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A high-order sliding-mode observer is designed for linear time invariant systems with single
output and unknown bounded single input. It provides for the global observation of the
state and the output under sufficient and necessary conditions of strong observability or

strong detectability. The observation is finite-time-convergent and exact in the strong
observability case. The accuracy of the proposed observation and identification schemes is
estimated via the sampling step or magnitude of deterministic noises. The results are extended

to the multi-input multi-output case.
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1. Introduction

1.1 Antecedents and motivation

Observation of system states in the presence of unknown

inputs is one of the most important problems in the

modern control theory. The standard conditions for

such observation (Hautus 1983) are obtained under

assumption that only the outputs are available without

their derivatives. In particular, the unknown inputs

need to match the known outputs. That requirement

does not hold even for mechanical systems, when

unknown forces are present, but only the position is

available (Davila et al. 2006). An adaptive observer

with convergence of the observation error to a bounded

zone was proposed by Rapaport and Gouze (1999).
Sliding-mode-based robust state observation is

developed successfully in the Variable Structure

Theory in recent years (Edwards and Spurgeon 1998,

Utkin et al. 1999, Barbot et al. 2002, Davila et al.

2005). The corresponding implementation issues

were extensively studied in Poznyak (2003) and

Edwards et al. (2002). The sliding-mode-based observa-

tion has such attractive features as

. insensitivity (more than robustness) with respect to
unknown inputs;

. possibility to use the equivalent output injection in
order to reveal additional information.

Step-by-step vector-state reconstruction by means of

sliding modes is studied by Utkin et al. (1999), Xu and

Hashimoto (1993), Ahmed-Ali and Lamnabhi-

Lagarrigue (1999), Floquet and Barbot (2006). These

observers are based on a system transformation to a

triangular form and successive estimation of the state

vector using the equivalent output injection. The

corresponding sufficient conditions for observation of

linear time invariant (LTI) systems with unknown

inputs were obtained in Utkin et al. (1999) and

Floquet and Barbot (2006).
Unfortunately, the realization of step-by-step

observers is based on conventional sliding modes and

requires filtration at each step due to imperfections of

analog devices or discretization effects. The hierarchical

observers based on super-twisting algorithm were

recently developed (Bejarano et al. 2006) in order to*Corresponding author. Email: lfridman@servidor.unam.mx
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avoid the filtration. These observers make successive use
of the continuous super-twisting controller, based on
second-order sliding mode (Levant 1993). A modified
version of the super-twisting controller is also used in
the step-by-step observer by Floquet and Barbot
(2006). Unfortunately, also those observers are not free
of drawbacks:

(i) The super-twisting algorithm provides for the
best-possible asymptotic accuracy of the derivative
estimation at each single realization step (Levant
1998). In particular, with discrete measurements
the accuracy is proportional to the sampling step
� in the absence of noises, and to the square
root of the input noise magnitude, if the above
discretization error is negligible. The step-by-step
and hierarchical observers use the output of the
super-twisting algorithm as noisy input at the next
step. As a result, the overall observation accuracy
is of the order �ð1=2

r�2Þ, where r is the observability
index of the system. This means, for example, that
in order to implement the fourth-order derivative
observer with the 0:1 precision, and the unknown
fifth derivative being less than 1 in its absolute
value, the practically-impossible discretization step
� ¼ 10�8 is needed.

(ii) Similarly, in the presence of the measurement noise
with magnitude " the estimation accuracy is propor-
tional to "1=ð2

r�1Þ, which requires measurement noises
not-exceeding 10�16 for the fourth-order derivative
implementation under the above conditions.

(iii) The step-by-step observers Floquet and Barbot
(2006) provide for semiglobal finite-time stability
only, restricting the application of these observers
to the class of the systems for which the upper
bound of initial conditions might be estimated in
advance.

At the same time the rth-order robust exact sliding-
mode-based differentiator (Levant 2003) removes the
first issue providing for the rth derivative accuracy
proportional to the discretization step �, and resolves
the second one providing for the accuracy "1=ðrþ1Þ.
Unfortunately, its straight-forward application requires
the boundness of the unknown (rþ 1)th derivative.
In practice it means that still only semiglobal observa-
tion of stable linear systems is allowed.

1.1.1 Main contribution. The observation and identifi-
cation algorithms are developed for LTI systems with
bounded unknown inputs, providing:

. global finite-time exact observation of the state vector
of strongly-observable systems;

. exact finite-time identification of smooth unknown
inputs of strongly observable systems;

. asymptotic estimation of unobservable states and
unknown inputs is achieved for strongly detectable
systems.

To realize this goal:

. Sufficient and necessary conditions of strong observa-
bility and strong detectability are formulated in the
terms of the system relative degrees with respect to
unknown inputs, which are also necessary in the
case of single-input–single-output (SISO) systems;

. An additional Luenberger-like linear term is intro-
duced ensuring the global convergence of the observer
error to some bounded region;

. A modification of the robust exact sliding-mode-based
differentiator (Levant 2003) is suggested providing for
the finite time convergence of the observation error in
the presence of unknown inputs;

. The asymptotic accuracy of the state observation and
the unknown-input identification is estimated with
respect to arbitrary bounded deterministic Lebesgue-
measurable noises and discrete sampling.

1.1.2 Structure of this article. The considered SISO
system is described in section 2. The problem statement
is presented in subsection 2.1. Main notions on strong
observability and strong detectability are discussed in
terms of the relative degree in subsection 2.2. A global
observer is designed for a strong observable system
in section 3 based on high-order sliding-modes.
Subsection 3.1 is devoted to the state observation
algorithm, and subsection 3.2 deals with the unknown-
input identification. A globally convergent observer
based on high-order sliding modes is proposed for
strongly detectable systems in section 4. The algorithm
for state detection is presented in subsection 4.1. The
algorithm for the asymptotic unknown-input identifica-
tion is presented in subsection 4.2. A generalization
to the multi-input-multi-output (MIMO) case is
presented in section 5. Two illustrative examples are
given in the section 6, for the cases of strongly observa-
ble and strongly detectable systems. Finite-time exact
state observation and unknown input identification are
demonstrated. Finally, section 7 contains the concluding
remarks.

2. System description

2.1 Problem statement

Consider an LTI system

_x ¼ Axþ BuþD�ðtÞ, D 6¼ 0

y ¼ Cx,
ð1Þ

774 L. Fridman et al.
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where x 2 R
n, y 2 R are the system state and the output,

� 2 R is the unknown input (disturbance), u 2 R is the

known control and the known matrixes A,B,C,D
have suitable dimensions. The equations are understood

in the Filippov sense (Filippov 1988) in order to provide

for the possibility to use discontinuous signals in

observers. Note that Filippov solutions coincide with
the usual solutions, when the right-hand sides are

continuous. It is assumed also that all considered

inputs allow the existence and extension of solutions to

the whole semi-axis t� 0.
The task is to build an observer providing for

asymptotic (preferably finite-time convergent and

exact) estimation of the states and the unknown

input. Obviously, it can be assumed without loss of
generality that the known input u is equal to zero

(i.e. uðtÞ ¼ 0).

2.2. Strong observability, strong detectability and
some of their properties

The conditions for observability and detectability of LTI

systems with unknown inputs are studied, for example,
in Hautus (1983). Some necessary and sufficient condi-

tions for strong observability and strong detectability

are obtained in this section.

Definition 1: s0 2 C is called an invariant zero of the

triplet fA,D,Cg if rankRðs0Þ < nþ rank ðDÞ, where

R(s) is the Rosenbrock matrix of system (1)

RðsÞ ¼
sI� A, �D
C, 0

� �
: ð2Þ

It is assumed in the following definitions that u¼ 0.

Definition 2: System (1) is called (strongly) observable
if for any initial state x(0) and �ðtÞ � 0 (any input

�(t)), yðtÞ � 0 with 8t � 0 implies that also x � 0

(Hautus 1983).
The following statements are equivalent (Hautus

1983).

(i) The system (1) is strongly observable.
(ii) The triple fA,C,Dg has no invariant zeros.

Definition 3: The system is strongly detectable, if for

any �(t) and x(0) it follows from yðtÞ � 0 with 8t � 0

that x! 0 with t!1 (Hautus 1983).
The following statements are equivalent (Hautus

1983).

(i) The system (1) is strongly detectable.
(ii) The system (1) is minimum phase (i.e. the invariant

zeroes of the triple fA,C,Dg satisfy Re s < 0).

Obviously, in the case D¼ 0 the notions of strong
observability and strong detectability coincide respec-
tively with observability and detectability. Introduce
the observability matrix

P ¼

C
CA

..

