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SUMMARY

A procedure to design a global exponentially stable, second-order, sliding-mode observer for nDOF
Lagrangian systems is presented. The observer converges to the system state in spite of the existence of
bounded disturbances or parameter uncertainties affecting the system dynamics. The generation of sliding
modes permits the identification of disturbances using the equivalent output injection which, under some
circumstances, can also be used to identify the system parameters via a continuous version of the last-
square method. The proposed methodology is illustrated with some numerical examples and experiments.
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1. INTRODUCTION

Antecedents and motivation. The problem of observation of systems with unknown inputs has
been one of the most important problems in control theory during the last two decades [1]. In
[2, 3], sufficient and necessary conditions for observer robustness with respect to unknown
inputs are established. These conditions require that the unknown inputs must be matched by
known outputs, which turn out to be restrictive because they do not include the simplest class of
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mechanical systems with unknown inputs, where only the position is available. In [4], to cover
this situation, an adaptive observer, ensuring an exponential convergence of the estimation error
to a small neighbourhood of zero, was suggested.

The observation of systems with unknown inputs has been actively developed within variable
structure theory using the sliding-mode approach. Sliding-mode observers are widely used due to
their attractive features: (a) insensitivity with respect to unknown inputs; (b) possibility to use the
equivalent output injection to identify unknown inputs; (c) finite time convergence to exact
values of the state vectors (see, for example, the corresponding chapters in the textbooks [5, 6],
and the recent tutorials [7–9]). In [10] a step-by-step design of sliding-mode observers was
proposed. Such design is based on the transformation of a given system to a block observable
form and the sequential estimation of each state by using the equivalent output injection. From
the one hand, this scheme allows to formulate extended observability conditions for systems with
unknown inputs, covering the observation of mechanical systems with measured positions. Such
conditions were formulated in [10, 11] for the scalar case. On the other hand, realization of this
scheme caused obligatory filtration due to the non-idealities during sliding-mode generation.

In [12, 13] a robust, exact, arbitrary-order differentiator ensuring finite time convergence to the
values of the corresponding derivatives is proposed, and applications of higher-order sliding-mode
algorithms were considered. A new generation of observers based on second-order sliding-mode
algorithms has been recently designed and applied to some practical problems [14–19]. The main
disadvantage of those observers is that they are semiglobal. Some new ideas of usage of equivalent
output injections for parameter and disturbance identifications are suggested in [20, 21].

Main contribution. In this paper we present a robust, globally exponentially stable second-
order sliding-mode observer for Lagrangian systems. Some specific contributions are
enumerated below:

1. A robust globally asymptotically stable second-order sliding-mode observer for
Lagrangian systems is proposed, ensuring convergence to the exact system state even
under the presence of unknown inputs.

2. An algorithm for unknown input identification is proposed.
3. A modification of the least-square method allowing to identify the system parameters is

presented.
4. Some simulations and experimental examples illustrating the main results are given.

Paper structure. The problem statement is given in the second section. In the third section a
theorem establishing the stability properties of a class of discontinuous, second-order systems is
discussed. This result is essential to prove the exponential convergence of the observer for nDOF
systems. In the fourth section the observer design is presented, and in the next section the
algorithms for perturbation and parameter identifications are described. Finally, in Section 6 the
design technique is numerically and experimentally illustrated via the design and implementa-
tion of an observer for a simple pendulum.

2. PROBLEM STATEMENT

Consider a nDOF Lagrangian system described by

MðqÞ.qþ Cðq; ’qÞ’qþ GðqÞ þ jð.q; ’q; qÞyþ gðtÞ ¼ t ð1Þ
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where q 2 Rn is the generalized position vector, MðqÞ is the inertia matrix, Cðq; ’qÞ is the
centrifuge and Coriolis matrix, GðqÞ is the gravitational force vector, the term jð.q; ’q; qÞy encloses
the terms produced by the vector of parameter variations y; jð.q; ’q; qÞ is a n�mmatrix and y is a
m� 1 vector. gðtÞ 2 Rn is a bounded vector of external disturbances; finally, t 2 Rn is the
generalized force input. All matrices and vectors are defined with the suitable dimensions. We
consider that the measured variables are the generalized position q:

