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Slow periodic motions in variable structure systems

L. FRIDMAN

Singularly perturbed relay control systems (SPRCS) with stable periodic motion in
reduced systems are studied here. The slow motions integral manifold of such systems
consists of parts that correspond to different values of control and the solutions of
SPRCS contain the jumps from one part of the slow manifold to the other. The
theorems about existence and stability of the slow periodic solutions are proved. An
algorithm of asymptotic representation for this periodic solutions using a boundary

layer method is suggested.

1. Introduction

There is a wide class of relay control systems that work
in periodic regimes. For example, such regimes arise
every time in relay control systems with time delays
because a time delay does not allow an ideal sliding
mode to be realized and results in periodic oscillations
(Drakunov and Utkin 1992, Fridman et al. 1993,
Gouaisbaut et al. 1999). In controllers of exhaust gases
for fuel injector automotive control systems (e.g. Choi
and Hedrick 1996, Li and Yurkovitch 1999) the sensors
can measure only the sign of the controlled variable with
a delay. In such systems, only oscillations around zero
value can occur. In the controllers for stabilization of
underwater manipulators it is possible to realize only
oscillations because of the manipulators properties
(Bartolini et al. 1997). The different aspects of periodic
solutions to relay control systems are discussed in
(Concalves et al. 1998, Bernardo et al. 2001) using
Poincaré maps.

In this paper, I will investigate the existence and
stability of periodic solutions for singularly perturbed
relay control systems (SPRCS). SPRCS could describe,
for example, the behaviour of the fast actuators in the
control systems. For example, the complete model of
fuel injector systems taking into account the influence
of the car motor. Knowledge about the properties of
SPRCS is necessary in the controllers for stabilization
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of underwater manipulator fingers to take into account
the influence of the elasticity of these fingers.

For smooth singularly perturbed systems there are two
main classes for slow periodic solutions. The slow
periodic solutions of the smooth singularly perturbed
systems ‘without jumps’ are situated on slow motion
integral manifolds (e.g. Wasov 1965). The other
important class of periodic solutions are the relaxation
solutions (Mishchenko and Rosov 1980), which contain
the ‘jumps’ from the neighbourhood of one stable
branch of the slow motions manifold to the neighbour-
hood of another one.

SPRCS was investigated by Fridman and Bogatyrev
(1992) (existence of stable slow motion integral mani-
fold) and Fridman (2001) (averaging and existence of
stable periodic solutions). Some control algorithms for
SPRCS was suggested by Sira Ramirez (1988), Heck
(1991), Su (1999), Innocenti et al. (2000) and Castro-
Linares et al. (2001).

The slow motions integral manifold of relay systems is
discontinuous and consists of at least two parts
corresponding to the different values of control
(figure 1). This means that the desired periodic solution
of the SPRCS should have jumps from the small neigh-
bourhood of one sheet of an integral manifold to the
neighbourhood of another one. From this viewpoint the
qualitative behavior of this periodic solution will be
nearer to the relaxation solution.

The main specific feature of systems with relaxation
oscillations is the following: at the moment of time cor-
responding to the jump from the neighbourhood of one
branch of the stable integral manifold to the neighbour-
hood of another one, the value of the righthand side is
small. That is why in order to find the asymptotic repre-
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Figure 1. Two sheets of slow motions integral manifold.

sentation of the relaxation solution, it was necessary to
make special asymptotic representations.

The situation with SPRCS is different. The right-hand
side of an SPRCS switches immediately after the
switching moment and the righthand side of the fast
equations in SPRCS after this moment is very big. It
allows one to use the Tikhonov theorem (Tikhonov
1952, Vasil’eva et al. 1995) for the proof of existence
and stability of slow periodic solution to SPRCS, and
the standard boundary layer function method (Vasil’eva
and Butuzov 1973, Vasil’eva et al. 1995) for its
asymptotic representation.

2. Problem statement

2.1. Original and reduced systems’ specific features
Consider the system

udz/dl Zg(Z,S,x,u), dS/dl:/’ll(Z,S,x7u),
dx/dt:hZ(szaxau)a (1)

where z € R", s € R, x € R", u(s) = sign(s), g, hy, h
are sufficiently smooth functions of their arguments
and p is a small parameter.

Suppose that ignoring additional dynamics, having
accepted p = 0 and expressing z, from the equation

g(zp,8,x,u) =0 (2)

according the formula zy = (s, x,u), we obtain the
system

ds/dt = hy(o(s, x,u), s, x,u) = Hy(s, x, u),

(3)
dx/dt = hy(p(s, x,u), s, x,u) = Hy(s,x,u).

