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SUMMARY

A robust hierarchical observer is designed for linear time invariant systems with unknown bounded inputs
under conditions of strong observability, providing exact state estimation. The main condition for
designing the state estimator is the, so-called, strong observability condition. The supertwisting (second-
order sliding mode) algorithm is used in each step of the hierarchy; the continuity of the supertwisting
output injection allows to reconstruct a vector formed by some full column rank matrix premultiplied by
the state vector, and that vector is obtained in a finite time and without any sort of filtration. For the case
when the unknown inputs are considered as constant uncertain parameters, the continuous version of the
least-square method is developed. Two numerical examples illustrate the efficiency of the suggested
technique. Copyright # 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

1.1. Antecedents and motivation

The problem of state observation for systems with unknown inputs has been one of the most
important in modern control theory during the last two decades [1, 2]. Usually, the design of
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observers for systems with unknown inputs requires the system to have relative degree one with
respect to the unknown inputs; this restriction allows the decomposition of the state vector into
two parts, the first part is not affected directly by the unknown inputs and needs to be
observable, and the second part of the vector is completely known. The specific feature of a
majority of the suggested observers is that they are asymptotically efficient when any
uncertainties in the dynamic model description are absent, that is, they provide an exponential
convergence of the estimates to the corresponding state dynamics only asymptotically, or, in other
words, in infinite time (see [3], for example). Some observers, in the presence of any bounded
unknown inputs, guarantee the error convergence to a zone proportional to the bound of these
unknown inputs (see, e.g. [4]).

The paper [5] deals with an approach concerning a finite time exact state estimate in the
absence of uncertainties, and that approach requires the simultaneous consideration of two
asymptotic observers where the second one contains a delay in its dynamics.

On the other hand, the problem of state observation has been actively developed within
Variable Structure Theory using the Sliding Mode approach. Sliding mode observers are widely
used due to their attractive features: robustness with respect to some class of uncertainties and
possibilities of current identification (estimation) of the uncertainties based on the equivalent
output injection (see, for example, the corresponding chapters in the textbooks [6, 7] and the
recent tutorials [8–10]). To ensure the finite convergence, one idea that has been suggested is to
transform the system into a triangular form and use a step-by-step sliding mode observer based
on first-order sliding modes, allowing the successive reconstruction of each component of the
transformed state vector via the equivalent values (see, e.g. [11–14]). The methodology
previously mentioned ensures finite time convergence theoretically since its realization requires a
filtration of the equivalent control at each step.

In the last two decades the second-order sliding mode algorithms have been designed (see
[15–19] and references therein). One of such algorithm is the supertwisting algorithm [20] keeping
the advantages of sliding mode controllers. A robust exact differentiator, based on supertwisting
algorithm, was designed in [21]. Such differentiator ensures a finite time convergence to the
values of the corresponding derivatives and provides the best possible accuracy of
the derivatives for the given value even considering deterministic noise, sampling step and in
the case of discrete measurements. That is why the application of the supertwisting algorithm
for observation and identification seems to be a reasonable choice.

1.2. Main contributions

1. A state hierarchical observer for linear time invariant systems with unknown bounded
inputs under conditions of strong observability is proposed, providing the exact
reconstruction of the state components.

2. We suggest to design, at each level of the hierarchy, sliding surfaces using the algorithm
given in [22]. The continuity of the supertwisting algorithm [20] allows the recovery of an
invertible matrix premultiplied by the state vector, so after finite time the exact value of the
state vector is recovered without any filtration. Moreover, the system does not need to be
transformed to any canonical or triangular form.

3. For the case when parameter uncertainty could be considered as unknown inputs which do
not create invariant zeros in the system, the design of the hierarchical observer allows also
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the estimation of the parametric uncertainties. No filters are needed in the parameter
estimation process.

1.3. Structure of the paper

In Section 2 the observation process in the presence of unknown inputs, affecting the state and
appearing explicitly in the output, is described; in Section 2.1 the model description and the
problem formulation are presented. Section 3 deals with the case when the relative degree of the
system is one and there exist parametric uncertainties; in this case we can also identify (estimate)
the parametric uncertainties, which is carried out in Section 3.4. Section 4 deals with two
numerical examples showing the effectiveness of the proposed method.

1.4. Main notation

Throughout this paper the following notations are used. By F 2 Rr�q we will denote any matrix
of the corresponding size, its pseudoinverse is denoted by Fþ: Specifically, if rank F ¼ r; then
Fþ ¼ F>ðFF>Þ�1 and if rank F ¼ q; then Fþ ¼ ðF>FÞ�1F>: In the case when rank F ¼ p; we
denote the matrix F? 2 Rr�p�r as a matrix that is orthogonal to F ; i.e. F?F ¼ 0 and rank F? ¼
r� p: It should be noted that the matrix F? is not unique. We also denote F?? 2 Rp�r as a
matrix such that

det
F??

F?