Defining the state variables x1 ¼ q; x2 ¼ ’q; the state-space representation of system (1) is

’x1

’x2

" #
¼

x2

f ðxÞ þ gðx1Þ þ xð�Þ þM�1ð�Þt

" #
ð2Þ

y ¼ x1 ð3Þ

where

f ðxÞ ¼ �M�1ð�ÞCðx1;x2Þx2

gðx1Þ ¼ �M�1ð�ÞGðx1Þ

xð�Þ ¼ �M�1ð�Þðjð.q; ’q; qÞyþ gðtÞÞ

We assume that the behaviour of system (2)–(3) is bounded for any bounded input t and any
bounded perturbation gðtÞ:

In this paper we will design the globally asymptotically stable observer providing the exact
value of variables x2 based on the exact measurements of the variables x1 and suggest the
method for unknown perturbations and parameters identification.

3. GLOBAL EXPONENTIAL STABILITY OF A CLASS OF PERTURBED
SECOND-ORDER SYSTEMS

In this section we present a preliminary result that will be useful to design the observer. Consider
the following second-order system:

’v1 ¼ v2

’v2 ¼ � av1 � bv2 þ eðtÞ � c signðv1Þ
ð4Þ

where a and b are positive constants, eðtÞ is an external perturbation with the bound

jeðtÞj4r0 ð5Þ

where r0 is a constant, c is a control parameter, and signð�Þ is the signum function. Define the
matrix A as

A ¼
0 1

�a �b

" #
ð6Þ
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and the matrix P; which is the solution of the Lyapunov equation ATPþ PA ¼ �I for the
(Hurwitz) matrix A; as

P ¼
p11 p12

p12 p22

" #
ð7Þ

The stability properties of system (4) are given by the following theorem.

Theorem 1
For system (4), if

c > 2lmaxðPÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lmaxðPÞ
lminðPÞ

s
ar0
y

� �
ð8Þ

for some 05y51; then the origin of the state space is a globally asymptotically stable
equilibrium point in Lyapunov sense.

Proof
The proof is divided in two parts. First we define the nominal system as (4) with eðtÞ � 0; and
prove the stability of the origin using tools from variable structure systems. After that, we find
the condition on c such that the stability properties are maintained for the perturbed system.

The nominal system has two structures: S1 for v1 > 0;

S1 :
’v1

’v2

" #
¼

v2

�av1 � bv2 � c

" #
and S2 for v150;

S2 :
’v1

’v2

" #
¼

v2

�av1 � bv2 þ c

" #
Each structure has a different equilibrium point; %vS1

¼ ð�c=a; 0Þ for S1; and %vS2
¼ ðc=a; 0Þ for S2:

Note that these equilibria are symmetrical and placed in the region where the system dynamics
are given by the other structure (S2 for %vS1

; S1 for %vS2
). Each equilibrium point is globally

asymptotically stable with the following Lyapunov functions; for S1:

VS1
ðvÞ ¼ vTPvþ 2vTPBþ

c

a

� �2
p11 ð9Þ

’VS1
ðvÞ ¼ �vTv� 2vTB�

c

a

� �2
ð10Þ

and for S2

VS2
ðvÞ ¼ vTPv� 2vTPBþ

c

a

� �2
p11 ð11Þ

’VS2
ðvÞ ¼ �vTvþ 2vTB�

c

a

� �2
ð12Þ

where B ¼ ½c=a 0�T: Figure 1 shows the graph of the Lyapunov functions defined by (9)–(11).
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A direct application of the criterion given in [22] allows us to conclude that the discontinuity
surface given by s ¼ v1 ¼ 0 is not a sliding surface. Note also that the solutions cross the line
v1 ¼ 0 from quadrant II to quadrant I, and from quadrant IV to quadrant III. Functions VSi