.

CAn�1

2
664

3
775:

Recall that system (1) is observable (in the absence of the
unknown input) if and only if the observability matrix P
has the full rank. In that case the matrix A� LC can be
assigned any spectrum, choosing an appropriate column
matrix parameter L. The rank nO of the matrix P is
called the observability index of the system.

Definition 4: Following Isidori (1996) the relative
degree of system (1) with respect to the unknown
input is the number r such that

CAjD ¼ 0, j ¼ 1, . . . , r� 2, CAr�1D 6¼ 0: ð3Þ

2.3. Strong observability and strong detectability
in terms of the relative degree with respect
to the unknown input

Let r be the relative degree of the system with respect to
the unknown input. It is known that r � n, and in
appropriate coordinates the system takes on the form

_x1 ¼ A11x1 þ A12x2 þ B1uþD1�,

_x2 ¼ A21x1 þ A22x2 þ B2u,

y ¼ C1x1

ð4Þ

where the matrices A11, A12, C and D are of the form

A11 ¼

0 1 0 � � � 0

0 0 1 � � � 0

..

. ..
. ..

. . .
. ..

.

0 0 0 � � � 1

a1 a2 a3 � � � ar

2
666666664

3
777777775
,

A12 ¼

0 0 � � � 0

0 0 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � 0

arþ1 arþ2 � � � an

2
666666664

3
777777775
,

D1 ¼ 0 � � � 0 d
� �T

, d 6¼ 0, C1 ¼ 1 0 � � � 0
� �

:

ð5Þ

Observation of linear systems with unknown inputs 775
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Let u¼ 0. With y � 0 the dynamics (4) is reduced to
_x2 ¼ A22x2 which is called the zero-dynamics (Isidori
1996). The eigenvalues of A22 coincide with the invariant
zeros of the system. The system is called minimum-phase
if A22 is Hurwitz. In such a case y � 0 implies x! 0.

Theorem 2.1: The system (1) is strongly observable if
and only if the output of the system (1) has relative
degree n with respect to the unknown input �(t).

Proof: Strong observability of the system requires
its observability, and, therefore, rank P ¼ n. The obser-
vability implies the existence of the relative degree r of
the output y with respect to the unknown input �.
Indeed, otherwise PD¼ 0 and therefore D¼ 0.
Then the coordinate transformation xO ¼ Px turns
system (1) into

_xO ¼ AOxO þ BOuðtÞ þDO�ðtÞ

yðtÞ ¼ COxO
ð6Þ

where

AO ¼

0 1 0 � � � 0

0 0 1 � � � 0

..

. ..
. ..

. . .
. ..

.

0 0 0 � � � 1

�a1 �a2 �a3 � � � �an

2
6666664

3
7777775
, ð7Þ

DO ¼ ½CD, . . . ,CAn�2D,CAn�1D�T, ð8Þ

CO ¼ ½1, 0, . . . , 0�, ð9Þ

aj, j ¼ 1, . . . , n are some constants; and the vector BO

does not have any specific form. Recall that u is assumed
to be zero. When r¼ n only the last component of DO is
not zero. It is obvious that in that case the identity y � 0
implies xO � 0.
Now assume that r< n. This means that some

nontrivial zero-dynamics exists, which corresponds to
nontrivial solutions satisfying y � 0 and contradicts
the strong observability. This ends the proof of the
theorem.
The theorem can be proved also algebraically.

The determinant p(s) of the Rosenbrock matrix is
invariant with respect to coordinate transformations.
It is computed as pðsÞ ¼ detð ~RÞ, where

~R ¼

s �1 0 � � � 0 �CD
0 s �1 � � � 0 �CAD
..
. ..

. ..
. . .

. ..
. ..

.

0 0 0 � � � �1 �CAn�2D
a1 a2 a3 � � � sþ an �CA

n�1D
1 0 0 � � � 0 0

2
6666664

3
7777775
:

Thus,

pðsÞ ¼ CD det

s �1 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � �1

a2 a3 � � � sþ an

2
6666664

3
7777775

þ CAD det

s �1 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � �1

a3 a4 � � � sþ an

2
6666664

3
7777775

þ � � � þ CAn�2D det sþ an
� �

þ CAn�1D:

Assume that the characteristic polynomial of the
matrix A be

sn þ ans
n�1 þ � � � þ a2sþ a1:

Then pðsÞ ¼ detð ~RÞ is rewritten as

pðsÞ ¼ ðsn�1 þ ans
n�2 þ � � � þ a2ÞCD

þ ðsn�2 þ ans
n�3 þ � � � þ a3ÞCAD

þ � � � þ ðsþ anÞCA
n�2Dþ CAn�1D: ð10Þ

The zeros of the system coincide with the roots of the
polynomial p(s). According to the Definition 3, the

system has no zeros if and only if it has the relative
degree n. œ

Theorem 2.2: The system (1) is strongly detectable if
and only if the relative degree with respect to the unknown
input exists, and the system is minimum-phase. In that

case also r � nO is ensured.

Proof: Assume first that the system is strongly detect-
able. Suppose first that the relative degree does not
exist. It is possible only in the case, when PD¼ 0,

i.e. D belongs to the invariant subspace Px¼ 0 of the
unobservable states. In that case in appropriate
coordinates the system takes on the form

_xO ¼ AOxO,

_xN ¼ ANOxO þ ANxN þDN�,

y ¼ COxO

776 L. Fridman et al.



D
ow

nl
oa

de
d 

B
y:

 [U
N

A
M

 - 
IIM

A
S

] A
t: 

17
:5

2 
11

 O
ct

ob
er

 2
00

7 

where the matrices AO, and CO are of the form

AO ¼

0 1 0 � � � 0

0 0 1 � � � 0

..

. ..
. ..

. . .
. ..

.

0 0 0 � � � 1

�a1 �a2 �a3 � � � �anO

2
6666664

3
7777775
,

CO ¼ 1 0 � � � 0
� �

,

with nO ¼ rank P. Thus y � 0 does not impose any
condition on the input �, and the induced dynamics in
the unobservable subspace xN has always non-zero
constant solution with � ¼ const 6¼ 0, which contradicts
the strong detectability. Hence, r � nO ¼ rankP. Now
the minimum-phase property of the system exactly
corresponds to the requirement x! 0 with y � 0.
Assume now that r � nO, and the system is minimum-

phase. In that case, in appropriate coordinates, the
system gets the form (4), (5) with a Hurwitz matrix
A22. The identity y � 0 obviously implies x1 � 0 and
x2! 0. œ

3. Observer design for the case of strong observability

3.1 Observation of coordinates

System (1) is supposed to satisfy the following
assumptions.

Assumption 3.1: The system (1) has the relative degree n
with respect to the unknown input �(t).

This assumption means that the system is strongly
observable. The next assumption has two variants.

Assumption 3.2: The unknown input �(t) is a bounded
Lebesgue-measurable function, j�ðtÞj � �þ.

Assumption 3.3: The unknown input �(t) is a bounded
function, j�ðtÞj � �þ, with successive derivatives up to
the order k bounded by the same constant �þ1 . The kth
derivative is a Lipschitzian function with the Lipshitz
constant not exceeding �þ1 . Thus, �

ðkþ1ÞðtÞ exists almost
everywhere and is a bounded Lebesgue-measurable
function, j�ðkþ1ÞðtÞj � �þ1 .

The latter assumption is needed for the estimation of
the unknown input. The observer is built in the form

_z ¼ Azþ Buþ Lðy� CzÞ, ð11Þ

x̂ ¼ zþ Kv, ð12Þ

_v ¼Wðy� Cz, vÞ, ð13Þ

where z, x̂ 2 R
n, x̂ is the estimation of x, and the column

matrix L ¼ ½l1, l2, . . . , ln�
T
2 R

n is a correction factor
chosen so that the eigenvalues of the matrix A� LC
have negative real parts. Such L exists due to
Assumption 3.1 and Theorem 2.2. The matrix K,
vector v and the nonlinear discontinuous function W
are chosen differently depending on the Assumptions
3.2 or 3.3.

The proposed observer is actually composed of two
parts. Equation (11) is a traditional Luenberger observer
providing for the boundedness of the difference z� x
in the presence of the unknown bounded input �.
System (13) is the high-order sliding modes differentiator
and ensures the finite time convergence of the resulting
estimation error to zero.

Suppose that only coordinates are to be estimated,
and that Assumptions 3.1 and 3.2 hold, respectively.
Note that in the simplest case when n¼ 1 the only
observable coordinate coincides with the measured
output and, therefore, only the input estimation problem
makes sense, requiring Assumptions 3.1 and 3.3. The
latter problem is considered in the next subsection.
Thus assume that n>1.