 !
=0

2. EXACT STATE ESTIMATION

2.1. Plant’s model and problem formulation

Let us consider a multi-state linear system given by the following ordinary differential equation
(ODE):

’xðtÞ ¼ AxðtÞ þ BuðtÞ þDwðx; tÞ; xð0Þ ¼ x0 ð1aÞ

yðtÞ ¼ CxðtÞ þ Fwðx; tÞ; t50 ð1bÞ

where xðtÞ 2 Rn is the state vector, uðtÞ 2 Rm is a control, yðtÞ 2 Rp (14p5n) is the output of the
system, wðx; tÞ 2 Rq is an unknown bounded input, that is, jjwðx; tÞjj4wþ51: The matrices
A 2 Rn�n; B 2 Rn�m; C 2 Rp�n; D 2 Rn�q; and F 2 Rp�q are known constant. The pair fuðtÞ; yðtÞg
is assumed to be measurable (available) at any time t50: The current states xðtÞ as well as the
initial state x0 are not available.

Problem formulation: Estimate the state vector xðtÞ for all t5e > 0; based on the available
information fuðtÞ; yðtÞgt2½0;t�:

Note that if for all t5e > 0 the suggested estimate #xðtÞ exactly coincides with xðtÞ; then we deal
with an exact (non-asymptotic) state estimation process.

Before designing a state estimator, we recall some definitions and properties which justify the
procedure that we will suggest to design the state estimator. Since uðtÞ is known and its effect can
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be compensated for any observer, without loss of generality, one can assume that uðtÞ ¼ 0 for all
t50: That is, consider the following state equations:

’xðtÞ ¼ AxðtÞ þDwðx; tÞ; xð0Þ ¼ x0 ð2aÞ

yðtÞ ¼ CxðtÞ þ Fwðx; tÞ; t50 ð2bÞ

We recall some definitions corresponding to properties of (2) (see [1, 22–24]).

Definition 1
V is a null-output ðA;DÞ invariant subspace if for every x 2V there exist some w such that
ðAxþDwÞ 2V and ðCxþ FwÞ ¼ 0: Vn is the maximal null-output ðA;DÞ invariant subspace,
i.e. V �Vn for each subspace V:

Subspace Vn is called the weakly unobservable subspace of (2).

Definition 2
We say that system (2) has invariant zeros if

s 2 C : rank PðsÞ5nþ rank
D

F

 !( )
=| where PðsÞ ¼

sI � A �D

C F

" #
ð3Þ

PðsÞ is known as the Rosenbrock matrix for system (2).

Definition 3
System (2) is called strongly observable if, and only if for any initial condition x0 and for any
unknown input wðtÞ; the condition yðtÞ ¼ 0 for all t50 implies that xðtÞ ¼ 0 for all t50:

The following statements are equivalent (see, e.g. [1, 22–24])

(i) System (2) is strongly observable.
(ii) System (2) has no invariant zeros.
(iii) Vn ¼ 0:

It means that if system (2) has invariant zeros, then there exists an initial condition x0 ¼ x and
an unknown input wðtÞ such that yðtÞ ¼ 0 for all t50 and xðtÞ being not equal to zero for all
t50: So, in that case it would be impossible to make an estimation, independently of wðtÞ; of the
state xðtÞ:

Therefore, throughout the paper it will be assumed that

A1. System (2) has no invariant zeros.

We will suggest an state estimator that has a hierarchical design and uses the supertwisting
algorithm for its construction. We use the supertwisting as a substitute for a differentiator, so we
will try to construct a vector formed by an analogous of the observability matrix multiplied by
the state vector, all taking into account the presence of the unknown inputs. For such a goal we
will use the following algorithm [22]. This design allows the reconstruction of the state vector
independently of the unknown inputs.
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Algorithm 1 (Molinari [22])
Step 0: Set k ¼ 0; and set M0 ¼ 0
Step k: Evaluate

Gk ¼
MkD MkA

F C

" #
ð4Þ

and let Tk any non-singular matrix reducing Gk to

TkGk ¼
Jkþ1 Lkþ1

0 Mkþ1

" #
ð5Þ

where Jkþ1 has full row rank. Jkþ1 has q columns and Mkþ1 has n columns.
Step kþ 1: Set k ¼ kþ 1 and go to Step k.
The matrix Mkþ1 could be reduced to the form

Mkþ1

0

" #

In [22] was proven that

Vn ¼ kerMn ð6Þ

By assumption A1 and the equivalences (ii) and (iii), it follows thatVn ¼ 0:Hence, (6) implies
rankMn ¼ n; that is, Mn has full column rank.

Let l be the least positive integer such that rankMl ¼ n: This means that Vn ¼ kerMl ¼ 0:
Thus, we may select Tk as

Tk :¼
Tk;a

Tk;b

" #
where Tk;a ¼

MkD

F

 !??
and Tk;b ¼

MkD

F

 !?
for k ¼ 0; 1; . . . ; l � 1 ð7Þ

Thus, Tk selected as in (7) satisfies (5) and Mkþ1 takes the form

M1 ¼ F?C; Mkþ1 ¼
MkD

F

 !?
MkA

C

 !
¼ Tk;b

MkA

C

 !
for k ¼ 1; . . . ; l � 1 ð8Þ

Below we will show that we can recover each vector Mkþ1xðtÞ until we obtain MlxðtÞ and,
consequently, by the pseudoinversion of Ml ; we can recover xðtÞ:

2.2. Auxiliary dynamic systems

The use of the supertwisting algorithm requires the knowledge of some bounds. Let us show that
the consideration of the following dynamic system (linear observer) ensures the knowledge of
these bounds. First, design the following dynamic system:

’*xðtÞ ¼ A *xðtÞ þ BuðtÞ þ KðyðtÞ � C *xðtÞÞ ð9Þ

where K must be designed such that

A2. The eigenvalues of *A :¼ ðA� KCÞ have negative real part.
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Letting *eðtÞ ¼ xðtÞ � *xðtÞ; from (1) and (9), the dynamic equations governing *eðtÞ can be
represented as

’*eðtÞ ¼ ½A� KC�*eðtÞ þ ½Dþ KF �wðtÞ ¼ *A*eðtÞ þ ½Dþ KF �wðx; tÞ

Since jjwðx; tÞjj4wþ; it is well known that *eðtÞ is of bounded norm, i.e. there exist some constants
g; Z; m > 0 such that

jj*eðtÞjj4g expð�mtÞjj*eð0Þjj þ Zwþ ð10Þ

Thus, the inequality in (10) yields the following statement:

*eþ > Zwþ implies jj*eðtÞjj5*eþ for all t > �
1

m
ln
*eþ � Zwþ

gjj*eð0Þjj
ð11Þ

This means that if *eþ > Zwþ; in finite time, *eðtÞ will be bounded by *eþ: Below we will need a
bound for jj*eðtÞjj; and (11) ensures that we can always satisfy such a requirement.

In (8) we can see that before recovering Mkþ1xðtÞ; one needs to recover MkxðtÞ for k ¼
1; . . . ; l � 1; therefore, this subsection is devoted to the recovery of the vectors MkxðtÞ
(k ¼ 1; . . . ; l). The first vector M1xðtÞ is already available, since M1xðtÞ ¼ F?CxðtÞ ¼ F?yðtÞ:

Now, to recover the vector M2xðtÞ an auxiliary vector is designed in the following form:

’xa ¼ A *xþ Bu ð12Þ

We design an output injection vð1Þ using the ‘supertwisting’ algorithm (see [20]) and its
components are defined as follows:

v
ð1Þ
i ¼ z

ð1Þ
i þ l1js

ð1Þ
i j

1=2 signðs
ð1Þ
i Þ; ’z

ð1Þ
i ¼ a1 signðs

ð1Þ
i Þ ð13Þ

All the solutions of the dynamic systems are defined in Filippov’s sense [25]. Since M1x ¼ F?y;
the variable sð1Þ is given by the formula:

sð1ÞðyðtÞ;xaðtÞÞ ¼ T1;b

F?yðtÞR t
t¼0 yðtÞ dt

 !
�

F?CxaðtÞ

C
R t
t¼0 *xðtÞ dt

 !" #
�

Z t

t¼0
vð1ÞðtÞ dt ð14Þ

The dimension of the vector vð1Þ is the same as the dimension of sð1Þ and it is equal to the
number of rows of T1;b that depends on the specific values that the matrices of the system take.
Thus, in view of (1), (12), (7), and (8), the time derivative of sð1Þ is

’sð1ÞðtÞ ¼ T1;b

F?CA

C

 !
½xðtÞ � *xðtÞ� � vðtÞ ¼M2½xðtÞ � *xðtÞ� � vðtÞ ð15Þ

Now, choose the scalar gains l1; a1 so that the following conditions are fulfilled:

a1 > b15jjM2jjðjj *Ajj*e
þ þ jjDþ KF jjwþÞ

l1 >
ða1 þ b1Þð1þ yÞ
ð1� yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

a1 � b1

s
; 05y51 ð16Þ
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where *eþ satisfies (11). In view of (11), one can always satisfy (16) in finite time. It was shown in
[20] that if the bounds in (16) are fulfilled, then there exists a finite time t1 such that the following
equalities

sð1ÞðtÞ ¼ ’sð1ÞðtÞ ¼ 0; t5t1 ð17Þ

hold, where t1 is the reaching time. From (13), it is clear that if sð1Þ ¼ 0; then vð1Þ � zð1Þ; so the
vector M2xðtÞ can be recovered from (15) in the following manner:

M2xðtÞ ¼M2 *xðtÞ þ zð1ÞðtÞ for t5t1 ð18Þ

Recursively, we can follow the same procedure to obtain M3xðtÞ; M4xðtÞ; and so on. Below we
give the general design of the auxiliary system and the sliding surfaces with their corresponding
output injection.