ðvÞ
intersect at the origin with a value VSi

ð0Þ ¼ ðc=aÞ2p11; for i ¼ 1; 2:Define two neighbourhoods of
the origin, Oe with radio e > 0; and Ob defined in the following form:

Ob ¼O1 [ O2

O1 ¼fv 2 R2jv150;VS1
ðvÞ4bg

O2 ¼fv 2 R2jv150;VS2
ðvÞ4bg

where b > ðc=aÞ2p11: Finally, define a neighbourhood Od with ratio d5e (d can depend on e and
b; dðe;bÞ) such that Od � Ob: Define a set of times T ¼ ft1; t2; . . . ; ti; . . .g; where ti are the times
where the system commutes its structures. We assume that t15t25 � � � : If jjvðt0Þjj5d and
vðt0Þ 2 Ok � Ob for some k ¼ 1; 2 (the kth structure is active), then the first change of structure
appears at time t1; and because ’VSk

50; we have jjvðt0Þjj > jjvðt1Þjj; then VSk
ðvðt0ÞÞ > VSk

ðvðt1ÞÞ:
Now vðt1Þ is the initial condition for the next structure and, by construction of VSi

;
VSk
ðvðt1ÞÞ5VSkþ1ðvðt1ÞÞ by a factor 4jv2ðt1Þjp12ðc=aÞ: The second commutation appears at time

t2; the system goes from Okþ1 to Ok; jjvðt1Þjj > jjvðt2Þjj; VSkþ1ðvðt1ÞÞ > VSkþ1 ðvðt2ÞÞ and
VSkþ1ðvðt2ÞÞ > VSk

ðvðt2ÞÞ and so on for all ti 2 T ; Figure 2 shows this phenomenon.
Then we see that the sequences W1 ¼ fVSk

ðt1Þ;VSk
ðt3Þ; . . .g and W2 ¼ fVSkþ1ðt2Þ;VSkþ1 ðt4Þ; . . .g

are strictly decreasing and lower bounded and converge to ðc=aÞp11: Also, it is satisfied that
jjvðtiþ1Þjj5jjvðtiÞjj5 � � �5jjvðt0Þjj5d5e8t > t0; 8i:

For all e > 0 and b > ðc=aÞ2p11 we can find a number d so that the trajectories initiating in Od

will remain within the neighbourhood Oe for all t5t0: Therefore, the origin is stable in the
Lyapunov sense.

To demonstrate asymptotic stability it is enough to note that

lim
i!1

VSk
ðvðtiÞÞ ¼ lim

i!1
VSkþ1 ðvðtiÞÞ ¼

c

a
p11
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Figure 1. Lyapunov functions of each equilibrium point.
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this is the value that takes both Lyapunov functions at the origin; then

lim
t!1

vðtÞ ¼ 0

To demonstrate global asymptotic stability it is enough to note that the equilibrium point of
each structure of the nominal system, Equation (4) with eðtÞ � 0; is global exponentially stable.
Therefore, the behaviour described later will be valid for all initial conditions.

Now we analyse the perturbed system (4). Consider the structure S1 of the system (the
analysis of the structure S2 is similar),

’v1 ¼ v2

’v2 ¼ � av1 � bv2 þ eðtÞ � c

and make the following change of variables z1 ¼ v1 þ c=a and z2 ¼ v2: The dynamics of system
(4), in the new state space, is given by

’z1 ¼ z2

’z2 ¼ � az1 � bz2 þ eðtÞ ð13Þ

or in simplified form,

’z ¼ Azþ g ð14Þ

where g ¼ ½0 eðtÞ�T:Note that the nominal system has the origin z ¼ 0 as an exponentially stable
equilibrium point with a Lyapunov function given by VðzÞ ¼ zTPz; where P > 0 is a solution of
the Lyapunov equation ATPþ PA ¼ �I : Furthermore, because jjeðtÞjj4r0; then we can apply
the results given in [23] about the stability of perturbed systems.