Since the pair (C,A) is observable, arbitrary stable
values are assigned to the eigenvalues of the matrix
(A� LC), choosing an appropriate column gain matrix
L (Chen 1984). Obviously the pair ðC,A� LCÞ is also
observable, and its observability matrix

~P ¼

C
CðA� LCÞ
CðA� LCÞ2

..

.

CðA� LCÞn�1

2
666664

3
777775 ð14Þ

is not singular. Set the gain matrix K ¼ ~P�1 and assign

x̂ ¼ zþ ~P�1v: ð15Þ

The nonlinear part of the observer (13) is chosen
in the form of the (n� 1)th-order differentiator
(Levant 2003)

_v1 ¼ w1 ¼ ��nM
1=njv1 � y

þ Czjðn�1Þ=nsignðv1 � yþ CzÞ þ v2,

_v2 ¼ w2 ¼ ��n�1M
1=ðn�1Þjv2

� w1j
ðn�2Þ=ðn�1Þsignðv2 � w1Þ þ v3,

..

.

_vn�1 ¼ wn�1 ¼ ��2M
1=2jvn�1

� wn�2j
1=2signðvn�1 � wn�2Þ þ vn,

_vn ¼ ��1Msignðvn � wn�1Þ,

ð16Þ

Observation of linear systems with unknown inputs 777
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where vi, zi and wi are the components of the vectors v,
z 2 R

n and w 2 R
n�1 respectively. The parameter M is

chosen sufficiently large, in particular M > jdj�þ,
where d ¼ CAn�1D. The constants �i are chosen recur-
sively sufficiently large as in Levant (2003). In particular,
one of the possible choices is �1 ¼ 1:1, �2 ¼ 1:5, �3 ¼ 2,
�4 ¼ 3, �5 ¼ 5, �6 ¼ 8, which is sufficient for n � 6.
Note that (16) has a recursive form, useful for the
parameter adjustment. In any computer realization one
has to calculate the internal auxiliary variables vj and
wj, j ¼ 1, . . . , n, using only the simultaneously-sampled
current values of y, z and vj.
Recall that xO ¼ Px is the vector of canonical obser-

vation coordinates, and eO ¼ Pðx̂� xÞ is the canonical
observation error.

Theorem 3.4: Let Assumptions 3.1 and 3.2 be satisfied
and the output be measured with a noise, being a
Lebesgue-measurable function of time with the maximal
magnitude ". Then with properly chosen �j and M
sufficiently large, the state x of the system is estimated
in finite time by the observer (11), (14)–(15). With
sufficiently small " the observation errors eOi ¼

x̂Oi � xOi ¼ CAi�1ðx̂� xÞ are of the order of "ðn�iþ1Þ=n.
That means that the inequalities jeOij � �i"

ðn�iþ1Þ=n hold
for some constants �i > 0 depending only on the observer
and system parameters, and on the input upper bound. The
accuracy of the order of "1=n is obtained in non-canonical
coordinates due to the mix of coordinates. In particular,
the state x is estimated exactly and in finite time in the
absence of noises.

Proof: Consider the linear Luenberger part of the
observer (11). Denote ~e ¼ x� z, ~ey ¼ C ~eðtÞ, then,
replacing the noise by the whole segment ½�", "� of its
possible values, obtain

_~e 2 ðA� LCÞ ~eðtÞ þ L½�", "� þD�ðtÞ, ð17Þ

~ey 2 C ~eðtÞ þ ½�", "�: ð18Þ

Recall that the matrix A� LC is Hurwitz. Let the
Lyapunov function of the homogeneous system be

V ¼
1

2
~eTH ~e,

where H is a symmetric positive-definite matrix. Its
derivative

_V2 ~eTðHðA�LCÞþðA�LCÞTHÞ ~eþ ð ~eTHDþDTH ~eÞ�ðtÞ

þð ~eTHLþLTH ~eÞ½�","�

is negative definite with � ¼ " ¼ 0. Thus, due to the
boundedness of �, obtain that the estimation error ~e

converges to a bounded vicinity of the origin ~e ¼ 0.
Since that moment also _~e remains uniformly bounded.

Let meantime "¼ 0. The output ~ey of the estimation
error system (18) has the same relative degree n with
respect to the unknown input as system (1). Indeed,
for any i the equalities CD ¼ CAD ¼ � � � ¼ CAiD ¼ 0
imply that

CðA� LCÞiþ1D ¼ CðA� LCÞiADþ CðA� LCÞiLðCDÞ

¼ CðA� LCÞiAD ¼ CðA� LCÞi�1A2D

þ CðA� LCÞi�1LðCADÞ

¼ � � � ¼ CAiþ1D:

Applying the transformation �e ¼ ~P ~e to system (17), (18),
with ~P selected according to (14), obtain that

_�e ¼ �A �eþ �D�ðtÞ,

~ey ¼ �C �e
ð19Þ

where the matrixes �A, �D and �C are of the form

�A ¼

0 1 0 � � � 0
0 0 1 � � � 0
..
. ..

. ..
. . .

. ..
.

0 0 0 � � � 1
a1 a2 a3 � � � an

2
66664

3
77775,

�D ¼ ½0, . . . , 0, d�T, �C ¼ ½1, 0, . . . , 0�:

Notice that d ¼ CðA� LCÞn�1D ¼ CAn�1D. By defini-
tion �e1 ¼ ~ey ¼ y� Cz, and due to (19) obtain that

~ey ¼ �e1, _~ey ¼ �e2, . . . , ~eðnÞy ¼ �en:

Denote �i ¼ vi � ðy� CzÞði�1Þ ¼ vi � �ei and obtain

_�1 ¼ ��nM
1=nj�1j

ðn�1Þ=nsignð�1Þ þ �2,

_�2 ¼ ��n�1M
1=ðn�1Þj�2 � _�1j

ðn�2Þ=ðn�1Þsignð�2 � _�1Þ þ �3,

..

.

_�n�1 ¼ ��2M
1=2j�n�1 � _�n�2j

1=2signð�n�1 � _�n�2Þ þ �n,

_�n ¼ ��1Msignð�n � _�n�1Þ � _�en: ð20Þ

Now show that with sufficiently large M the dynamics
of � is finite-time stable in the absence of noise. Since,
due to (17), starting from some moment, ~e and _~e
remain uniformly bounded, the same is true with
respect to �e and its derivative. Obviously, in the
presence of noises not exceeding " � 0 with

778 L. Fridman et al.
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M � sup j_�enj obtain that dynamics (20) satisfies the
differential inclusion

_�1 2 ��nM
1=nj�1 þ ½�", "�j

ðn�1Þ=nsignð�1 þ ½�", "�Þ þ �2

_�2 ¼ ��n�1M
1=ðn�1Þj�2 � _�1j

ðn�2Þ=ðn�1Þsignð�2 � _�1Þ þ �3

..

.

_�n�1 ¼ ��2M
1=2j�n�1 � _�n�2j

1=2signð�n�1 � _�n�2Þ þ �n

_�n 2 ��1Msignð�n � _�n�1Þ þ ½�M,M� ð21Þ

The rest of the proof is based on the following lemma.

Lemma 3.5: Suppose that �n > 1 and �n�1, . . . , �1 are
chosen sufficiently large in the list order. Then after
finite time of the transient process any solution of (21)
satisfies the inequalities j�kj � �kM

ðk�1Þ=n"ðn�kþ1Þ=n,
k ¼ 1, 2, . . . , n, where �k > 1 are some positive constants
depending only on the choice of �k.

Proof: Denoting ~�k ¼ �k=M obtain that

_~�1 2 ��nj ~�1 þM½�", "�jðn�1Þ=nsignð�1 þM½�", "�Þ þ ~�2,

_~�2 ¼ ��n�1j ~�2 � _e1j
ðn�2Þ=ðn�1Þsignð�2 � _~�1Þ þ ~�3,

..

.