(a) Design the dynamics of the auxiliary system in the form:

’xaðtÞ ¼ A *xðtÞ þ Bu ð19Þ

The output injection vðkÞ at the kth level is designed as a ‘super-twisting’ controller (see [20]):

v
ðkÞ
i ¼ z

ðkÞ
i þ lkjs

ðkÞ
i j

1=2 signðs
ðkÞ
i Þ; ’z

ðkÞ
i ¼ ak signðs

ðkÞ
i Þ ð20Þ

where lk and ak are constants satisfying

ak > bk5jjMkþ1jjðjj *Ajj*e
þ þ jjDþ KF jjwþÞ

lk >
ðak þ bkÞð1þ yÞ
ð1� yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ak � bk

r
; 05y51

9>=
>;14k5l � 1

al�1 > bl�15jj *Ajj*e
þ þ jjDþ KF jjwþ

ll�1 >
ðal�1 þ bl�1Þð1þ yÞ

ð1� yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

al�1 � bl�1

r
; 05y51

9>=
>;; k ¼ l � 1 ð21Þ

where *eþ should satisfy (11).
(b) Since M1xðtÞ ¼ F?yðtÞ and Mþl Ml ¼ I (Mþl defined as in 1.4) the variables sðkÞ and zðkÞ are

related as

sðkÞðzðk�1Þ; xaÞ

¼

T1;b

F?yðtÞR t
t¼0 yðtÞ dt

 !
�

M1xaðtÞR t
t¼0 C *xðtÞ dt

 !" #
�
R t
t¼0 v

ð1ÞðtÞ dt; k ¼ 1

Tk;b

Mk *xþ zðk�1ÞR t
t¼0 yðtÞ dt

 !
�

MkxaR t
t¼0 C *xðtÞ dt

 !" #
�
R t
t¼0 v

ðkÞðtÞ dt; 15k5l � 1

Mþl Tl�1;b

Ml�1 *xþ zðl�2ÞR t
t¼0 yðtÞ dt

 !
�

Ml�1xaR t
t¼0 C *xðtÞ dt

 !" #
�
R t
t¼0 v

ðl�1ÞðtÞ dt; k ¼ l � 1

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð22Þ

The following lemma establishes how the vectors MkxðtÞ can be recovered by the second-order
sliding motions (sðkÞ ¼ ’sðkÞ ¼ 0).
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Lemma 1
Under the assumptions A1–A2, if the auxiliary state vector xðkÞa and the variable sðkÞ; for all
k ¼ 1; . . . ; l � 1; are designed as in (19)–(22), then, from some finite time tk; one has

Mkþ1xðtÞ ¼Mkþ1 *xðtÞ þ zðkÞðtÞ for k ¼ 1; . . . ; l � 2 ð23aÞ

xðtÞ ¼ *xðtÞ þ zðl�1ÞðtÞ ð23bÞ

Proof
Let us prove Lemma 1 using induction. For k ¼ 1; as it was shown above, there exist a finite
time t1 such that M2xðtÞ is recovered by the equation

M2xðtÞ ¼M2 *xðtÞ þ zð1ÞðtÞ; t5t1

Now, suppose that there exist a finite time tj�1 such that (23) is true for some intermediate
k ¼ j � 1: Thus, according to (22), sðjÞ is in the form

sðjÞðzðj�1ÞðtÞ;xaðtÞÞ ¼ Tj;b

Mj *xðtÞ þ zðj�1ÞðtÞR t
t¼0 yðtÞ dt

 !
�

MjxaðtÞR t
t¼0 C *xðtÞ dt

 !" #
�

Z t

t¼0
vðjÞðtÞ dt ð24Þ

Substitution of zðj�1ÞðtÞ; from (23), into (24) yields

sðjÞðtÞ ¼ Tj;b

Mj½xðtÞ � xaðtÞ�R t
t¼0 ½yðtÞ � C *xðtÞ� dt

 !
�

Z t

t¼0
vðjÞðtÞ dt

for t5tj�1: Thus, from (1), (19), and (8), the derivative of sðjÞ is obtained by the equation

’sðjÞðtÞ ¼Mjþ1½xðtÞ � *xðtÞ� � vðjÞðtÞ ð25Þ

Again, as it was shown in [20], if condition (21) is satisfied, then a second-order sliding mode is
obtained, i.e.

sðjÞðtÞ ¼ ’sðjÞðtÞ ¼ 0; t5tj ð26Þ

where tj is the reaching time. Thus, from the structure of vðjÞ; sðjÞ ¼ 0 implies vðjÞ � zðjÞ: Then in
view of (26), the equality (23) for k ¼ j is deduced from (25). Therefore (23) is true for k ¼
1; . . . ; l � 2:

In particular, (23) is true for k ¼ l � 2; therefore, since Mþl Ml ¼ I ; if sðlÞ and vðlÞ are designed
as in (20)–(22) one has

’sðl�1ÞðtÞ ¼Mþl Ml½xðtÞ � *xðtÞ� � vðjÞðtÞ

and, according with [20], by the condition (21) we have

sðl�1ÞðtÞ ¼ ’sðl�1ÞðtÞ ¼ 0; t5tl�1

and so xðtÞ ¼ *xðtÞ þ zðl�1ÞðtÞ: &
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2.3. Design of the state estimator

From (23) we have

xðtÞ ¼ *xðtÞ þ zðl�1ÞðtÞ ð27Þ

So, the state estimator is defined as

#xðtÞ ¼ *xðtÞ þ zðl�1ÞðtÞ ð28Þ

Now, we can resume the previous result in the following theorem.

Theorem 1
Under assumptions A1–A2,

#xðtÞ ¼ xðtÞ for all t5tl�1 ð29Þ

Proof
It follows immediately from (27) and (28). &

We conclude this section with the algorithm for the state estimator given in (28).