Propose a Lyapunov function VðzÞ ¼ zTPz; where the matrices A and P are defined by
Equations (6) and (7), respectively. The time derivative of V is given by

’VðzÞ ¼ �zTzþ 2zTPg4� jjzjj2 þ 2jzTPgj4� jjzjj2 þ 2lmaxðPÞjjzjjr0

Because a > 0 and b > 0; we can apply Lemma 9.2 given in [23], and conclude that, for all
jjzðt0Þjj > m; the solution zðtÞ satisfies

jjzðtÞjj4k expð�zðt� t0ÞÞjjzðt0Þjj 8t04t5t0 þ tf

t

$V$

Vk

Vk +1

Vk

Vk

tmt0 t1 t2 t3 ...

Vk +1

( c
a)

2
p11

Figure 2. Behaviour of the value of the Lyapunov functions along the time.
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and
jjzðtÞjj4m 8t5t0 þ tf

where tf is a finite time, and

k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lmaxðPÞ
lminðPÞ

s
; z ¼

ð1� yÞ
2lmaxðPÞ

; m ¼ 2lmaxðPÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lmaxðPÞ
lminðPÞ

s
r0
y

for some y; 05y51: This part shows that the ball of radius m; with centre located at ð�c=a; 0Þ; is
an attractor for structure S1; denoted as BS1

: Similarly, the solutions of the structure S2

’v1 ¼ v2

’v2 ¼ � av1 � bv2 þ eðt; vÞ þ c

converge to the ball BS2
of radius m and centred at ðc=a; 0Þ: Therefore, each structure of the

perturbed system has an attractor (a ball) of radius m; symmetrically located on the v1-axis and
at a distance d ¼ c=a from the origin. If this distance d is greater than m; i.e. if

d ¼
c

a
> m ¼ 2lmaxðPÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lmaxðPÞ
lminðPÞ

s
r0
y

� �
ð15Þ

then the two attractor BS1
and BS2

do not intersect each other, and the behaviour of the
solutions of the perturbed system (4) will be qualitatively similar to the behaviour of the
nominal system, for which these attractors correspond to the equilibrium points ð�c=a; 0Þ; that
is, when m ¼ 0: Therefore, the perturbed system converges to the origin in the same way than the
nominal system. &

Also, we can prove that the convergence is exponential in a small vicinity of the origin; in fact,
we can find exponential functions that are upper and lower bounds of the solutions near the
origin; the following theorem presents this result.

Theorem 2
If c > jeðtÞj; c > jð2=bÞ deðtÞ=dt� eðtÞj for all t 2 ð0;1Þ; system (4) is exponentially stable and the
time of convergence is infinite, i.e. there exists a small neighbourhood L of the origin and
constants s�;sþ;L�;Lþ such that

L�e�s
�tðjv1ð0Þj þ v22ð0ÞÞ5 jv1ðtÞj þ v22ðtÞ5Lþe�s

þtðjv1ð0Þj þ v22ð0ÞÞ

v1ð0Þ; v2ð0Þ 2 L 8t 2 ð0;1Þ

Proof
Consider a locally positive definite Lyapunov function:z

E ¼ ðc� eðtÞ signðv1ÞÞjv1j þ v22=2þ bv1v2=2

In the small neighbourhood of origin the following inequalities are satisfied:

s1ðjv1j þ v22=2Þ4E4s2ðjv1j þ v22=2Þ for some 05s15s2

zThis function is a generalization of the Lyapunov functions considered in [24, 25].
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Computing the derivative of the function E; we have:

dE

dt
¼ cv2 signðv1Þ � eðtÞv2 � v1

deðtÞ
dt
� av1v2 � bv22 þ eðtÞv2

� cv2 signðv1Þ þ bv22=2� bav21=2� b2v1v2=2þ bv1eðtÞ=2� bcjv1j=2

¼ � jv1j cb=2þ
deðtÞ
dt

signðv1Þ � beðtÞ signðv1Þ=2þ a signðv1Þv2 þ b2v2 signðv1Þ=2
� �

� bav21=2� bv22=2

The function dE=dt is locally negative definite under condition cþ ð2=bÞ deðtÞ=dt� eðtÞ > 0 and
moreover in some small neighbourhood of the origin we will have

s3ðjv1j þ v22=2Þ4�
dE

dt
4s4ðjv1j þ v22=2Þ

and for some 05s55s6 we will have s5E4� dE=dt4s6E; concluding the proof of the
theorem. &