_~�n�1 ¼ ��2j ~�n�1 � _~�n�2j
1=2signð ~�n�1 � _~�n�2Þ þ ~�n,

_~�n 2 ��1signð ~�n � _~�n�1Þ þ ½�1, 1�:

The lemma is now a direct consequence of Lemma 8
from Levant (2003). œ

According to Lemma 3.5 the equalities

v1 ¼ �e1 þOð"Þ, v2 ¼ �e2 þOð"ðn�1Þ=nÞ, . . . ,

vn ¼ �en þOð"1=nÞ ð22Þ

are established in finite time. Since CL, CAL, CA2L, . . .
are scalars, it is easily shown by induction that there are
numbers �ij such that the equalities

CðA� LCÞj ¼ CAj þ �1jCA
j�1 þ � � � þ �jjC, j ¼ 1, 2, . . .

are true. These numbers depend on C, A, L. Thus,
multiplying by x̂1 � x1 obtain that

�ej ¼ eOj þ �1j eOj�1 þ � � � þ �jjeO1, j ¼ 1, 2, . . . : ð23Þ

which is inevitably equivalent to �e ¼ ~P ~e: v ¼ ~P ~e ¼
~Px� ~Pz with "¼ 0. Inverting the equations by the
Gauss procedure and taking into account (22) obtain

by induction

eOj ¼ vjþ ~�1jvj�1þ� � �þ ~�jjv1þOð"ðn�jþ1Þ=nÞ, j¼ 1,2, . . .

ð24Þ

with some constants ~�ij. Obtain from v ¼ ~P ~e ¼ ~Px� ~Pz
with "¼ 0 that

x̂ ¼ zþ ~P�1v

with "¼ 0. The accuracy stated in the theorem is
obtained from (24) with " 6¼ 0, " << 1. œ

Let now the output y be sampled at discrete times with
the constant time step �, t 2 ðtj, tjþ1Þ, tjþ1 � tj ¼ �.
Substituting �e1ðtjÞ ¼ yðtjÞ � CzðtjÞ for the term �e1 ¼
y� Cz in (11), (13), obtain a discrete-sampling observer.
Note that the simultaneous sampling of y and z when
calculating the sampled value of �e1 is important.

Theorem 3.6: Let Assumptions 3.1, 3.2 be satisfied, the
parameters be chosen as in Theorem 3.4 and the output
be measured without measurement errors at discrete
sampling times with a sufficiently small sampling
interval �. Then after a finite-time transient the canonical
observation errors eOi ¼ CAi�1ðx̂� xÞ are of the order of
�n�iþ1.

Theorem 3.7: Under the conditions of Theorem 3.6
let the nonlinear observer part (16) be realized (in a
computer) by means of the Euler integration method
with the integration time step being a constant part of �.
Then the statement of Theorem 3.6 is preserved.

Proof: Let t 2 ½tj, tjþ1Þ, tjþ1 � tj ¼ �: Then the input
injection LC ~e is based on the values measured at the
moment tj and (19) can be rewritten as

_~eðtÞ ¼ ðA� LCÞ ~eðtÞ þ LCð ~eðtÞ � ~eðtjÞÞ þ �D�ðtÞ: ð25Þ

Assuming that k ~ek < 2Q obtain that the right-hand side
of (25) is bounded in norm by some constant of the form
�1Qþ �2�

þ, and

kLCð ~eðtÞ � ~eðtjÞÞk � ð�3Qþ �4�
þÞ�,

where �1, . . . , �4 > 0 are some constants. Hence, (25) can
be rewritten in the form

_~e ¼ ðA� LCÞ ~eþ ~�, k ~�k � ð�3Qþ �4�
þÞ� þ �5�

þ:

Thus, with any sufficiently large Q the inequality
k ~ek < Q is established and kept afterwards, if � is suffi-
ciently small. Since that time _~e is bounded. Applying
the Lagrange theorem to the difference ~eðtÞ � ~eðtjÞ

Observation of linear systems with unknown inputs 779
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obtain from (25) that

_~e ¼ ðA� LCÞ ~eþ LC_~eðtj þ 	ðt� tjÞÞ� þ �D�ðtÞ, 	 2 ð0, 1Þ:

Therefore, due to the boundedness of _~e, and indepen-
dently of Q, the same bounds of ~e are established as in
the proof of Theorem 3.4 with sufficiently small �.
As follows from Lemma (3.5), differential inclusion
(20) is finite-time stable. It is also homogeneous with
the weights n, . . . , 1 of �1, . . . , �n respectively and the
homogeneity degree �1. Thus, the discrete sampling
provides for the accuracy jvi � �eij ¼ j�ij � �i�

n�iþ1

(Levant 2005), and Theorem 3.6 follows now from (23)
with sufficiently small �. The Euler integration scheme
implementation can be considered as introduction of a
variable delay bounded by some constant times �.
Thus, Theorem 3.7 also follows now from Levant
(2005). œ

Note that the linear part (11) of the observer can be
realized using any advanced integration methods.

3.2. Identification of the unknown input

Suppose that assumptions 3.1 and 3.3 hold. Let
now v 2 R

nþkþ1 satisfy the nonlinear differential
equation (13) in the form

_v1 ¼ w1 ¼ ��nþkþ1M
1=ðnþkþ1Þjv1 � yðtÞ

þ CzjðnþkÞ=ðnþkþ1Þsignðv1 � yðtÞ þ CzÞ þ v2,

_v2 ¼ w2 ¼ ��nþkM
1=ðnþkÞjv2

� w1j
ðnþk�1Þ=ðnþkÞsignðv2 � w1Þ þ v3,

..

.

_vn ¼ wn ¼ ��kþ2M
1=ðkþ2Þjvn

� wn�1j
ðkþ1Þ=ðkþ2Þsignðvn � wn�1Þ þ vnþ1,

..

.

_vnþk ¼ wnþk ¼ ��2M
1=2jvnþk�1

� wnþk�2j
1=2signðvnþk�1 � wnþk�2Þ þ vnþk,

_vnþkþ1 ¼ ��1Msignðvnþkþ1 � wnþkÞ, ð26Þ

where M is a sufficiently large constant. As previously,
(39) has a recursive form, and the parameters �i are
chosen in the same way (Levant 2003). In particular,
one of the possible choices is �1 ¼ 1:1, �2 ¼ 1:5,
�3 ¼ 2, �4 ¼ 3, �5 ¼ 5, �6 ¼ 8, which is sufficient for
nþ k � 5. In any computer realization one has to calcu-
late the internal auxiliary variables wj, j ¼ 1, . . . , nþ k,
using only the simultaneously-sampled current values
of y, z1 and vj.

The equality �e ¼ ! is established in finite time, where
! is the truncated vector

! ¼ ðv1, . . . , vnÞ
T: ð27Þ

Thus, the corresponding observer equation

x̂ ¼ zþ ~P�1! ð28Þ

comes instead of (12) and ~P is defined by (12). The
estimation of the input � is defined as

�̂ ¼
1

d
vnþ1 � ða1v1 þ a2v2 þ � � � þ anvnÞð Þ,

sn � ans
n�1 � � � � � a1 ¼ ð�1Þ

n detðA� LC� sIÞ

ð29Þ

where the second line defines the characteristical
polynomial of the matrix A� LC.

Theorem 3.8: Let Assumptions 3.1 and 3.3 be satisfied
and the output be measured with a noise, being a
Lebesgue-measurable function of time with the maximal
magnitude ". Then with properly chosen �j and M suffi-
ciently large, in the absence of noises (i.e. with "¼ 0)
the observable state xO of the system is estimated exactly
in finite time by the observer (11), (26)–(29). With any
sufficiently small " the canonical observation errors
eOi are obtained of the order of "ðn�iþkþ2Þ=ðnþkþ1Þ. The
estimation error of the input � is of the order of
"ðkþ1Þ=ðnþkþ1Þ. In particular, in the absence of noises the
estimations of the unknown input and coordinates are
exact after a finite-time transient. The accuracy of
the order of "ðkþ1Þ=ðnþkþ1Þ is obtained in non-canonical
coordinates due to the mix of coordinates.

Proof: The proof is very similar to that of Theorems
3.4, 3.6, but the differentiation order can now be
increased. Exactly, as in the proof of Theorem 3.4
obtain that starting from some moment �e and _�e remain
uniformly bounded due to (17) and the boundedness
of �. Let now �ei ¼ ðCz� yðtÞÞði�1Þ, i ¼ 1, . . . , nþ k.
[According to Lemma 3.5, �e ¼ !.] Obviously,
ðCz� yðtÞÞðnþkþ1Þ ¼ �eðkþ2Þn is a linear combination of
�e1, . . . , �en, �, . . . , �ðkþ1Þ and is, therefore, bounded.
Taking M > sup jðCz� yðtÞÞðnOþkþ1Þj obtain finite-time
convergence of (26) (Levant 2003). This means that
equalities vi ¼ �ei, i ¼ 1, . . . , n, vnþ1 ¼ _�en are established
with "¼ 0. The theorem statement with "¼ 0 is obtained
due to the equality

�̂ ¼
1

d
vnþ1 � ða1 �e1 þ a2 �e2 þ � � � þ an �enÞð Þ ð30Þ
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which is established now due to (19). The estimation
error is obtained from the homogeneity reasoning as in

the proof of Theorem 3.4. œ

Similarly to Theorems 3.6, 3.7 the following theorems

are obtained.