Algorithm 2 (Design of the state estimator)
Step A: Find the matrices Mk according the (8) with Tk;b as in (7). Determine the value of the

least positive integer l so that rankMl ¼ n:
Step B: Design *x according to (9) with the gain K satisfying A2 and design the auxiliary

system xa as in (19).
Step C: Design l � 1 sliding surface sðkÞ according to (22) and design the output injections vðkÞ

following (20), each one fulfilling (21).
Step D: Design the state estimator using (28).

3. A PARTICULAR CASE: THE SYSTEM WITH PARAMETRIC UNCERTAINTIES

In this section we will assume that the unknown inputs represent some parameter uncertainties,
that is, wðx; tÞ ¼ DAðtÞGxðtÞ where DAðtÞ 2 Rq�r; 14r4n and jjDAðtÞjj41; represents
parametric uncertainty (maybe, time varying). G 2 Rr�n is a known constant matrix. As before,
it is assumed that jjwðx; tÞjj4wþ: Here is assumed that there is no direct influence of the
unknown inputs to the output, i.e. F ¼ 0: Hence, system (1) takes the form

’xðtÞ ¼ ½AþDDAðtÞG�xðtÞ þ BuðtÞ; xð0Þ ¼ x0 ð30aÞ

yðtÞ ¼ CxðtÞ; t50 ð30bÞ

Additional assumptions are imposed to the system (30)

A3. Rank of C is p and rank of D is q5p; that is, the number of unknown inputs is less than
the number of measurable outputs:

rankD ¼ q5rankC ¼ p

A4. RankðCDÞ ¼ q:
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3.1. Decomposition of the system

Define an n� n non-singular matrix P by

P :¼
D?

ðCDÞþC

" #
; P�1 ¼ ½ðI �DðCDÞþCÞD?þ D� ð31Þ

where D? 2 Rn�q�n; ðCDÞþ 2 Rq�p; and D?þ 2 Rn�n�q (see Section 1.4). And consider r ¼
½rT1 rT2 �

T :¼ Px; r1 2 Rn�q: Thus, in the new variables, the following motion equations are
obtained:

’r1ðtÞ

’r2ðtÞ

" #
¼

A11 A12

A21 A22

" #
r1ðtÞ

r2ðtÞ

" #
þ

B1

B2

" #
uþ

0

wðx; tÞ

" #
ð32aÞ

y ¼ ½½I � CDðCDÞþ�CD?þ CD�
r1ðtÞ

r2ðtÞ

" #
; wðx; tÞ ¼ DAðtÞGxðtÞ ð32bÞ

where A11 2 Rn�q�n�q; B1 2 Rn�q�m; and the remaining partitions have suitable dimension.
Now, define

%y1

%y2

" #
:¼
ðCDÞ?

ðCDÞþ

" #
y ¼

ðCDÞ?CD?þ 0

0 I

" #
r1

r2

" #
; %y1 2 Rp�q

that is

%y1 ¼ ðCDÞ
?y ¼ %Cr1 where %C :¼ ðCDÞ?CD?þ ð33aÞ

%y2 ¼ ðCDÞ
þyðtÞ ¼ r2ðtÞ ð33bÞ

Then, from (33), we can see that r2 is measurable. Therefore, only the estimation of r1 is required
to complete the state estimation; further, the dynamic equations of r1 does not include any
unknown inputs.

Thus, in view of (32) and (33), the dynamics equations for r1 are as follows:

’r1ðtÞ ¼ A11r1ðtÞ þ A12r2ðtÞ þ B1uðtÞ

%y1ðtÞ ¼ %Cr1ðtÞ ð34Þ

This means that to achieve an exact estimation of the state vector r1; the pair ðA11; %CÞ should be
observable. The following lemma states the conditions of the observability of the pair ðA11; %CÞ in
terms of A; D; and C:

Lemma 2
The pair ðA11; %CÞ is observable if and only if (2) has no invariant zeros.

The proof is given in Appendix.
Hence, the assumption A1 yields that ðA11; %CÞ is observable.
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3.2. Auxiliary dynamic systems and controls

From the previous definitions, we have that l is the least positive integer such that rankMl ¼

n� q: Following the procedure, used in 2, we have that Mk equal to

Mk ¼

%C

%CA11

..

.

%CAk�1
11

2
6666664

3
7777775

ð35Þ

Thus, we have that Ml is the observability matrix of (A11; %C ). So, we are able to estimate r1ðtÞ in
a finite time following the procedure suggested in the Section 2. But, in 2, due to the unknown
inputs, we need to use MkxðtÞ on-line to recover Mkþ1xðtÞ: Thus, instead of recoveringMkþ1r1ðtÞ
in each step, we suggest to recover only %CAk

11r1ðtÞ in each step, for k ¼ 1; . . . ; l � 1; and
reconstruct Mlr1ðtÞ with each one of the vectors %CAk

11r1ðtÞ:
The method we suggest to recover %CAk

11r1ðtÞ is very similar to that used in 2 to recoverMkxðtÞ:
The main difference is the design of sk: Therefore, we will not repeat all details of the procedure,
presenting below only the following algorithm.

