design the robust integral sliding mode observation compensator for the
introduced disturbances. The new controlled state equation should be

’mðtÞ ¼mðtÞ þ ðexpð�0:1ÞÞQðtÞmðt� 0:1Þ þ 100

þ ðexpð�0:2ÞÞPðtÞðyðtÞ �mðt� 0:2Þ þ 100þ y1ðtÞÞ

mðsÞ ¼ 0; s50; mð0Þ ¼ m0 ð33Þ

where the compensator y1ðtÞ is obtained according to (20)

y1ðtÞ ¼ �MðxðtÞ; xðt� hÞ; tÞ sign½sðtÞ� ð34Þ

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0
1
2
3
4
5
6
7

 time

st
at

e

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0
1
2
3
4
5
6
7

time

es
tim

at
e

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
200

225

250

275

300

325

time

cr
ite

rio
n

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

10

20

30

40

50

time
co

nt
ro

l

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
4

6

8

10

time

va
ria

nc
e

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

10

20

30

time

co
nt

ro
l g

ai
n

Figure 1. Graphs of the state (24) xðtÞ controlled by the optimal linear regulator (27) designed for systems
with input and observation delays, the controlled estimate (31) mðtÞ; the criterion (26) JðtÞ; the control (27)

unðtÞ; the variance (30) PðtÞ; and the control gain (29) QðtÞ; in the interval ½0; 0:45�:
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and M ¼ 230:4 > p1ðexpð0:2ÞÞðmaxt40:45 ðP�1ðtÞÞÞ þ p3: The sliding mode manifold sðtÞ is
defined by

sðtÞ ¼ zðtÞ þ s0ðtÞ

where s0ðtÞ ¼ mðtÞ:
The auxiliary variable zðtÞ satisfies the delay differential equation

’zðtÞ ¼ �mðtÞ � ðexpð�0:1ÞÞQðtÞmðt� 0:1Þ � ðexpð�0:2ÞÞPðtÞðyuðtÞ �mðt� 0:2ÞÞ ð35Þ

with the initial condition zð0Þ ¼ �mð0Þ ¼ �1:9; where the undisturbed observations yuðtÞ are
determined from the undisturbed system (24), (25)

’xuðtÞ ¼ xðtÞ þ ðexpð�0:1ÞÞQðtÞxuðt� 0:1Þ

yuðtÞ ¼ xuðt� 0:2Þ

with the initial condition xuðsÞ ¼ 0; s50; xuð0Þ ¼ m0:
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Figure 2. Controlled system in the presence of disturbance. Graphs of the disturbed state (24) xðtÞ; the
disturbed controlled estimate (32) mðtÞ; the disturbed criterion (26) JðtÞ; and the disturbed control (27) uðtÞ

in the interval ½0; 0:45�:
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Upon introducing the compensator (34) into the controller equation (33), the controlled
estimate behaviour is very much improved. Figure 3 presents the graphs of the state (24) xðtÞ
controlled by (27), the controlled estimate (33) mðtÞ; the criterion (26) JðtÞ; and the control (27)
uðtÞ; after applying the compensator (34), in the interval ½0;T �: The value of the state (24), the
controlled estimate (33) and the criterion (26) at the final moment T ¼ 0:45 are xð0:45Þ ¼ 8:087;
mð0:45Þ ¼ 8:066; and Jð0:45Þ ¼ 215:31: Thus, the values of the criterion and state after applying
the compensator (43) are even better than those for the controller (31), although approximation
of the true state by the estimate mðtÞ is a bit worse. This phenomenon is produced by difference
in random realizations of the observation white noise in (25) in both cases. Nevertheless, the
obtained values of the criterion, state, and controlled variable are quite admissible for
representation of the optimally controlled variables (27)–(31) in the undisturbed problem,
taking into account that the maximum over absolute differences between both realizations
of the MatLab white noise functions reaches values between 6 and 8 in each interval of the
length 0.05.
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Figure 3. Controlled system after applying robust integral sliding mode compensator. Graphs of the
compensated state (24) xðtÞ; the compensated controlled estimate (33) mðtÞ; the compensated criterion (26)

JðtÞ; and the compensated control (27) uðtÞ in the interval ½0; 0:45�:
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Remark
This example shows that the observation compensator (34) summarizes the actions of the state
and observation compensators (16) and (20), if they were designed separately. Indeed, for both
those compensators, the sliding mode manifolds coincide: sðtÞ ¼ sðtÞ ¼ mðtÞ þ zðtÞ; where zðtÞ is
defined by (35), and the compensators themselves are equal to u1ðtÞ ¼ �M1ðxðtÞ;xðt� hÞ; tÞ
sign½sðtÞ�; M1 ¼ 100:1 > p1; and y1ðtÞ ¼ �M2ðxðtÞ;xðt� hÞ; tÞ sign½sðtÞ�; M2 ¼ 100:1 > p3: Taking
into account that the observation compensator y1ðtÞ enters Equation (33) through the filter gain
matrix ðexpð�0:2ÞÞPðtÞ; the proposed value M ¼ 230:4 > p1ðexpð0:2ÞÞðmaxt40:45 ðP�1ðtÞÞÞ þ p3
can be obtained for the compensator (34).

6. CONCLUSIONS

The robust integral sliding mode compensator has been designed for the optimal controller for
linear stochastic systems with input and observation delays. The proposed technique can be
considered as a universal method for robustifying the optimal filtering and control algorithms in
linear stochastic time-delay systems, providing simultaneous suppression of non-Gaussian
disturbances in state and observation equations. Application of the designed robustification
algorithm to robust controller design in the illustrative example has yielded promising results,
even improving the criterion value in comparison to the nominal optimal controller. It has also
been shown that the compensator, suppressing simultaneously state and observation
disturbances, actually summarizes the actions of the state and observation compensators, if
they were designed separately.
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