4. OBSERVER DESIGN

We propose an observer for system (2)–(3) as

’#x1

’#x2

" #
¼

#x2

f ð #xÞ þ gðx1Þ þM�1ð�Þt

" #
þHðy� #yÞ ð16Þ

#y ¼ #x1 ð17Þ

where the vector Hðy� #yÞ has the form

Hðy� #yÞ ¼
C1ðy� #yÞ

C2ðy� #yÞ þ C3 signðy� #yÞ

" #
ð18Þ

where C1; C2 and C3 are definite positive diagonal matrices. Note that C3 ¼ 0 gives a design of a
classical Luenberger observer for nonlinear systems.

Define the error variables e1 ¼ x1 � #x1; e2 ¼ x2 � #x2; hence the error dynamics is described by

’e1

’e2

" #
¼

e2 � C1e1

f ðxÞ � f ðx� eÞ þ xð�Þ � C2e1 � C3 signðe1Þ

" #
ð19Þ

Because function f ð�Þ is Lipschitz, then

jjf ðxÞ � f ðx� eÞjj4r1jjejj

where r1 is a finite positive constant. We consider that

jjCð�Þjj ¼ jjf ðxÞ � f ð #xÞ þ xð�Þjj4r0 þ r1jjejj 8e; t ð20Þ
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Proposition 3
For system (19) it is possible to find a set of matrices C1; C2 and C3 such that the origin of the
error space will be a global exponentially stable equilibrium point. Then the system defined by
(16) and (17) is an observer for the system defined by (2) and (3).

Proof
We make a change of variables v1 ¼ e1 and v2 ¼ e2 � C1e1: The dynamics of system (19) in the
new state space is given by

’v1 ¼ v2

’v2 ¼ � C2v1 � C1v2 þCð�Þ � C3 signðv1Þ
ð21Þ

This system can be seen as a set of two-dimensional subsystems, with the states v1;i; v2;i;
i ¼ 1; . . . ; n; with the same form given by (4). Therefore, if r151=ð2lmaxðPÞÞ; where P is a
2� 2 matrix that is the solution of the Lyapunov equation for the nominal system of (21) then
we can apply Theorem 1 to find the conditions on C1; C2 and C3 such that the origin of system
(21) is an exponential stable equilibrium point. &

We can see that the proof is straightforward by taking the result presented in the last section.
The matrix inputs c3;i must satisfy Equation (8) 8 i ¼ 1; . . . ; n:

5. PERTURBATIONS AND PARAMETERS IDENTIFICATION

System (21) has a discontinuity surface in v1 ¼ 0 and the term C3 signðv1Þ produces a second-
order sliding mode, i.e. the discontinuous output injection appears until the second time
derivative of the function defining the discontinuity surface

.v1 ¼ f ðxÞ � f ð #xÞ þ xð�Þ � C2v1 � C1v2 � ueq ¼ 0

Then, the equivalent output injection is present at v1 ¼ v2 ¼ 0; which implies that e1 ¼ e2 ¼ 0
and x ¼ #x; therefore, the equivalent output injection ueq is given by

ueq ¼ xð�Þ

¼ �M�1ð�Þðjð.q; ’q; qÞyþ gðtÞÞ

We define

Sð�Þ � �Mð�Þueq ¼ jð.q; ’q; qÞyþ gðtÞ

We can see that, the equivalent output injection gives the disturbance terms and, as we know, it
is the average of the term C3 signðv1Þ when the trajectories stay at the origin. In this case, the
convergence to the discontinuity surface is asymptotic; therefore, we can approximate the
perturbation term in asymptotic form as

lim
t!1

C3 signðz1ðtÞÞ ¼ ueq

where the upper bar denotes the average. A way to estimate this average is by filtering the
discontinuous term. A possible implementation is given in Figure 3. If the term xð�Þ does not
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depend on the parameters, i.e.