Algorithm 3
Step A: Determine the value of the least positive integer l so that rankMl ¼ n; where Ml is

defined as in (35).
Step B: Design *r as

’*rðtÞ ¼ A11*rðtÞ þ A12r2ðtÞ þ B1uðtÞ þ Kð%y1ðtÞ � %C*rðtÞÞ

Step C: Design the auxiliary system ra as

’raðtÞ ¼ A11*rðtÞ þ A12r2ðtÞ þ B1uðtÞ

and the output injection vðkÞ 2 Rp�q is designed as

v
ðkÞ
i ¼ z

ðkÞ
i þ lkjs

ðkÞ
i j

1=2 signðs
ðkÞ
i Þ; ’z

ðkÞ
i ¼ ak signðs

ðkÞ
i Þ ð36Þ

where lk and ak are constants satisfying

ak > bk5ðjj %CAkþ1
11 jjÞr

þ

lk >
ðak þ bkÞð1þ yÞ
ð1� yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ak � bk

r
; 05y51

with the sliding surface sðkÞ 2 Rp�q as

sðkÞðzðk�1Þ; raÞ ¼
%y1ðtÞ � %CraðtÞ �

R t
t¼0 v

ð1ÞðtÞ dt for k ¼ 1

zðk�1ÞðtÞ þ %CAk�1
11 *rðtÞ � %CAk�1

11 raðtÞ �
R t
t¼0 v

ðkÞðtÞ dt for k > 1

(
ð37Þ

So, using Algorithm 3 and following the same procedure as in the proof of Lemma 1, we can
deduce that for a finite time tk the following identities hold:

sðkÞðtÞ ¼ ’sðkÞðtÞ ¼ 0 for ¼ 1; . . . ; l � 1; t5tk ð38Þ
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and so

%CAk
11r1ðtÞ ¼ %CAk

11*rðtÞ þ zðkÞ for k ¼ 1; . . . ; l � 1; t5tk ð39Þ

3.3. State estimation

Now, using (39), we can construct Mlr1 where Ml is defined as in (35):

Mlr1ðtÞ ¼Ml *rðtÞ þ z 8t5tl�1 ð40Þ

where

zT ¼ ½ð%y1 � %C*rÞT ðzð1ÞÞT . . . ðzðl�1ÞÞT�

The premultiplication of (40) by Mþl leads to the equation

r1ðtÞ � *rðtÞ þMþl zðtÞ 8t5tl�1 ð41Þ

Again , a state estimator for r1ðtÞ is proposed in the following form:

#r1ðtÞ ¼ *rðtÞ þMþl zðtÞ ð42Þ

From (41) and (42), it is clear that

#r1ðtÞ � r1ðtÞ 8t5tl�1 ð43Þ

and, as a consequence, it provides an exact state estimator for the original system (30) via the
following algebraic mapping:

#xðtÞ ¼ P�1
#r1ðtÞ

ðCDÞþyðtÞ

" #
; #xðtÞ � xðtÞ 8t5tl�1 ð44Þ

3.4. Parameters estimation

Let us construct a state estimator for the variable r2 in the following form:

’#r2ðtÞ ¼ A21#r1ðtÞ þ A22r2ðtÞ þ B2ðtÞuðtÞ þ %uðtÞ; #r2ð0Þ ¼ r2ð0Þ

Then, define the sliding surface to be designed as the difference between r2 and #r2; that is,
sðtÞ ¼ r2ðtÞ � #r2ðtÞ: So, in view of (32) and (43), we derive

’sðtÞ ¼ A21½r1ðtÞ � #r1ðtÞ� þ DAðtÞGxðtÞ � %uðtÞ ð45Þ

Designing %uðtÞ as a super twisting control

%uiðtÞ ¼ %ziðtÞ þ ljsiðtÞj1=2 signðsiðtÞÞ; %ziðtÞ ¼ a
Z t

t¼0
signðsiðtÞÞ dt

a > b > jjGjj jj ’xðtÞjj; l >
ðaþ bÞð1þ yÞ
ð1� yÞ

ffiffiffiffiffiffiffiffiffiffiffi
2

a� b

s
; 05y51

we obtain

sðtÞ ¼ ’sðtÞ ¼ 0 for all t50 ð46Þ
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Remark 1
Since wðx; tÞ ¼ DAðtÞGxðtÞ is supposed to be bounded wþ; the constant b can be estimated from
(30). Other alternative is to estimate jjGjj jj ’xðtÞjj on-line (due to (44)) and, based on such
estimation, chose b sufficiently large.

Recalling that #r1ðtÞ � r1ðtÞ for all t5tl�1; from (45) and(46), one gets

DAðtÞGxðtÞ ¼ %zðtÞ 8t5tl�1 ð47Þ

Since #x ¼ xðtÞ for all t5tl�1; the estimation of the uncertain matrix DAðtÞ may be carried out
by means of the identity in (47). Then any appropriate method, designed for parameter
estimation, may be applied (see, e.g. [26]). Supposing that DAðtÞ is a constant matrix
(DAðtÞ ¼ DA), a continuous form of the least square (LS) procedure (used, for instance, in [27])
may be easily applied to generate the on-line estimates ðDAðtÞGÞ of ðDAGÞ: Postmultiplying (47)
by xðtÞ and integrating one gets