Theorem 3.9: Let Assumptions 3.1, 3.3 be satisfied, the

parameters be chosen as in Theorem 3.8 and the output
be measured without measurement errors at discrete

sampling times with a sufficiently small sampling

interval �. Then after a finite-time transient the canonical

observation errors eOi are of the order of �
nþk�iþ2, and the

estimation error of the input � is of the order of �kþ1.

Theorem 3.10: Under the conditions of Theorem 3.8 let
the nonlinear observer part (39) be realized (in a

computer) by means of the Euler integration method

with the integration time step being a constant part of �.
Then the statements of Theorem 3.9 are preserved.

The linear part (11) of the observer can be realized
using any advanced integration methods.

Example: Consider the simplest case when n¼ 1, and

_x ¼ axþ buðtÞ þ d�ðtÞ,

where y¼ x is measured. Suppose that the unknown
input �(t) (perturbation) is a Lipschitzian function

(Assumption 3.3, k¼ 0). Then the observer obtains the
form

_z¼ azþbuðtÞþ lðxðtÞ� zÞ,

_v1¼w1¼�1:5M
1=2jv1�xðtÞþzj1=2signðv1�xðtÞþ zÞþ v2,

_v2¼�1:1Msignðv2�w1Þ,

x̂¼ zþ v1, �̂¼
1

d
ðv2�ða� lÞv1Þ,

where l> a, and M is a sufficiently large constant,
M > jdj�þ1 . Note that excluding w1 the third equation

can be rewritten as _v2 ¼ �1:1Msignðv1 � xðtÞ þ zÞ.
The proposed estimation x̂ of x can be considered

as a smoothed value of the measured output x(t).

In the absence of noises such estimation is obviously

redundant.

4. Observer design for the strong-detectability case

4.1 Observation of coordinates

Introduce a new assumption generalizing

Assumption 3.1.

Assumption 4.1 System (1) has relative degree r with
respect to the unknown input, r< n. It is also minimum
phase.

Remark 1: This Assumption is equivalent to the
stability of the invariant zeros of the system, and also
means that the system is strongly detectable in the
sense of Definition 3. Note also that Assumption 3.1 is
obtained with r¼ n.

Let r � n be the relative degree of system (1) with
respect to the unknown input �(t), which means that

CD
CAD

..

.

CAr�2D

2
664

3
775 ¼ 0, CAr�1D 6¼ 0: ð31Þ

As previously, define

_z ¼ Azþ Buþ Lðy� CzÞ: ð32Þ

It is easy to prove that neither the relative degree, nor
the observability index change for the error system
matrix triplet (A� LC,D,C). Indeed, the invariancy of
the relative degree is shown exactly as in the proof of
Theorem 3.4, and the observability index is preserved,
since the unobservable subspace does not change.
Let the transformation ðxT1 , x

T
2 Þ

T
¼ Tx ¼ ½T1 T2�

Tx
transfer the system (A� LC,D,C) into the form
(4), (5). This means that

A� LC ¼ T�1
A11 A12

A21 A22

� �
T, B ¼ T�1

B1

B2

� �

D ¼ T�1
D1

0

� �
, C ¼ C1 0

� �
T

ð33Þ

where A21 2 R
ðn�rÞ�r, A22 2 R

ðn�rÞ�ðn�rÞ, matrices
A11 2 R

r�r, A12 2 R
r�ðn�rÞ, and CT

1 , D1 2 R
r are of the

form

A11 ¼

0 1 0 � � � 0

0 0 1 � � � 0

..

. ..
. ..

. . .
. ..

.

0 0 0 � � � 1

a1 a2 a3 � � � ar

2
6666664

3
7777775
,

A12 ¼

0 0 � � � 0

0 0 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � 0

arþ1 arþ2 � � � an

2
6666664

3
7777775
,

D1 ¼ 0 � � � 0 d
� �T

, d 6¼ 0, C1 ¼ 1 0 � � � 0
� �

:

ð34Þ

Observation of linear systems with unknown inputs 781
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The nonlinear part of the observer (13) is chosen as

_v1 ¼ w1 ¼ ��rM
1=rjv1 � yðtÞ þ Czjðr�1Þ=rsignðv1 � yðtÞ

þ CzÞ þ v2,

_v2 ¼ w2 ¼ ��r�1M
1=ðr�1Þjv2

� w1j
ðr�2Þ=ðr�1Þsignðv2 � w1Þ þ v3,

..

.

_vr�1 ¼ wr�1 ¼ ��2M
1=2jvr�1

� wr�2j
1=2signðvr�1 � wr�2Þ þ vr,

_vr ¼ ��1Msignðvr � wr�1Þ, ð35Þ

vi, zi and wi being the components of the vectors v,
z 2 R

r and w 2 R
r�1 respectively. The parameter M is

chosen sufficiently large, in particular M >
jCAr�1Dj�þ. In order to estimate the rest of coordinates
introduce

!1 ¼ ðv1, . . . , vrÞ
T, !2 2 R

n�r, ð36Þ

set the gain matrix K ¼ T�1, and let

_!2 ¼ A21!1 þ A22!2,

x̂ ¼ zþ T�1
!1

!2

� �
:

ð37Þ

Let nO ¼ rankP, r � nO � n, and let PnO be the sub-
matrix of P consisting of its first nO rows. Recall that
xO ¼ PnOx is the vector of the canonical observation
coordinates. The vector eO ¼ PnO ðx̂� xÞ is naturally
called the canonical observation error. Unfortunately,
this time only the first r canonical coordinates are
estimated exactly, which coincide with the first r
components of Tx.

Theorem 4.2: Let Assumptions 4.1 and 3.2 be satisfied
and the output be measured with a noise, being a
Lebesgue-measurable function of time with the maximal
magnitude ". Then with properly chosen �j and M suffi-
ciently large, the state x of the system is asymptotically
estimated by the observer (32)–(37). In particular, the
first r canonical observation coordinates are estimated
exactly and in finite time in the absence of noises. In the
presence of a small noise with the magnitude " the estima-
tion error eOi of the order "ðr�iþ1Þ=r is obtained with
1 � i � r. All other coordinate observation errors tend
asymptotically to zero with "¼ 0 and, after some transi-
ent, are of the order of "1=r in the presence of small
noises. The same limit coordinate estimation accuracy of
the order of "1=r is ensured for any nonspecific coordinate
system.

Note that Theorem 3.4 is actually a particular case of
Theorem 4.2.

Proof: The proof is developed in three steps.

Step 1: The stability of the estimation error of (32) is
analyzed. Define ~e ¼ x� z. The error dynamics is
described by (17), (18). The boundedness of the estima-
tion error ~e of the Luenberger observer (11) follows
from the stability of the matrix A� LC exactly as in
the proof of Theorem 3.4.

Step 2: The error system (A� LC,D,C) is minimum-
phase. Indeed its zero-dynamics is obviously the same
as of the system (A,D,C).

Step 3: Show the convergence of (36) and (37) to the
real values of the state. Denote 
 ¼ T ~e, 
 ¼ ð
T1 , 


T
2 Þ

T,

1 ¼ x1 � T1z 2 R

r, 
2 ¼ x2 � T2z 2 R
n�r. Then the

error 
1 satisfies the equation

_
1 ¼ A11
1 þ A12
2 þD1�,
y ¼ C1
1

ð38Þ

with the matrices of the form (5). Similarly to the proof
of Theorem 3.4 after a finite-time transient the equalities

v1 ¼ 
11, v2 ¼ 
12, � � � vr ¼ 
1r

are established in the absence of noises, in other words
!1 ¼ v ¼ 
1 is obtained. As a result, the convergence is
ensured of the resulting error eOi, i ¼ 1, . . . , r to zero
in finite time in the absence of noises. Similarly to
Theorem 3.4 the estimation errors eOi, i ¼ 1, . . . , r,
of the order of "ðr�iþ1Þ=r are obtained in the presence of
noises of the magnitude ".

Denote 	1 ¼ 
1 � v ¼ ðeO1, . . . , eOrÞ
T
! 0, 	2 ¼

x2 � !2. Subtracting the first equation of (37) from (4),
obtain that 	2 satisfies the equation

_	2 ¼ A21	1 þ A22	2,

where 	1! 0 in finite time, and A22 is Hurwitz due to
Step 1. Thus also 	2! 0, which proves the theorem in
the absence of noises. In the presence of noises, after
the finite-time transient the accuracy Oð"1=rÞ is obtained
in estimation of 	1, which ends the proof. œ

Let the output y be sampled with the constant time
step �. Substituting yðtjÞ for y in (11), (12), t 2 ½tj, tjþ1Þ,
tjþ1 � tj ¼ �, obtain a discrete-sampling observer. The
following theorem is proved similarly to Theorem 3.6.