We will suppose that for this system the sufficient con-
ditions for existence of the orbitally exponentially stable
isolated periodic solution hold. The parts of the periodic
solution of the reduced system corresponding to the
different values of control are situated in different
sheets of the slow motions integral manifold of
SPRCS. This means that the desired periodic solution

of the original system (1) contains internal boundary
layers describing the jumps from the one part of the
slow motions manifold to the another one. We will
find sufficient conditions for existence (see Section 3)
and orbital asymptotic stability (see Section 4) of the
isolated periodic solution of the original system (1),
which corresponds to the periodic solution of the
reduced system. Proposed results allow one to make
an important conclusion. Relay control design resulting
in the existence of an exponentially asymptotically stable
periodic solution is robust with respect to stable unmo-
delled dynamics. It is not true for sliding mode systems
because in those systems stable unmodelled dynamics of
order 2 or more yield to unstability (e.g. Fridman and
Levant 2002).

Let us denote as Z, X the domains of definition for
(z,s,x) and (s, x). Suppose that the following conditions
are true:

1 g € CZ < [=11]);
20 the function zy = p(s,x,u) for all (s,x,u) € Q=
X x [—1,1] is the isolated solution of equation (2).

2.2. Poincaré map generated by a reduced system

For investigation of stability in (1) and (3), it is
impossible to use methods based on linearization
because (1) and (3) are relay systems. In the paper for
investigating the periodic solutions to systems (1) and
(3), the Poincaré maps of the surface s = 0 into itself
generated by those systems are using.

Let us define first the Poincaré map of surface s =0
into itself, generated by system (3) (figure 2). Consider
the solution of system (3) for u =1

dﬁ/dl:Hl(g,f371), diO/dt:H2($7xgal) (4)
with initial conditions

5(0)=0,x(0)=¢ ceves”

= {E : Hl(ovfal) > 0} (5)
AS

So(BEN =0

X, (85D / fi?;;\x =5 x

S, (1(EN=0

Figure 2. Poincaré map ¥(¢).
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Suppose that for all €€V, r=06() is the smallest
positive root of equation §j (A(¢)) = 0, such that

H, (0,55 (6()), 1) < 0, Hy(0,%5 (6(¢)), 1) < 0. ()

Consequently, at 1 = 6(&) the function u changes from 1
to —1, the solution of system (3) for ¢ > 6(¢) until the
next switching moment will be the solution of the
Cauchy problem

dEa/dl:H1(§67Xa7_1)7 dxa/dl:H2(§avxaa_l)7

(6)

50 (0(€)) = 5 (0(8)), %o (6(€)) = X7 (0(¢))-

Suppose now that at all € € V for 57 (¢), which is the first
coordinate of the Cauchy problem (6) solution, there is a
smallest root 7'(¢) of equation 5, (7'(£)) = 0, such that

X (7€) € V, Hi(0,% (T(£)), 1) >0,
Hy(0, % (T(£)),1) > 0. (%)

Then ¥(§) : £ — X (T(€)) is the Poincaré map of the
surface s = 0 into itself generated by system (3).

Then the fixed point of the Poincaré map &, cor-
responding to the periodic solution is described by equa-
tion V(&) = &. The period and switching moment of
that periodic solution we will define in form
T(&) = Ty, 6(&) = 6y. The conditions of periodicity
take the form

50 (To) = 55 (0) = 0, % (Ty) = X; (0).
To have a continuous periodic solution at the point we
should have

50 (60) = S5 (60) = 0, Xq (6p) = X; (6o)-
Remark 1: Designing the Poincaré map ¥(¢), one
needs the knowledge of the general solutions to the

reduced system (3). Generally, it is possible only when
the functions H;, H, are linear.

Remark 2: Assumptions (*) and (**) allow one to
avoid the bifurcation due to the sliding in some part
of the map (Bernardino et al. 2001).

2.3. Existence and stability of the isolated periodic
solutions to the reduced system

Suppose that:

3% system (3) has an isolated Ty periodic
solution (5o(¢), Xo()), & is an isolated fixed point
of the Poincaré map ¥(§) which corresponds
to  (85(t),x¢(1)), moreover 5,(0)=0 and
det DW/5E(€,) £ 0;

4" |Spec dW/E(&)| < 1.

2.4. Stability of the fast motions
Suppose that

5% the equilibrium points
2o = p(50(1), Xo(2), 1), 1 € [0, 6],
Z0 = @(EO(I)va(Z)a _1)7 re [90a TO]
to systems
dz/d7 = g(p(50(1), Xo(1), 1), 50(2)
dZ/dT = g((p(EO(Z% XO([)7 —1),50([),)200), _1)

are uniformly asymptotically stable on [0, §,] and [6,, T}
correspondingly. Moreover

Re Spec dg(p(50(2), Xo(1), 1), 50(1), %(2), 1) /02
< —a<0,1€](0,6],

Xo(2),—1)/0z

—a < 0,1 € [0y, Ty

=
(=}
—

~
Ko

—
=

Re Spec 8g(90(§0(t)7 xO(Z)v *1)3 EO(I)a

2.5. Attractivity conditions

The slow motions integral manifold to the original
system (1) consists of parts that correspond to different
values of relay control. We have to ensure that right
after the switching points the original system (1)
solution will tend to the other sheet of stable slow-
motions integral manifold corresponding to an other
value of control. Suppose that:

6" the points (0, &), —1) are (0, %,(6,), 1) are situ-
ated in the interior of the attractive domain of
stable equilibrium points

©(0,8,1) and  ©(0,x(6p), —1).
Denote as £y(¢) the broken line

@(S0(1), Xo(2),1)  for 1€ (0,6p),
@(So(1), Xo(2), —1) for 1€ (6o, Tp),
7)(0, Xo(60), 1) + (0, %(65), —1),
v €[0,1] for =8y,
(1 =7)p(0,%, —1) +7¢(0,&, 1),
v€0,1] for r=0.

Ly(1) = -

In this paper sufficient conditions are found for the
existence of the isolated orbitally asymptotically stable
periodic solution of system (1) near to the broken line

(‘CO([)v EO([)a XO(t))'

An algorithm for asymptotic representation of this
periodic solution is suggested.
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3. Existence of a periodic solution to SPRCS

Suppose that we have chosen the norm in R” in
such way that the Poincaré map W is a contracting
map in the small neighborhood of &, and moreover

[0W/0¢(&)]l < ¢ < 1.
Consider now the Poincaré map ®(z, x, i) of the sur-

face s = 0 into itself generating by system (1).

Lemma 1: Under conditions 1°-6° there is neighbour-
hood T of the point (p(0,&,1),&) on the surface s =0,
such  that  for every (n,§) €l  and  for
(z(t, ), s(t, @), x(t, ), which is the solution of system
(1) with initial conditions

s(t,p) =0, x(0,p)=¢,  (7)
for sufficiently small I there exist

5(9("7) & :u)a:u) =0, S(T(U@ M)vﬂ) =0,

moreover the solution (z(t, ), s(t, 1), x(t, 1)) is unique on

[0, T(n, &, )]

z(0, 1) = m,

and
®(z,x, 1) = (2(T(n, & p)y ), x(T(n, & ), 1)) €T

Proof: The functions (z(¢, ), s(t, u), x(¢, ) are differ-

entiable on 7,&, v at the points t =0, T =T, (e.g.

Strygin and Sobolev 1988). Then from the implicit

function theorem it follows that there exists a closed

ball U(a) CV €R" with radius « and center at the

point &, such that for every ¢ € U(a):

o 0T/ <q" <1;

o for (55 (1), X; (¢)) the solution of system (4) with initial
condition 5j (0) =0, X (0) = ¢ there exist 6(¢), such
that 54 (6(¢)) = 0 and

dsg /d1(0(€)) = H,(0,xg (6(¢)), 1) <0,

H, (07)?3(9(5))7 _1) < 0;

e the point (0, X (0(¢)),1) is an internal point of the
attractive domain of the stable equilibrium point
90(07373(9(5)% —1);

e for (5, (¢),X, (¢)), the solution of system (6) with
initial conditions

50 (0(€)) = 5 (6(€));
there exists T'(¢) such that
5 (T(€) =0,
dsy /di(T(§)) = Hy(0,X0 (T(£)), 1) > 0;
e X (T(¢) € U(q'a);

e W =1cop(0,U(a),—1) is situated in the interior of
the attractive domain for the stable equilibrium
point ¢(0, X (7'(£)), 1).

Then from Tikhonov’s theorem (e.g. Vasil’eva et al.
1995) and the implicit function theorem it follows for
every (n,&) € W x U(«) there exists po(n,€), such that

for all pu € [0, po(n, §)]:
e for solution the (z* (¢, ), s* (¢, 1), x" (¢, 1)) of system

pdz"/de = g(z%, 57, x7, 1),

ds™/dt = hy(zt, st xT)1), dxt/de = hy(zh, st X 1)

with initial condition (7), there exists 6(n,&, u) the
smallest positive root of equation

S+ (9(7]’ ga ,u)a M) = 07

ds*(0(n, & p), p)/dt
= Iy (27 (0(n, & 1), 1), 0,x" (0, ), 1) <0,
h1(2+(9(777 57 M)7N)vovx+(97 N)7 _1) < 0;

the point z* ((n, &, i), i), i) is situated in the attrac-
tive domain

©(0, %5 (0(n,& 1), 1)), —1);

for (z7 (t,p),s (¢, ), x (¢, 1)), which is the solution
of system

pdz™ /de =g(z7,s ,x7,—1),
ds™/dr = hy(z7,s ,x, 1),
dx™/dt = hy(z7,s7,x7,—1)
with initial conditions
2 (000, & ), ) = 27 (001, €, 1), 1),
s~ (O0(n, & ), 1) = 57 (0(0, & ), 1) = 0,
X (00,8 1), 1) = X" (0(n, &, 1), ),

there  exists the  smallest  positive  root

T(n,& 1) >0(n,& 1) of equation s~ (T(n,§, 1), 1) =0,
for which

ds™/dt(T,p) = hy(z (T, 1), 0,x" (T, i), —1) > 0,
and (z7 (T(n, & p), 1), x (T(n,& p), p)) is situated in
(90, U((1 +¢')a/2), = 1), U((1 + ¢')a/2)):
Moreover,

®(n,£,0) = ng% D(n,&, 1)

= ((0,x7 (T (), 1), x (T (9))),

and for £ = &, we will have
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D((0, 8, 1),8,0) = (¢(0,6, 1), ).