ðDAGÞ
Z t

y¼tl�1
xðyÞx>ðyÞ dy

� �
¼

Z t

y¼tl�1
%zðyÞx>ðyÞ dy

or

DAG ¼
Z t

y¼tl�1
%zðyÞx>ðyÞ dy

� � Z t

y¼tl�1
xðyÞx>ðyÞ dy

� ��1
ð48Þ

Define G�1ðtÞ :¼
R t
y¼tl�1

xðyÞx>ðyÞ dy and suppose that detðGðtÞÞ=0 starting from some instant
t0: Then, the estimates DAðtÞG of DAG at time t can be defined as follows:

DAðtÞG ¼
Z t

y¼tl�1
%zðyÞx>ðyÞ dy

� �
GðtÞ; t5t0 ð49Þ

Thus, comparing (48) and (49), it is clear that

DAðtÞG ¼ DAG for all t > t0 ð50Þ

The form given in (49) for estimating DAG can be rewritten in a differential form. Indeed, taking
into account that ’GðtÞG�1ðtÞ þ GðtÞ ’G�1ðtÞ ¼ 0 one has

’GðtÞ ¼ �GðtÞxðtÞx>ðtÞGðtÞ; Gðt0Þ ¼
Z t0

y¼tl�1
xðyÞx>ðyÞ dy

� ��1
Thus, estimate (49) can be rewritten in a differential form as follows:

d

dt
ðDAðtÞGÞ ¼ ½%zðyÞ � ðDAðtÞGÞxðtÞ�x>ðtÞGðtÞ ð51Þ

Identity (50) is fulfilled under the supposition that in the estimation process is made without,
even small, disturbances, and there is no numerical errors. However, if this non-idealities appear
(as we know, they always appear), the parameters estimated can still converge to the original
ones. The sufficient conditions so that the identification error tends to zero are given in the
following lines.

In the case when non-idealities appear, we can write DAGxðtÞ � %zðtÞ þ e where e is the error
between DAGxðtÞ and %zðtÞ: Hence, using (48) and (51), the identification error can be expressed
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in the following manner:

jjDAG� DAðtÞGjj ¼
Z t

y¼tl�1
½DAðtÞGxðtÞ � %zðtÞ�x

>ðyÞ dy
� �

GðtÞ

����
����

����
����

¼

Z t

y¼tl�1
eðyÞx>ðyÞ dy

� �
GðtÞ

����
����

����
���� ¼ 1

t

Z t

y¼tl�1
eðyÞx>ðyÞ dy

� �
½tGðtÞ�

����
����

����
����

which tends to zero if

ð1Þ lim sup
t!1

jjtGðtÞjj51; ð2Þ
1

t

Z t

y¼tl�1
eðyÞx>ðyÞ dy !

t!1
0

The first condition is fulfilled if the, so-called, persistence excitation condition holds

lim inf
t!1

lmin
1

t

Z t

y¼tl�1
xðyÞx>ðyÞ dy

� �
> 0

since

lim sup
t!1

jjtGðtÞjj ¼ lim inf
t!1

lminðtGðtÞÞ
�1

h i�1
¼ lim inf

t!1
lmin

1

t

Z t

y¼tl�1
xðyÞx>ðyÞ dy

� �� ��1

The second condition is usually fulfilled when the error (noise) eðtÞ is ‘non-correlated’ with the
state of the system xðtÞ: Thus, by means of the time variable term DAðtÞG we can estimate the
constant matrix DAG:

4. EXAMPLES

Here we consider two different examples: the first one includes the general case of Section 2, the
second one deals with the case considered in Section 3.

Example 1
Consider system (1) with the following matrices

A ¼

�0:86 0:68 0:12 0:66 �1:03

0:23 �1:56 �2:58 1:23 �0:21

�1:2 1:83 �0:56 0:51 �1:83

�1:77 1:08 �1:2 �1:74 �1:87

�0:52 1:2 �1:48 1:06 �2:07

2
666666664

3
777777775
; B ¼

1

0:5

0:7

1:2

1:4

2
666666664

3
777777775
; D ¼

0 0

0 0

0 0

0:5 0

1 0

2
666666664

3
777777775

C ¼

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

2
664

3
775; F ¼

0 0:5

0 1

0 1:5

2
664

3
775; u ¼ 1:5 sinð2tÞ; w ¼

0:5 cosð2tÞ þ 0:43

0:2 sinðtÞ þ 0:23

" #
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Following Algorithm 1, we obtain that the matrices Mi (i ¼ 1; 2; 3) are

M1 ¼
0:96 �0:14 �0:22 0 0

0 �0:83 0:55 0 0

" #
; M2 ¼

�0:59 0:47 0:62 0:34 �0:55

1:15 �0:76 �0:70 0:19 0:22

0:31 �0:52 �1:41 0:39 0:44

0:47 �2:28 �1:11 0:59 0:67

2
666664

3
777775

M3 ¼

0:446 �1:727 �1:451 �0:357 0:698

�0:875 1:578 1:133 �1:871 �0:469

1:129 �0:302 �0:397 0:035 0:154

0:258 0:395 �0:794 0:071 0:308

0:388 �0:906 �0:191 0:107 0:462

2
666666664

3
777777775

and one can verify that detM3=0 so in this case l ¼ 3: So, we design *x as in (9) with the gain K
satisfying A2, xa was designed in the form given by (19). The variables sðkÞ; vðkÞ (k ¼ 1; 2) were
designed according to (22) and (20), respectively. We used a1 ¼ 10; l1 ¼ 15; a2 ¼ 10; and l2 ¼
20: Figures 1 and 2 show the trajectories of the state x and the state estimator #x ( #x is represented
by xe in the figures) where #x was designed according to (28).