Theorem 4.3: Let Assumptions 4.1, 4.2 be satisfied, the
parameters be chosen as in Theorem 3.4 and the output
be measured without measurement errors at discrete
sampling times with a sufficiently small sampling

782 L. Fridman et al.
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interval �. Then after a finite-time transient the canonical
observation errors eOi ¼ CAi�1ðx̂� xÞ, i ¼ 1, . . . , r, are
of the order of �r�iþ1. The estimation error of the other
coordinates is of the order of � after some transient.
The same limit coordinate estimation accuracy is ensured
for any nonspecific coordinate system.

A theorem is also true similar to Theorem 3.7 (see also
the subsection 4.2).

Remark 2: In the presence of noises or with discrete
sampling the finite-time convergence means that for
each initial conditions the transient time converges to
some constant value with "! 0 or �! 0, contrary to
the asymptotic convergence, when the transient time
tends to infinity.

4.2. Observation of the unknown input

Let Assumptions 4.1 and 3.3 hold. Let v 2 R
rþkþ1 satisfy

the nonlinear differential equation

_v1 ¼ w1 ¼ ��rþkþ1M
1=ðrþkþ1Þjv1 � yðtÞ

þ CzjðrþkÞ=ðrþkþ1Þsignðv1 � yðtÞ þ CzÞ þ v2,

_v2 ¼ w2 ¼ ��rþkM
1=ðnþkÞjv2

� w1j
ðrþk�1Þ=ðnþkÞsignðv2 � w1Þ þ v3,

..

.

_vr ¼ wr ¼ ��kþ2M
1=ðkþ2Þjvr

� wr�1j
ðkþ1Þ=ðkþ2Þsignðvr � wr�1Þ þ vrþ1,

..

.

_vrþk ¼ wrþk ¼ ��2M
1=2jvrþk�1

� wrþk�2j
1=2signðvrþk�1 � wrþk�2Þ þ vrþk,

_vrþkþ1 ¼ ��1Msignðvrþkþ1 � wrþkÞ, ð39Þ

where M is a sufficiently large constant. As previously
(39) has recursive form, and the parameters �i are
chosen in the same way (Levant 2003). In particular,
one of the possible choices is �1 ¼ 1:1, �2 ¼ 1:5,
�3 ¼ 2, �4 ¼ 3, �5 ¼ 5, �6 ¼ 8, which is sufficient for
rþ k � 5. The estimation of the input � is defined as

�̂ ¼
1

d
vrþ1 � ða1v1 þ a2v2 þ � � � þ arvrÞð Þ ð40Þ

The following theorems are obtained similarly to pre-
viously formulated analogous theorems.

Theorem 4.4: Let Assumptions 4.1, 3.3 be satisfied.
Then the observer (32) to (34), (39), (36), (37), (40)

provides with any sufficiently small " for the accuracy

eOi of the order "ðrþk�iþ2Þ=ðrþkþ1Þ, 1 � i � r, which is
established in finite time. All other coordinate observation

errors tend asymptotically to zero with "¼ 0 and, after
some transient, are of the order of "ðkþ2Þ=ðrþkþ1Þ in the

presence of small noises. The same limit accuracy of the
order of "ðkþ2Þ=ðrþkþ1Þ is obtained in estimation of any

nonspecific coordinates. The unknown input is
asymptotically exactly estimated with "¼ 0, and, after
some transient, the error is of the order of "ðkþ1Þ=ðrþkþ1Þ

in the presence of small noises.

The proof is very similar to the proof of

Theorem 4.2. The only difference is that (38) implies
the identity

_
1r ¼ a1
11 þ a2
12 þ � � � þ ar
1r þ arþ1
21

þ � � � þ an
2, n�r þ d�:

Taking into account that vi � 
1i ! 0, i ¼ 1, . . . , r,
vrþ1 � _
1r ! 0, obtain (40).

Theorem 4.5: Let Assumptions 3.3, 4.1 be satisfied, the
parameters be chosen as in Theorem 4.4 and the output

be measured without measurement errors at discrete
sampling times with a sufficiently small sampling

interval �. Then after a finite-time transient the observa-
tion errors eOi are of the order of �rþk�iþ2, 1 � i � r,

and the estimation error of the input � is of the order
of �kþ1 after some transient process. The estimation

error of other coordinates is of the order of �kþ2

after some transient. The same limit coordinate estima-
tion accuracy is ensured for any nonspecific coordinate

system.

Theorem 4.6: Under the conditions of Theorem 4.5

let the nonlinear observer part (39) be realized
(in a computer) by means of the Euler integration

method with the integration time step being a constant
part of �. Then the statements of Theorem 4.5 are

preserved.

The linear part (11) of the observer can be realized

using any advanced integration methods.

Remark 3: Note that with r ¼ nO the matrix A12 in
(33), (34) can be zeroed (the canonical observation

form). As a result the unknown input is estimated in
finite time. That means that while the limit accuracy of

the input estimation stated in the Theorems remains
the same, it is obtained after finite-time transient

process.

Remark 4: The parameter identification algorithms

presented by Davila et al. (2006) could be directly
applied in the absence of perturbations.

Observation of linear systems with unknown inputs 783
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5. Multiple-unknown input-multiple-output case

Consider the system with m outputs and the same
number of unknown inputs

_x ¼ Axþ BuþD�, y ¼ Cx, ð41Þ

where x 2 R
n, u 2 R

q, �, y 2 R
m, the matrices are of

the suitable dimensions. The observability matrix for
system (41) takes on the form

P ¼

c1
c1A

..

.

c1A
n�1

..

.

cm
cmA

..

.

cmA
n�1

2
666666666666664

3
777777777777775

where ci, i ¼ 1, . . . ,m are the rows of the matrix C.
Recall that the vector output y¼Cx is said to have
the vector relative degree ðr1, . . . , rmÞ with respect to
the input �, if

ciA
sDj ¼ 0; i, j ¼ 1, 2, . . . ,m, s ¼ 0, 1, . . . , ri � 2 ð42Þ

and

detQ 6¼ 0, Q ¼
c1A

r1�1D1 . . . c1A
r1�1Dm

. . .
cmA

rm�1D1 . . . cmA
rm�1Dm

2
4

3
5:
ð43Þ

Lemma 5.1: Let the output y of (41) have the vector
relative degree r ¼ ðr1, . . . , rmÞ with respect to the
unknown input �. Then the vectors c1, . . . , c1A

r1�1, . . . ,
cm, . . . , cmA

rm�1 are linearly independent.

Proof: Suppose that the contrary is true, i.e.

�11c1 þ �12c1Aþ � � � þ �1r1c1A
r1�1 þ � � � þ �m1cm

þ �m2cmAþ � � � þ �mrmcmA
rm�1 ¼ 0: ð44Þ

Prove that �ij ¼ 0. Multiply (44) by D1, . . . ,Dm and
obtain m equalities. Due to (42) obtain that the rows
of the matrix Q are linearly dependent with the
dependence coefficients �1r1 , . . . , �mrm , which contradicts
to (43). Thus �1r1 ¼ � � � ¼ �mrm ¼ 0. Now multiply (44)
by AD1, . . . ,ADm and obtain new m equalities. Taking
into account (42) obtain new linear dependence of the

rows of Q with the coefficients �1r1�1, . . . , �mrm�1.
In that case the rows ðciA

ri�1D1, . . . , ciA
ri�1DmÞ

corresponding to rj ¼ 1 do not appear. [Continuing
this process, we obtain that all �ij ¼ 0.] œ

We restrict ourselves to the case when the relative
degree exists. In that case the minimum-phase property
is equivalent to strong detectability. The strong-
observability case is simpler, and is similarly considered.

Assumption 5.2: The vector relative degree with respect
to the unknown inputs exists and equals (r1, . . . , rmÞ. The
system is minimum phase.

This Assumption implies the strong detectability of
the system. According to Lemma 5.1, the total relative
degree r ¼ r1 þ � � � þ rm with respect to the unknown
input � does not exceed the observability index
nO ¼ rank P. Moreover, the same is component-wise
true for some vector observation index.

