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The problem of observability for systems with unknown inputs is revised. The sufficient and
necessary conditions are used for the design of an observer for linear systems with bounded

unknown inputs. To realize the observation of the state, a second-order sliding-mode observer
is suggested to be applied. Such an observer provides a robust estimate of the state vector in a
finite time, without filtration. The design is based on the concept of the hierarchical output

injection maintaining zero value for output tracking error at each level of the hierarchy.
The equivalent control is used to identify the unknown inputs. A numerical example illustrates
the effectiveness of the suggested technique.

Keywords: Variable structure systems; Observation; Identification; State estimation

1. Introduction

1.1 Antecedents and motivations

The problem of state observation for systems with

unknown inputs is one of the most important in

modern control theory during the last two decades.

The specific features of the majority of the suggested

observers are:

(1) The number of unknown inputs of the system

must be less than the number of outputs, moreover,

other special conditions are required to achieve the

robustness of such observer (see e.g., Hautus 1983,

Zasadzinski et al. 1994). Those conditions turn

out to be very restrictive because they cannot

cover the simplest class of mechanical

systems with unknown inputs, in which only the

position is measurable. To cover this situation,

in Rapaport and Gouze (1999), an adaptive obser-

ver that ensures an exponential convergence of the

estimation error to a small neighborhood of zero
was suggested.

(2) Usually the observers have an estimation error that
converges asymptotically to zero (Nijmeijer 1999).
Such observers force the designer either to check
the stability of the closed-loop system (plant plus
observer), or to prove that the, so-called, separation
principle holds. In Engel and Kreisselmeier (2002),
an idea concerning the finite-time state
estimation in the absence of uncertainties
was suggested. It consists in the simultaneous
consideration of two asymptotic observers, where
the second one contains a delay in its dynamics.
In fact, this is some sort of a derivative
approximation that makes such an approach unrea-
lizable in the presence of unknown, even bounded,
inputs (external perturbations).

(3) The asymptotic convergence of the observers
means that the unknown inputs can be recon-
structed in the best case approximately (see e.g.,
Rapaport and Gouze 1999).

The problem of observation has been actively
developed within Variable Structure Theory using the*Corresponding author. Email: apoznyak@ctrl.cinvestav.mx
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Sliding Mode approach. Sliding-mode observers
[(see, e.g., the corresponding chapters in the textbooks
Edwards and Spurgeon (1998), Utkin et al. (1999),
and the recent tutorials Edwards et al. (2002), Barbot
et al. (2002), Xiong and Saif (2001) and Poznyak
(2004)] are widely used due to their attractive features:
(a) insensitivity (more than robustness!) with respect to
unknown inputs; (b) possibilities to use the values of
the equivalent output injection for the unknown inputs
identification; (c) finite time convergence to the values
of the state vectors. In Hashimoto et al. (1990),
Utkin et al. (1999) and Floquet and Barbot (2006) a
step-by-step form of sliding-mode observers was pro-
posed. Such observers are based on the transformation
of a given system to a block observable form and the
sequential estimation of each state by using the value
of the equivalent output injection. On the one hand,
this scheme allows to formulate some
sufficient conditions for the designing of an observer
for linear time invariant systems with unknown inputs
(LTISUI). Such conditions were formulated in
Barbot et al. (1996), Ahmed-Ali and Lamnabhi-
Lagarrigue (1999) and Utkin et al. (1999) for the
scalar case. On the other hand, the realization
of that scheme causes obligatory filtration due to
the nonidealities and further it requires the system trans-
formation to the triangular form.
In Levant (1998, 2003), a robust exact arbitrary

order differentiator was designed ensuring finite time
convergence to the values of the corresponding
derivatives, and some applications of higher order
sliding algorithms were considered. A new generation
of observers based on second-order sliding-mode
algorithms has been recently designed and applied
to some practical applications (Alvarez et al. 2000,
Orlov et al. 2003, Pisano and Usai 2004, Cannas et al.
2005, Davila et al. 2005).