Then from the compactness of W x U(«) it follows that
there exists such p, such that for every u € [0, ]

q)(Th 57 ,U,) = ((I)l(n> 57 N)7‘I’2(7]» 57 /L))
= (Z_(T(% & U)hu)’x_(T(nv §, H’)MU“))

the Poincaré map ®(n, & u) of the surface s =0 into
itself, generated by system (1), is correctly defined on
the set I'= W x U(a) and transforms it into itself.
This means that ®(n,, 1) for all p € [0, uy] hason T a
fixed point, corresponding to the periodic solution of (1)
in the small neighbourhood of the broken line

(Lo(1),50(1), Xo(1))- |

4. Uniqueness and stability of periodic solution to
SPRCS

Theorem 2:  Under conditions 1°—6° for sufficiently small
W there exists an orbitally asymptotically stable periodic
solution in the small neighbourhood of the broken line
(Lo(1),50(1),Xo(2)) with period T(u) — 0, for p—0
and boundary layers for t =0 and in the small vicinity
of t = 6.

Proof: The derivatives of the Poincaré map with
respect to initial conditions 7, £ are smoothly dependent
on derivatives of the functions

20, & ), ), X (00, & ), 1),
2 (T, & )y i), x (T (0, & 1), 1)

and 0(n, &, p), T(n, &, 1) with respect to initial conditions,
which are smoothly dependent on 7,{ (Strygin and
Sobolev 1988).

Let us consider the new variable
x =1n—¢(0,x (T(€)),—1). Then we will consider the
auxiliary operator

A& ) = (A (& )y Aa(x, € 1)
= (®1(x + ©(0,x (T(£)), —1),& )
—(0,x(T(€)), —1),
5 (x + (0, x7(T(€)), —1),& n))-

It is necessary to remark that for u = 0 the point (0, &)
is a fixed point of the operator A , and A itself for
sufficiently small 3, i transforms into itself the set

M(B,a, i) ={(x.&m) : Ixll < B,x € Ule), € [0, ]}

Let us find the derivative of A with respect to x and &.
For p = 0 the value A(x, &,0) does not depend on x, and
Ai(x,&,0) does not depend on £. This means that

n_(ow oW )
0.8 \oGw ov/og() + 0w
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Now it is possible to choose 3, i > 0 such that for some
qi(qy < 1)

sup
M(B,a.j2)

oA H <q <1
(x, ) L
This means that A(x,&, ) is a contractive operator on
M (B3, a, i) and has an unique fixed point which corre-
sponds to the orbitally asymptotically stable periodic
solution of system (1). [ ]

5. Algorithm of asymptotic representation for the
periodic solution to SPRCS

Suppose that /y,hy,g € C*3[Z x [~1,1]], and condi-
tions 1°-6° hold.

Denote by y = (z',s",x")". Then we will find the
asymptotic representation of the periodic solution of
system (1) on the time segment [0, 7'(x)], period T ()
and switching point 0(u)

ZD’ 0 + 10 p() + T p(r )5 (8)
k
Sk(t, ) = Z;[Ei(f) + I s(7) + T0 ()i
k .
X (1, ) 2 [%;(1) + I () + I0 (7 )|’y
O(1) = Op + by + -+ + "0 +
T(u) = To+nTy+ -+ W T+
O(u) = T(p) — 0(p),
where
7= t/p, T = (1 = O (W))/ 11
Ot (1) = Op + by + -+ + 1" Oy
Ops1 (1) = O+ pO; + -+t 1Oy
Ti(p) = To + pTy + -+ + Ty

I y(T)ll < Ce™, C,y >0,
I y(r)=0 for 7<0;
Ty (i) || < Ce 7,
0 y(re) =0 for
Let us denote
o (1) = (e(5 (1), %5 (1), 1), 5 (1), % (1))
for re€10,6];
Yo (1) = (@50 (1), X (1), 1), 5 (1), %o (1))
for t e [6y, To).

Thk+1 < 0

yo(t) =
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Function II§ z(7) is defined by equation
dIlgz/dr = g(IIgz + ¢(0, X7 (0),1),0, x5 (0), 1),
I 2(0) = (0, X (0), 1) — (0, %7 (0), 1),
and II; z(7) by
dIl z/d7 = g(Ily z + (0, % (69), 1), 50 (60), X (o), 0).