Assumption 5.3: Let rM ¼ max ri. Each unknown input
(perturbation) �iðtÞ is a bounded function, j�iðtÞj � �

þ
i ,

with bounded (rM � ri þ kÞ successive derivatives, the
last one being Lipschitzian. This means that its derivative
�ðrM�riþkþ1Þi ðtÞ exists almost everywhere and is a bounded
Lebesgue-measurable function, j�ðrM�riþkþ1Þi ðtÞj � �þ1i .
Other derivatives are also supposed to be bounded by the
same constant.

Choose a matrix L such that A� LC be a Hurwitz
matrix. Such a matrix exists due to the detectability of
the system (Assumption 5.2). As previously, the linear
Luenberger part of the observer takes on the form

_z ¼ Azþ Buþ Lðy� CzÞ: ð45Þ

It is shown exactly as in the scalar case that the system
ðA� LC,D,CÞ keeps the relative degree, observability
index, unobservable subspace Px¼ 0 and the
minimum-phase property of the original system
ðA,D,CÞ. The corresponding error system is

_e ¼ ðA� LCÞeþD�,

where e ¼ x� z. Then in some new coordinates

eTC eTN
� �T

¼ ½TT
C TT

N�
Te ¼ Te, this system takes on the

standard form

_eC ¼ ACeC þ ACNeN þDC�

_eN ¼ ANCeC þ ANeN
, y ¼ CCeC,

where the canonical observation errors eCi ¼
ðeTCi1, . . . , eTCiriÞ

T
2 R

ri are calculated as eCij ¼
ciA

j�1ðx� zÞ, and eN 2 R
n�r. The corresponding

784 L. Fridman et al.
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matrices have the form

AC ACN

ANC AN

" #
¼ TðA� LCÞT�1, ð46Þ

AC ¼

A11 � � � A1,m

. .
.

Am,1 � � � Amm

2
66664

3
77775, ACN ¼

AC1

..

.

ACm

2
66664

3
77775

DC ¼

D11 . . . Dm1

. .
.

D1m . . . Dmm

2
66664

3
77775

ð47Þ

Aii ¼

0 1 � � � 0

..

. ..
. ..

.

0 0 � � � 1

aii,1 aii,2 � � � aii, ri

2
6666664

3
7777775
, ð48Þ

Ai, j ¼

0 0 � � � 0

..

. ..
. ..

.

0 0 � � � 0

aij,1 aij,2 � � � aij, rj

2
66666664

3
77777775
, i 6¼ j,

AC, j ¼

0 0 � � � 0

..

. ..
. ..

.

0 0 � � � 0

aCj,1 aCj,2 � � � aCj, n�r

2
66666664

3
77777775
,

ð49Þ

yj ¼ CCjeCj, CCi ¼ 1 0 � � � 0
� �

,

Dij ¼ 0 � � � 0 dij
� �T

:
ð50Þ

Here dij ¼ ciA
ri�1Dj, and other matrices do not have any

specific form. The matrix AN is Hurwitz similarly to the
proof of Theorem 4.2 (Assumption 5.2). The nonlinear
observer part takes on the form

_vi ¼Wiðvi, yiðtÞ � Ciz, Þ,

v ¼ ðv1, . . . , vmÞ
T
2 R

mðrMþkÞ:
ð51Þ

The auxiliary variable vi is a solution of the discontinu-
ous vector differential equation

_vi,1 ¼ wi,1 ¼ ��rMþkþ1M
1=ðrMþkþ1Þ
i jvi,1 � yiðtÞ

þ Cizj
ðrMþkÞ=ðrMþkþ1Þ

� signðvi,1 � yiðtÞ þ zi,1Þ þ vi,2,

_vi,2 ¼ wi,2 ¼ ��rMþkM
1=ðrMþkÞ
i jvi,2

� wi,1j
ðrMþk�1Þ=ðrMþkÞsignðvi,2 � wi,1Þ þ vi, 3,

..

.

_vi,rMþk ¼ wi,rMþk�1 ¼ ��2M
1=2
i jvi,rMþk � wi,rMþk�1j

1=2

� signðvi,rMþk�1 � wi,rMþk�2Þ þ vi,rMþk,

_vi,rMþkþ1 ¼ ��1Misignðvi,rMþk � wi,rMþkÞ, ð52Þ

where Mi are sufficiently large constants, and the
parameters �i are chosen in the same way as in Levant

(2003). Denote

!1i ¼ ðvi,1, . . . , vi,riÞ
T, !1 ¼ ð!

T
11, . . . ,!T

1mÞ
T
2 R

r,

!2 2 R
n�r,

�v ¼ ðv1, r1þ1, . . . , vm, rmþ1Þ
T: ð53Þ

then the system for the observation of eN takes on the
form

_!2 ¼ ACN!1 þ AN!2: ð54Þ

The coordinates are estimated as

x̂ ¼ zþ T�1
!1

!2

� �
: ð55Þ

The unknown inputs �i, i ¼ 1, 2, . . . ,m, are estimated
by �̂i,

�̂ ¼ �D�1C �v� �AC!1

� �
ð56Þ

where the matrices �AC, �AN are composed of the bottom
rows of Ai,j and AC,j composing the block matrices AC

and ACN respectively, �DC is built of the nonzero

Observation of linear systems with unknown inputs 785
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elements of DC, detDC 6¼ 0 (Assumption 5.2),

�AC ¼

a11 . . . a1m

. .
.

am1 . . . amm

2
64

3
75, aij ¼ ðaij,1, . . . ,aij, riÞ

T,

�AN ¼

aC1,1 . . . aC1,n�r

. .
.

aC,m,1 . . . aC,m,n�r

2
664

3
775, �DC ¼

d1,1 . . . d1,m

. .
.

dm,1 . . . dm,m

2
664

3
775:
ð57Þ

Recall once more that xO ¼ Px is the vector of the
canonical observation coordinates (not all of them are
independent). The vector eO ¼ Pðx̂� xÞ is naturally
called the canonical observation error. Its linearly
independent part naturally includes the coordinates
eOij ¼ CiA

j�1ðx̂� xÞ, j ¼ 1, . . . , ri, i ¼ 1, . . . ,m.

Theorem 5.4: Under Assumptions 5.2, 5.3 with properly
chosen parameters observer (45)–(57) provides after finite-
time transient for the accuracies

jeOijj � "
ðrMþkþ2�jÞ=ðrMþkþ1Þ, j ¼ 1, 2, . . . , ri,

kx̂N � xNk � "
2=ðrMþkþ1Þ

with " being the magnitude of the measurement noise, and
for the accuracies

jeOijj � �
ðrMþkþ2�jÞ, j ¼ 1, 2, . . . , ri, kx̂N � xNk � �

kþ2

with the sampling interval � in the absence of noises.
All other coordinates are estimated asymptotically
with the accuracies "ðkþ2Þ=ðrMþkþ1Þ and �kþ2 respectively.
The inputs �i are asymptotically estimated with the
accuracies of the order "ðrMþkþ1�riÞ=ðrMþkþ1Þ and
�ðrMþkþ1�riÞ respectively. Exact estimations of the canoni-
cal observable coordinates, as well as asymptotically exact
estimations of the unobservable coordinates and the inputs
are obtained with continuous measurements and "¼ 0.

The proof is very similar to the previous theorems and
is omitted. Also here finite-time convergent exact obser-
vation of the inputs is possible with r ¼ rank P. The
accuracy estimation can be refined taking into account
that each input may have its own smoothness order.

6. Examples

6.1 Example 1

Consider the system

_x ¼ AxþD�ðtÞ þ Bu,

y ¼ Cx
ð58Þ

with matrices

A ¼

0 1 0 0

0 0 1 0

0 0 0 1

6 5 �5 �5

2
6664

3
7775

B ¼ D ¼ 0 0 0 1
� �T

, CO ¼ 1 0 0 0
� �

and initial conditions xOð0Þ ¼ ½1 0 1 1�. Its eigen-
values are �3, � 2, � 1, 1. The relative degree r with
respect to the unknown input equals 4. In consequence,
the system is strongly observable. Note that A is not
stable. The ‘‘unknown’’ input

� ¼ cos 0:5tþ 0:5 sin tþ 0:5

is taken, being obviously a bounded smooth function
with bounded derivatives. It is taken for simplicity that
u¼ 0.