0 0.5 1 1.5 2 2.5 3 3.5 4

0

2

4

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

0 0.5 1 1.5 2 2.5 3 3.5 4

−1

0

1

Time [s]

x3
xe3

x2
xe2

x1
xe1

Figure 1. Trajectories of the first three components of x and xe � #x for Example 1.
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Example 2
Consider system (30) with the parameters given by

A ¼

0 �4 5:5

1 �5 4:5

1 �1 �1

2
664

3
775; B ¼

1

1

1

2
664
3
775; D ¼

1

0

1

2
664
3
775; C ¼

1 2 1

2 1 1

" #

u ¼ 4 sinðtÞ; DA ¼ ½0:1 � 0:15 0:2�; G ¼ I

First, the non-singular matrix P takes the form

P ¼
D?

ðCDÞþC

" #
¼

0 1 0

�0:7071 0 0:7071

0:6154 0:5385 0:3846

2
664

3
775

So the matrices of the reduced equation (34) are

A11 ¼
�7:961 3:372

4:215 �4:384

" #
; A12 ¼

5:5

�3:889

" #
; B1 ¼

1

0

" #
; %C ¼ ½�1:109 � 0:392�

Thus, in this case we need to design only one sliding surface sð1Þ with the corresponding vð1Þ; both
are designed in the form (37) and (36), respectively, with the gains a1 ¼ 20 and l1 ¼ 30: Hence,
the state estimator is represented as (44)

#xðtÞ ¼ P�1
#r1ðtÞ

ðCDÞþyðtÞ

" #
¼

�0:538 �0:543 1

1 0 0

�0:538 0:870 1

2
664

3
775 #r1ðtÞ

ðCDÞþyðtÞ

" #

0 0.5 1 1.5 2 2.5 3 3.5 4

0

1

−1

−2

−1

−2

2

3

0 0.5 1 1.5 2 2.5 3 3.5 4

0

1

2

3

Time [s]

x
5
xe

5

x
4

xe
4

Figure 2. Trajectories of the last two components of x and xe � #x for Example 1.
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where #r1ðtÞ is designed according to (42). The trajectories of x and #x (named in the figure xe) are
depicted in Figure 3, and the observation error xðtÞ � #xðtÞ is depicted in Figure 4. The estimation
of DA was carried out according to (51). Let us denote DAðtÞ ¼ ½ae1ðtÞ ae2ðtÞ ae3ðtÞ�: The
estimation DAðtÞ is depicted in Figure 5. In the figure we can note that the convergence to the
parameters is not so fast compared with the convergence of the observation error. This is
because of the numerical and observation errors affect the parameter estimation algorithm;
however, the parameters estimated stay in a zone of the original parameters.

0 0.5 1 1.5 2 2.5 3 3.5 4

0

10

20

30

40

50

Time [s]

x
xe

−10

Figure 3. Trajectories of the vector state (x) and the estimator (xe) for Example 2.
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Figure 4. Estimation error xðtÞ � #xðtÞ for Example 2.
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5. CONCLUSIONS

We suggested a state estimator for linear time invariant systems in the presence of unknown
inputs, which provides the exact values of the state vector in finite time. The conditions for the
realization of the state estimator suggested are equivalent to the strong observability of the
system and the knowledge of an upper bound of the unknown inputs. The suggested state
estimator is presented in an algebraic (non-differential) form. The observation scheme is based
on the concept of the, so-called, hierarchical supertwisting observation strategy, allowing
reconstruction of the state vector via an algebraic equation. Specifically, the state vector appears
as the sum of a linear observer and an equivalent output injection. For the case when the
parameter uncertainty could be considered as unknown inputs which are not creating invariant
zeros we use a continuous version of the LS method for parameter identification.

APPENDIX

Proof of Lemma 2
By the assertion of Lemma 2, we need to prove that

rank
sI � A �D

C 0

" #
¼ nþ q , rank

sI � A11

%C

" #
¼ n� q

for all s 2 C:
Let us define the non-singular matrix

U :¼
ðCDÞ?

ðCDÞþ

" #

2 2.5 3 3.5 4
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Time[s]

ae1

ae2

ae3

Figure 5. Estimation DAðtÞ of the uncertainty parameter matrix DA:
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Thus, in view of (32) and (33)

rank
sI � A �D

C 0

" #
¼ nþ q

, rank
In 0

0 U

" #
P 0

0 Ip

" #
sI � A �D

C 0

" #
P�1 0

0 Ip

" #( )
¼ nþ q

, rank
sI � PAP�1 �PD

UCP�1 0

" #
¼ nþ q

, rank

sI � A11 �A12 0

�A21 sI � A22 �I

%C 0 0

0 I 0

2
666664

3
777775 ¼ nþ q , rank

sI � A11

%C

" #
¼ n� q &
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