xð�Þ ¼ gðtÞ

then the disturbance gðtÞ can be estimated directly from the equivalent output injection, that is,

gðtÞ ¼ �Mð�Þueq ¼ �Mð�Þ lim
t!1

C3 signðyðtÞ � #yðtÞÞ

Another case considers that the term Sð�Þ depends only on parameters, i.e.

Sð�Þ ¼ jðq; ’q; .qÞy

where jðq; ’q; .qÞ is a n�m matrix and y is a m� 1 vector. We can estimate the vector y from the
equivalent output injection using the least-square method (see, for example, [26]). We want to
find the vector y that minimizes

J ¼
1

t

Z t

0

ðveq �Cðq; ’q; .qÞyÞTðveq �Cðq; ’q; .qÞyÞ dt

where veq is a n� 1 vector. The optimal solution is given by

y ¼
Z t

0

CTð�ÞCð�Þ dt
� ��1 Z t

0

CTð�Þveq dt ð22Þ

where the matrix Z t

0

CTðq; ’q; .qÞCðq; ’q; .qÞ dt

must be non-singular. Define a new variable

Gt ¼
Z t

0

CTðq; ’q; .qÞCðq; ’q; .qÞ dt
� ��1

ð23Þ

Figure 3. Block diagram to obtain the equivalent output injection.
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Using the following identities:

G�1t Gt ¼ I

G�1t
’Gt þ ’G�1t Gt ¼ 0

we have

’Gt ¼ �GtCTð�ÞCð�ÞGt ð24Þ

A parameter identification algorithm based on the equivalent output injection is given, taking
into account (22)–(24), by

’y ¼ GtCTð�Þðveq �Cð�ÞyÞ ð25Þ

Taking into account that the matrix GtCTð�ÞCð�Þ is Hurwitz, we can conclude that Equations (24)
and (25) provide the actual values of parameters.

6. A SIMPLE PENDULUM EXAMPLE

Consider a simple pendulum} given by the model

’x1 ¼x2

’x2 ¼ � ax2 � b sinðx1Þ þ ctþ gðtÞ

y ¼x1 ð26Þ

where a ¼ 2:9996�2; b ¼ 67:912; c ¼ 55:549 and gðtÞ is a perturbation term that satisfies the
following bound:

jgðtÞj4r

where r is a constant. In this case we suppose that r ¼ 1:Now, the state observer for system (26)
is proposed to be

’bx1 ¼ bx2 þ h1

’bx2 ¼ � abx2 � b sinðx1Þ þ ctþ h2

#y ¼ #x1

where h1 and h2 are given by

h1 ¼ c1e1

h2 ¼ c2e1 þ c3 signðe1Þ

and the error dynamics between the plant and the observer is

’e1 ¼ � c1e1 þ e2½t

’e2 ¼ � c2e1 � ae2 þ gðtÞ � c3 signðe1Þ

}These values were taken from an approximated model of a pendulum manufactured by Mechatronics Systems Inc.
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The change of variables y1 ¼ e1; y2 ¼ �c1e1 þ e2; leads to