6.1.1 State estimation. In this subsection only the state
observation problem will be considered. Let the output
of the system be affected by a deterministic noise

0:1 sinð1037j cosð687tÞjÞ

of amplitude "¼ 0.1. The correction factor L ¼
5 5 5 5
� �T

provides for the eigenvalues �1,�2,
�3,�4 of the matrix A� LC. The gain matrix K
in (12) is chosen as

K ¼

C
CðA� LCÞ
CðA� LCÞ2

CðA� LCÞ3

2
664

3
775
�1

¼

1 0 0 0
5 1 0 0
5 5 1 0
5 5 5 1

2
664

3
775

The parameters �1 ¼ 1:1, �2 ¼ 1:5, �3 ¼ 2, �4 ¼ 3,
M¼ 2 are chosen, and the nonlinear observer part (13)
takes on the form

_v1 ¼ w1 ¼ �3 � 2
1=4jv1 � yðtÞ

þ Czj3=4signðv1 � yðtÞ þ CzÞ þ v2,

_v2 ¼ w2 ¼ �2 � 2
1=3jv2 � w1j

2=3signðv2 � w1Þ þ v3,

_v3 ¼ w3 ¼ �1:5 � 2
1=2jv3 � w2j

1=2signðv3 � w2Þ þ v4,

_v4 ¼ �1:1 � 2signðv4 � w3Þ:

The observer performance and finite-time conver-
gence for the sampling time interval �¼ 0.001 are
depicted in figure 1. Figure 2 shows the detail of
the state convergence graph. Note that in the

786 L. Fridman et al.
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correspondence with the proof of Theorem 3.4 the
estimation error of x2 converges to a bounded region
of order 5 � 10�3, while the estimation error in x4
converges to a bounded region of order 2 � 10�1.
The transient process is shown in figure 3 for the
states x1 and x4. It is seen from figure 4 that the
system trajectories and their derivatives of any order
tend to infinity. Thus, the differentiator could not
alone perform the observation. Figure 5 shows the
effect of discretization in observation. The sampling
time intervals � ¼ 0:0001 and �¼ 0.01 were taken in
the absence of noises.

6.1.2 Unknown input estimation. Consider now the
input � as a bounded function with a Lipschitzian
derivative, k¼ 1. Both the state x and the disturbance
� are now estimated.

The state observer (11), (12) is designed in the
same way with L ¼ 5 5 5 5

� �T
, providing for

the eigenvalues �1,�2,�3,�4 of the matrix
A� LC. The gain matrix K in (12) is also the same.

0 1 2 3 4 5 6 7 8 9 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

t [s]

Figure 1. State estimation errors in the presence of a

deterministic noise of amplitude 10�1.

8 8.2 8.4 8.6 8.8 9 9.2 9.4 9.6 9.8 10
−4
−2
0
2
4
6

x 10−3

8 8.2 8.4 8.6 8.8 9 9.2 9.4 9.6 9.8 10
−0.2

−0.1

0

0.1

0.2

t [s]

Figure 2. Detail of observer error graphs. Estimation error

of x2 (above). Estimation error of x4 (below).

0 0.5 1 1.5 2 2.5 3 3.5
0

5

10

15

20

t [s]

0 1 2 3 4 5 6
−50

0
50

100
150
200
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Figure 3. Convergence of x̂1, x̂4 to x1 and x4.

0 1 2 3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

10000
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Figure 4. System coordinates.

4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5
−1

−0.5

0

0.5

1
x 10−3

4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5
−0.04
−0.02

0
0.02
0.04
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Figure 5. Observer errors (detail) with sampling intervals
� ¼ 0:0001 (above) and � ¼ 0:01 (below).
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The parameters of (26) �1 ¼ 1:1, �2 ¼ 1:5, �3 ¼ 2,
�4 ¼ 3, �5 ¼ 5, �6 ¼ 8 , M¼ 1 are chosen, so that

_v1 ¼ w1 ¼ �8jv1 � yðtÞ þ Czj5=6signðv1 � yðtÞ þ CzÞ þ v2;

_v2 ¼ w2 ¼ �5jv2 � w1j
4=5signðv2 � w1Þ þ v3,

_v3 ¼ w3 ¼ �3jv3 � w2j
3=4signðv3 � w2Þ þ v4,

_v4 ¼ w4 ¼ �2jv4 � w3j
2=3signðv4 � w3Þ þ v5,

_v5 ¼ w5 ¼ �1:5jv5 � w4j
1=2signðv5 � w4Þ þ v6,

_v6 ¼ �1:1signðv6 � w5Þ:

The finite-time convergence of estimated states to the
real states is shown in figure 6 with the sampling interval
�¼ 0.001. The unknown-input estimation is obtained
using the relation (29). It is demonstrated in figure 7.
The effects of discretization are shown in figure 8
for the sampling intervals �¼ 0.0001 and � ¼ 0:01.

6.2. Example 2

Consider the system

_xðtÞ ¼ AxðtÞ þD�ðtÞ þ Bu,

y ¼ CxðtÞ
ð59Þ

with matrices

A ¼

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

7 �17 17 �2 0 0

1 3 4 5 �1 3

1 3 4 5 0 �3

2
666666664

3
777777775

B ¼ D ¼ 0 0 1 0 0 0
� �T

,

CO ¼ 1 0 0 0 0 0
� �

and initial conditions xð0Þ ¼ ½1, 1, 1, 1, 1, 1�T. The
observability matrix has rank nO ¼ 4. The relative

degree with respect to the unknown input equals 3,

r¼ 3. Note that A is unstable. The zeroes of the

system are located at �1,�2,�3; Assumption 4.1 is

satisfied, i.e. the system is strongly detectable. The

‘‘unknown’’ input

� ¼ cos 0:5tþ 0:5 sin tþ 0:5

is taken, being obviously a bounded smooth function
with bounded derivatives. It is taken for simplicity

that u¼ 0.

6.2.1 State estimation. The correction factor L ¼
8 36 97 313 0 0
� �T

provides for the eigenvalues

�1,�3,�1,�3,�4,�2 of the matrix A� LC. The gain

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−40

−30

−20

−10

0

10

20

30

40

t [s]

Figure 6. Observer errors for the unknown input estimation
case.
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Figure 7. Unknown input estimation.
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−1.5

−1
−0.5

0
0.5

1
1.5

x 10−4

4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5
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Figure 8. Unknown input estimation error with � ¼ 0:0001
(above) and 0.01 (below).
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matrix K in (12) is chosen as

K ¼ T�1 ¼

1 0 0 0 0 0
8 1 0 0 0 0
36 8 1 0 0 0
97 36 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

2
6666664

3
7777775
:

The parameters of the nonlinear observer part (13)
are as follows: �1 ¼ 1:1, �2 ¼ 1:5, �3 ¼ 2, M¼ 2. The
nonlinear part of the observer is designed as

_v1 ¼ w1 ¼ �2 � 2
1=3jv1 � yðtÞ þ Czj2=3signðv1 � yðtÞ

þ CzÞ þ v2,

_v2 ¼ w2 ¼ �1:5 � 2
1=2jv2 � w1j

1=2signðv2 � w1Þ þ v3,

_v3 ¼ �1:1 � 2signðv3 � w2Þ:

The observer performance and finite-time conver-
gence for a sample time � ¼ 0:001 can be seen from
figure 9, see the detail in figure 10. The transient process

is shown in figure 11 for the states x1 and x6. It is seen
from figure 12 that the system trajectories and their
derivatives of any order tend to infinity. Thus, the
differentiator could not alone perform the observation.

7. Conclusions

Sufficient and necessary conditions of the strong
observability and strong detectability are reformulated
in the terms of the plant relative degree with respect to
the unknown input. High-order-sliding-mode observers
are proposed for LTI SISO systems with unknown
inputs under such conditions. The global finite-time-
convergent exact observation of the state is provided
under sufficient and necessary conditions of strong
observability and the boundedness of unknown inputs.
In the case of the strong detectability only a part of the
states are observed exactly, while other estimations are
asymptotically exact. An additional Luenberger-like
linear term is introduced ensuring global convergence
of the observer error to a bounded neighborhood
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Figure 9. Observer errors with unstable A.
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Figure 10. Observer errors with unstable A (Detail).
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Figure 11. Convergence of x̂1, x̂6 to x1 and x6 with
unstable A.
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Figure 12. System coordinates with unstable A.
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of zero. The robust exact sliding-mode-based differen-
tiator (Levant 2003) is applied providing for the finite-
time convergence of the observation error in the
presence of unknown inputs for the strong observable
systems. Moreover, the identification algorithm is
proposed, ensuring global finite-time exact identification
of the smooth unknown inputs in the case of strongly
observable systems. Global asymptotic convergence of
estimations to the exact values of the system states and
unknown inputs is obtained in the case of strong
detectability. The effects of bounded deterministic
Lebesgue-measurable noises and discrete sampling are
estimated in the terms of the accuracy of the proposed
observer. The results are extended to the MIMO case.
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