HEZ(O) - 50(0756(;(90)7 1) - 80(07763(‘90)7 71)

To find 57 (1), %1 (1), Z7 (1) we have the system of linear
equations

2 (1) = [ (&St + e xT +e i (1),
dsy /de = (02, " () + higsy (1) + I (1),
dx{ /dr = myL ()27 (1) + Moy sy (1) + 'zth(f), )
zi () =—[g-) (s + g X+ g1 (1)
dsy /dr = Mz ()21 (1) + Ky (1) + hiXy (1),
dxy /dt = I (1)z) (1) + sy (1) + HouXy (1),

Here the upper index + means that we have found the
value of corresponding functions at the points ((55 (1),
%5 (1), £1), 55 (1), X5 (1), £1). To find IT5 z, Iis, I x we
will have the linear system

dIlf z/dr = g 10} z + g1 s + g\ I x + I} g(7),
dITs/dr = U hy = hi(Z4 (0) + 113 2,0, %5 (0), 1)
— (25 (0),0, % (0), 1),
dII{ x/d7 =TI hy = hy(Z (0) + Mz, 0, X5 (0), 1)
— Iy (25 (0),0, %5 (0), 1),
dIly z/dr = g.I0 z + giTl} s + g\ Iy x + I g(7),
dIlys/dr =y hy = hy(zy (6) + g 2,0, X5 (6y), —1)

— (29 (69), 0, %0 (6), —1),
dIly x/dr =TIy hy = hy(Zy (0y) + 115 2,0, X (65), —1)
— hy(z4 (6h),0, %0 (6o), —1),
where  25(0) = (0, x0, 1), 2y (6) = (0, % (6), 1),

The upper index + means that the derivatives of func-
tion g are computed at the point

(Z(J]r(o) + H(J)FZ7OaSCOv 1)7

and the upper index — means that the derivatives of
function g are computed at the point

(26(00) + H62707x6(90)7 _1)

The initial conditions for the boundary layer functions
for the slow coordinates can be found from the expres-
sions

0 0

HTS(O):J 11y (0)dO, nrx(o>=J 1 y(©)dO,
0 0

Hl_s(O):J Ty hy (©)d6, Hl_x(O):J [T 1y (©)dO.

Then 5 (0) = —I1}'s(0); 51 (6p) = 111 5(0).

Equating the first-order terms in the asymptotic repre-
sentation of equations s(7(u), ) = 0 and s(0(u), u) =0
correspondingly, we will have

@]Hl (07503 _1) +§17(T0) = 07
01H,(0,%; (), 1) + 57 (6y) = 0. (10)

6, and ©, can be uniquely expressed through 57 (0) and
51 (6y) by formulas

0, = —[H,(0,&, —1)]"'51 (Ty),
6, = —[H,(0,x5 (6), 1)]_1§T(90)-

Substituting these expressions in the continuity and per-
iodicity conditions we will have

X1 (60) + I x(0) = X7 (6) + 01 (0, %9 (6), 1), (11)

X1 (0) + 1] x(0) = %1 (Ty) + ©1H,(0, &, —1). (12)

It is necessary to remark that the values X7 (6y), %1 (7))
are linearly depending on x| (0), X; (6,). Then, express-
ing x,(6)) via Xx/(0) from equation (12) and
substituting this expression in (11), we will have a
linear equation for X (0). The determinant of this
system coincides with det(0W/0€)(&;). This means that
the initial conditions 5 (0), X, (0), 57 (6,), %) (6y) can be
found uniquely. To find the first approximation of s, x it
is necessary to define the functions 57 (), X/ (¢),i =0, 1
on segment [0, T} (u)] as

7i(0) = (& (0,5 (1), % (1)
for 1€0,6(u);
yi(0) = (2 (1),5 (1), %; (1))
for te€[0,(n), Ty(n), i=0,1.

yi(t) =

Initial conditions for IT;z are uniquely defined by
equations

2 (0) + 11 z(0) = 2z (Ty) + ©,dzg /d1(Ty),
21 (6p) + Iy 2(0) = 2{ (6g) + 6,dzg /d1(6y).

To find the first approximation of variable z it is
necessary to find 6, and substitute it in the function
Iy z(7).

Suppose now, that we have found the functions

z (0,55 (0), 2 (0), 157 2(7), 1 s(7), 1T x(7)

and constants 0;,0;,j =1,....k — 1.
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Then to find 57 (¢), Xjc (1), i (¢) we will have the system
of linear differential equations

() =—[g8 T (g sl + e x gl (1),
ds ¢ /de = mZ ()2 " () + higsE () + hxg (1) + by (1),
dxif /de = hyt ()2 (1) + HoSSE () + Moa X (6) + gy (1),
Ze (1) = —[¢l) (& 5 + g X +gi (1)
dsy /dr = Ry, (0)zi (¢) + Hyysg (1) + X (1) + by (0),
A%y /de = oz (0)2 (1) + Mo (1) + Mo Xy (1) + hog(2),
(13)

here the upper index + means that we have found the
value of corresponding functions at the points

(i (55 (1), X0 (1), £1), 55 (1), % (1), £1).