’y1 ¼ y2

’y2 ¼ � ðc2 þ ac1Þy1 � ðc1 þ aÞy2 þ gðtÞ � c3 signðy1Þ

We chose c1 ¼ 2; c2 ¼ 10; and c3 ¼ 10: The following figures show some numerical results for
system (26) for gðtÞ ¼ 0:5 sinð10tÞ and a sine signal as input torque. Figure 4 shows the behaviour
of the plant (continuous graphs) and the observer (dashed graphs) with c3 ¼ 0; that is, for the
classical Luenberger observer. As we can see, the angle and velocity error are large. When
c3 ¼ 10 (Figure 5), the errors go near to zero after a transient. There are small errors due to the
discontinuous nature of the observer, Figure 6 shows these errors. We identified two kinds of
perturbations: a sine and a square waves (see Figures 7 and 8). We note a good approximation
of these perturbations. Finally, we introduced a parameter variation Da ¼ �10 in the parameter a:
Figure 9 shows a good identification of this uncertainty Da:

Experimental results. The observer was applied to the mechanical pendulum as shown in
Figure 10. The experimental results are shown in the following figures. For c3 ¼ 0 (classical
Luenberger observer) the error between the real and the observed angles is, similar to the
numerical case, very large, see Figure 11. In this and the following figures the vertical line
indicates the time where the input torque t was applied to the pendulum.

Figure 12 shows the experimental results for the proposed discontinuous observer, with a gain
c3 ¼ 10: As we can see, after a transient due to the initial condition, the error is almost zero; it
remains in the band of �2� 10�3 rad; see Figure 13. Note that the magnitude of this error is
similar to the numerical simulations. We also applied the estimation procedure to this system. It
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Figure 4. Numerical results. Behaviour of the plant and the observer for c3 ¼ 0
(classical Luenberger observer).
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Figure 5. Numerical results. Behaviour of the plant and the observer for c3 ¼ 10 (proposed observer).
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Figure 6. Numerical results. Behaviour of the error between the plant and the observer state for c3 ¼ 10:
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Figure 7. Sinusoidal perturbation signal and perturbation estimation.
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Figure 8. Square perturbation signal and perturbation estimation.
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Figure 10. Simple pendulum.
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is important to note that the real system has parametric uncertainties and non-modelled
dynamics as the Coulomb friction which produce an intrinsic perturbation term. We identified
this term first, see Figure 14. This term will be added to the perturbations applied artificially in
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Figure 11. Experimental results. Behaviour of the plant and the observer for c3 ¼ 0 (classical observer).

0 2 4 6 8 10 12 14 16 18 20
–2

–1

0

1

2

–x
1,

  –
 –

 x
1o

Time (sec)

0 2 4 6 8 10 12 14 16 18 20
–4

–3

–2

–1

0

1

2

3

– 
– 

x2
o

Time (sec)

Figure 12. Experimental results. Behaviour of the plant and the observer for c3 ¼ 10 (proposed observer).
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Figure 13. Experimental results. Behaviour of the error between the plant and the observer
state for c3 ¼ 10 (proposed observer).
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Figure 14. Intrinsic perturbation in the mechanical system.
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the following experiments. In a second experiment we applied an external perturbation gðtÞ with
sine signal form, Figure 15 shows this perturbation (light line) and the identified perturbation
(black line), which is the sine signal plus the intrinsic perturbation. In a final experiment we
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Figure 15. Identification of a sine perturbation plus the intrinsic disturbance.
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Figure 16. Identification of a square perturbation plus the intrinsic disturbance.
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applied perturbation gðtÞ with a square signal form. Figure 16 shows the results, where we can
see that the identified perturbation is the square signal plus the intrinsic perturbation.

7. CONCLUSION

The main contribution of this work is the design of a globally asymptotically stable second-
order sliding-mode observer for a class of Lagrangian systems. The observer displays good
characteristics of robustness to bounded parametric variation and external perturbations. For
the case of plants with perturbations this observer has better performance than the observer
proposed in [4] because we can guarantee convergence to zero error.

Due to its discontinuous nature, the observer state vector displays chattering; however, in the
experimental results chattering was not an important problem, as we can see in Figure 13, where
the chattering has very small amplitude.

This observer ensures exponential rate of convergence to the state of the plant in spite of the
existence of non-vanishing bounded perturbations with bounded derivative. The performance of
the observer has been tested experimentally and results match with the theory.
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