The functions gi (), hi. (1), h5.(r) are uniquely deter-
mined functions depending on

2 (0,570, 57°(1), 0, €] = 1,0, k= 1.

For II{ z, i's, i x we will have the linear system
dITf z/dr = g.10} z + g\ I s + g\ I x + I g(7),
diI)s/dr =10} hy; A0 x/dT = T4 ho;

dIl; z/dr = gl 10 z + g Il s + g X0 x + 11 g(7),
dll; s/dr = hy; Al x/dr = T hy;

where the upper index + means that the derivatives of
function g are computed at the point

(25 (0) + 15 2,0, %, 1),
the upper index — means that the derivatives of function
g are computed at the point
(26(00) + Hazv 0,3?5(90)» _1)7

i (hy, I (hy, are the functions dependent on the
L z(7), I s(7), I x(7), j = 1,....,k — 1 only.

The initial conditions for the boundary layer func-
tions are dependent on the inequalities

0

I s(0) = | I,k (©)dO,
0

I x(0) = | I/ ,4,(0)de,
0

I s(0) = | _y/41(©)d6,
0

Iy x(0) = | II_1h(©)dO.

Then 5 (0) = —I{(0); 5t (6,) = —IIi s(0).
To find the initial condition functions x; (0), x; (6,)
we have to equate the kth asymptotic representation in

equalities s(7(u),
will have

@) =0 and s(6(u), ) =0. Then we

O, H (0,8, —1) + 5 (Ty) + S =0,
O, H,(0,%7 (09), 1) + 5 (6p) + S = 0.

Expressing 60,0, and substituting the corresponding
formulas in the conditions of continuity and periodicity
we obtain

Xy (69) + 1L x(0)

(14)

= X (60) + 6 H2 (0, X7 (6)), 1) + X[
(15)
X;(O) + H;x(O)

= X (Ty) + ©,H5(0,&0, —1) + X

(16)

Here Si, X{ is the function depending on 5; 6y,
%5 (00), 5 (To)s % (T)yj = 1, i 1.
Hk dnd Oy could be uniquely expressed trough x; (0)
and xi (0y) in the form

61( = _[Hk(oag()» _1)]7][51:(7—‘0) +S/:]7

O = —[H (0,55 (60), )] [s¢ (60) + S7 -

Here x{(0),%r(T,) are linearly dependent on
%(0),X; (0y). Then substituting the formulas for
0,, ©, into the conditions of continuity (15) and periodi-
city (16) we will have the system of algebraic equations
which depends linearly on X (0),x; (6p). Now it is
possible to express X (6) via X, (0) from the periodicity
conditions (16). Then, substituting this expression in
(15), we will have the system of algebraic equations
linear in X} (0). The determinant of this system coincides
with det(O¥/9¢)(&).

This means that 5 (0),%; (0),5; (6y), % (6y) are
defined uniquely. Now to find Sk 1, 1), Xi(t, 1) its neces-
sary to define functions 5 (), X (r) on the segment

(0,6, ()] as

yi(r) =

for 1€ [B(p), Te()l, i=0,....k.

The initial conditions for II{z are uniquely defined
from equations

7 (0) + I 2(0) = 2 (To) + OxdZy /de(Ty) + Zy,

Zi (60) + T 2(0) = 2 (60) + Ordzg /d1(6o) + Z),
where Zi¢ are the functions depending on 2]»*(90), z; (Ty),
j=1,...,k—1.

To finish with a kth order asymptotic representation it

is necessary to find the value 6,,, and introduce this
value into the function ITj z(7 ).

Therem 3:  Under conditions 1°—6°
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|Ti(p) = T(p)] < Cp*!
uniformly on [0, T (1)], where
T(41) = max{T(u); Tis ()},

the following inequalities are true

[9(t, 1) = Yi(t, )| < CuMs

(st p2), (2, 12)) = (St ), Xt )| < CH(17)

Theorem 3 follows from Theorem 2 and Lemma 4,
which will be proved in Appendix 1.

6. Example

Let us show the existence of orbitally asymptotically

stable periodic solutions for a singularly perturbed

relay system in form
pdz/dt = —z —u; ds/dt = x4+ u/2;

u = sign[s(1)], (18)

where z, 5, x € R, i is small parameter. For p = 0 system
(18) has the form

ZOZ—LI, dio/dt:)?0+u/2, de/dl:—XO—u. (19)
Then the solution of system (19) with initial conditions

X(0)=¢>0, 5(0)=0

dx/dt = —x + z,

takes the form
X (€ =e(€+1) — 5
8o (1,6) = (1—e ) (E+1) —1/2.

System (19) is symmetrical with respect to the origin.
Consequently, the semiperiod 6, of its periodic solution
and fixed point &, of the Poincaré map ¥(&) (figure 2)
are defined by equations

§(90a£0) = 07

and consequently

23(00750) = _503

1—e
o :m; & = 90/4-
Then 60 ~ 383,50 =~ 096
Moreover
1—e % —9
W /) (&) = ————— 0~ —0.07.
(0w/08)" (&) =55

This means that for system (18) the conditions of
Theorems 2 and 3 hold.

The slow part of the zero approximation of the
desired periodic solution for coordinate z has the form

{zg(t)zl for 0<1<6,,

Zo(t) =
Za(f):—17 for 90§Z§T0.

08 08 04 -02 O

-0.2¢

-0.84

Figure 3. Periodic solution of a reduced system.

The zero-order boundary layer functions satisfy the
equations

+

dllyz/dr = —TIJz; Mgz(0) =2; Tjz(t7) =2 ;

dlly z/dr = —TIyz; Myz(0) = —2; Hyz(r7) = 2" .

The equations for the first-order terms of the regular
part take the form

Zy =0; dsj/de=x7; dx/dr=—57,

and consequently

X1 (0)) = X7 (0)e s

L= e )% (0) +5(0);

60)) = X1 (6p)e"~";

— " )X7 (60) + 57 (6y).

Now the first order boundary layer terms are described
by equations

Iy s(t) =0; IO s(0) = 0;

I} x(7) = J I z(0)de; I x(0) = —2;
Iy s(r) = 0;

I x(1) = J Iy z(©)de; II; x(0) = 2.

oo

I} 5(0) = 0;

Then 57 (0) = 57 (6y) = 0.
Equations for ¢, and ©; in that case have the form
01(& — 1/2) + 5, (Tp) = 0;
01(%g (60) +1/2) + 5 (6p) = 0,

and consequently #; and ©; can be expressed via x| (0),
X1 (0y) according to the formulas
(1—e™xf(0)

b= ——1 L O =-—
RO+

(1 —e™)x; (6)
§—1/2
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Taking into account the symmetry of (19) we will have
1 —e
_ et
91 = 2X1 (0) m .

Then the condition of continuity has the form

~26,
et I (0) = %+ _ 2, ¢ .
X7 (0) + 11, (0) = x| (0)< 3¢ + ="

Now
1 -3¢
,+ _ ~ .
%7 (0) 2—6_290 — 1™ 2.15;
1 — —26,
9, =4 ¢ ~ 4.60.

e — 6% +1

The asymptotic representation of the semiperiod for the
desired periodic solution has the form

T(p) ~ 3.83 4 4.60u + O(1*).

The results of asymptotic representation of the x co-
ordinate for system (18) solution are shown in the
figures 4 and 5.

Figure 4. x coordinate for the periodic solution of a reduced
(points) and an original (line) system for u = 0.1.

-1

Figure 5. x coordinate for a periodic solution of original (line)
system and its asymptotic (points) for u = 0.1.

7. Conclusions

The singularly perturbed relay control systems (SPRCS)
having exponentially orbitally stable periodic motions
for the reduced systems have been studied. It is shown
that the slow motions integral manifold of SPRCS
consists of parts corresponding to different values of
control. Sufficient conditions are found for existence of
the isolated exponentially orbitally stable periodic
solutions. It is proved that such periodic solutions
contain the jumps from one part of the slow manifold
to the other. An algorithm for the asymptotic
representation of this periodic solutions basing on the
boundary functions method is suggested.

It allows one to conclude that relay control design
based on the existence of exponentially stable periodic
solutions is robust with respect to stable unmodeled
dynamics. It is not true for sliding mode systems (e.g.
Fridman and Levant 2002).

Appendix 1: Asymptotic representations of SPRCS
solutions with the finite number of switchings

Consider the solution of the Cauchy problem for system
(1) with initial conditions (1). Suppose that for system
(1) conditions 1°-3° are true and moreover:

4* there exists a smallest positive root of equation
55 (6y) = 0, where (57 (¢), Xj (¢)) is the solution of
system (4) with initial conditions 5 (0) =0,
X; (0) = ¢ and moreover

ds#()’»/dl(GO) = Hl(OaX(T(GO)a 1) <0
H1(07X(J)r(90)7_1) <0.

5* the point (0, X§ (6y), 1) is the internal point of the
attractive domain for the equilibrium point
(0, % (6), —1);

6* for every t€ ), T] there exists an unique
solution of system (6) (5 (¢), Xg (z)) with initial
conditions §y (6y) = 0, X, (6y) = X3 (6,), moreover
for every 1€ by, T]sign s, (1) <0, (o5 (1),
Xo (1), =1),50 (1), % (1)) € Z.

Then from Tikhonov’s theorem (e.g. Vasil’eva et al.
1995), the implicit function theorem and conditions 4* it
follows that for sufficiently small p there exists a unique
solution of the Cauchy problem (1), (7) for u = 1 until
the switching moment 6(u) (6(u) — 6y for p — 0) in
which this solution crosses the surface s=0.
Moreover, from condition 6* it follows that the solution
of the Cauchy problem (1), (7) is situated in the domain
s <0 for every te€ [0(u),T]. This means that the
solution of the Cauchy problem (1), (7) on [0, 7]
is reduced to the sequential solution of two Cauchy
problems:
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(i) solution (z*(1, ), s" (¢, s), x" (¢, 1)) problem (1).(7)

foru=1;
(i) solution (z™ (¢, u),s (t, ), x (¢, u)) of system (1)
for u = —1 with initial conditions

z (0(w), ) = 2" (0(w), p);
sT(0(n), 1) = 57 (0(w), 1) = 0;
X (0(w), 1) = x(0(w), ). (20)

Let us find the asymptotic representation of the
switching moment 0() in (5), and the asymptotic repre-
sentation of the solution in (5).

The coefficients of representation (5) can be found
from equation

s (0 + by + -+ 10+ - p) = 0.

Suppose that 57 (¢), 57 (£),...,5 (¢),... the coefficients of
the asymptotic representation for the Cauchy problem
(1) using the boundary layer method are found. Then it is
possible to rewrite equation (7) in the form

S0 (B0 +p0; ) + usf (O + -+ p' )

o W5 O+ 04+ =0,

The boundary layer functions IT*s(6(u) /1) are exponen-
tially small, which is why it is possible not to take those
functions into account. Then to find 6, we have the
linear equations in the form

aiHl (Oax(-;(eo)’ 1) +pi(90a917' . '79i—1) = 0)

where p; are the functions, depending on 6,6, ...,60,_;
only. H,(0,%(6,),1) <0. Consequently constants
09,01, ...,0;,...can be found uniquely.

Suppose that we have found 6,,0,,...,0;,, and the
coefficients of the regular part in the asymptotic represen-
tation for the Cauchy problem (i) y/ (1), (i=1,...,k).

Let us find some special asymptotic approximation
for

k
Y Or(p), ) =D 3 (O ()

i=0
which is the segment of the regular part in the
asymptotic representation y* (8 (u), ). Taking into
account the asymptotic representation for functions
Vi (Hk( )) of degree s, consider ¥; (6 (u), ) instead of
Y, (0c(1), 11)- Then

Y0k (), 1) = 70 (00) + u(F 1 (60) + 01d¥ § /d(6y)) +

Let us denote by Y, (ék(u), w) the segment of this series
up to the uk degree. Now to find the asymptotic solution
of the Cauchy problem (1), (20) it is necessary to use the
asymptotic representation of system (1) for u = —1 with
initial conditions

y_(é/c+l(/1’)aﬂ) = Ylj—(ék(,u‘%:u‘) (21)

Lemma 4: Under conditions 1°-3° and 4%*—6* there
exists a pyg, such that for every p € |0, o) there exists a
solution of Cauchy problem (1), (7) on t€1[0,T) and
uniformly on [0, T] inequality (17) is true.

Proof: Suppose that for sufficiently small u
0(p) < O 41(p). For some K} > 0

10(1) = O ()] < K2,

Iy (0(n), 1) — Yi (O(p), )| < Ky

Then the solution of the Cauchy problem (1), (7) on the
segment [0(u), 6,1 (p)] the solution (1), (7) coincides
with the solution of (1), (20) for u = —1 and for all

1 e [9(/1’)7 é/(+l (M)}
127 (t, ) — 27 (O(w), )|

- L( N0, ) Dl

< My [0y (1) = O()| /15
(5™ (8 1) x™ (2, 1)) = (s (O(k), 1), x T (O(), )|
< M2|9k+1( ) = 0(w)l;
1Y, (1, 1) = Y3 (Bc(p), )| < Kopd™, Ky >0,

)
M, = sup lg(z, s, x,u)l,
Zx[-1,1]

MZ = 7Sllp ||(/11((Z,s,x7 M)7h2(Z,S7X, LI))”
Zx[-1,1]

This means that there exists K3 > 0, such that

1 Yie (), 1) = " (B (1)
This  inequality ensures inequalities (17) on
[0(1), Oxr1(1)]. Now from the boundary layer method
(Vasil’eva et al. 1995) it follows that the asymptotic
representations of the Cauchy problems (1), (21) and
(1), 21) on 1 € [Oy (1), T coincide up to the terms s
on the segments [0,0(u)], [@rs1(1), T] and consequently
the inequalities in (17) are true on the segment [0, 7.
The proof for the case 6,,(1) < 0(u) can be make
analogously.

Wl < K
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