1.2 Main contribution

In this article we proposed a scheme for the design
of a robust observer, ensuring convergence in finite
time to the state of the system. The advantages of the
proposed observer are enumerated below:

(i) the conditions required for the design of the
observer suggested are sufficient and necessary for
the case when the unknown inputs are bounded;

(ii) a convergence in finite time to the exact system
state, even in the presence of unknown inputs;

(iii) the transformation of the initial system to any
canonical form is not needed; only in the
case when the zero-input response is unstable,
a stabilization term has to be included;

(iv) for the observer realization, the filtration is not
obligatory;

(v) an algorithm for unknown input identification is
proposed.

1.3 Structure of this article

In section 2, the model description and the problem
formulation are presented. Section 3 deals with
the design of the hierarchical sliding-mode concept.
The subsection 3.3 is devoted to the specific algebraic
form that takes the observer proposed here.
Identification of the unknown inputs is studied in
section 4. Finally, section 5 is related to a numerical
illustration of the method proposed here.

2. Model description and problem formulation

2.1 Model of the plant

Let us consider the following linear time invariant
system with unknown inputs

_x tð Þ ¼ Ax tð Þ þ Bu tð Þ þDw tð Þ, xð0Þ ¼ x0

y tð Þ ¼ Cx tð Þ, t � 0
ð1Þ

where xðtÞ 2 Rn is the state vector, uðtÞ 2 Rm is the
control, yðtÞ 2 Rp (1 � p < n) is the output of the
system. The pair fuðtÞ, yðtÞg is assumed to be
measurable (available) at any time t� 0. wðtÞ 2 Rq is
the vector of the unknown inputs. The matrices A, B,
C, and D are known matrices of suitable dimension
with rank ðC Þ ¼ p, and rank ðDÞ ¼ q. The current state
xðtÞ, as well as the initial state x0 are not measurable
(available).
Throughout this article it is assumed that:

A1. the triple (A, C, D) has no invariant zeros, that is

for all s 2 C, rankP sð Þ ¼ nþ q,P sð Þ :¼
sI� A �D
C 0

� �
ð2Þ

A2. there exists a constant wþ such that

w tð Þ
�� �� � wþ ð3Þ

2.2 Necessary and sufficient conditions for the
exact observation

The following extended observer matching
condition was formulated for Hashimoto et al. (1990),

794 F. J. Bejarano et al.
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Barbot et al. (2002) and Rapaport and Gouze (1999)

CT CAð Þ
T
� � � CAn�2
� �Th i

D ¼ 0 ð3Þ

where n is the observability index.
The condition (3) may be less restrictive in some case

than the standard conditions given in Hautus (1983) and
Edwards et al. (2002) (the triple ðA,C,DÞ has
no invariant zeros and rank ðCDÞ ¼ q). In fact the
conditions established by Hautus

rankCD ¼ q and the triple A,D,Cð Þ

has no invariant zeros

are necessary and sufficient for designing an observer
whose only input is the output of the original system.
But we can design an observer satisfying the condi-
tion (3) since the sliding-modes works as a substitute
of a differentiator, so such a sort of observer will
note only use the output of the system but also use the
derivatives of the output of the system. That is why
our aim in this article is to design one observer having
as the only restriction the absence of invariant zeros
for the triple ðA,C,DÞ; even if the system does not satisfy
any matching condition.
In the remainder of this subsection we will consider

that uðtÞ ¼ 0 since the effect of uðtÞ can be compensated
by any observer. That is, consider the following linear
system

_x tð Þ ¼ Ax tð Þ þDw tð Þ, xð0Þ ¼ x0

y tð Þ ¼ Cx tð Þ
ð4Þ

We recall some definitions corresponding to properties
of (1) (Molinari 1976, Hautus 1983, Hautus and
Silverman 1983, Trentelman et al. 2001).

Definition 2.1: The system (4) is called strongly
observable if, and only if for all initial condition x0
and for every unknown input wðtÞ, the condition
yðtÞ ¼ 0 for all t� 0 implies that xðtÞ ¼ 0 for all t� 0.

Definition 2.2: V is a null-output ðA,DÞ invariant
subspace if for every x 2 V there exists some w such
that ðAxþDwÞ 2 V and Cx¼ 0. V� is the maximal
null-output ðA,DÞ invariant subspace, i.e. V � V� for
each subspace V.

The following statements are equivalent (see, e.g.,
Molinari 1976, Hautus 1983, Hautus and Siverman
1983, Trenteleman et al. 2001).

(i) The system (4) is strongly observable.
(ii) The triple (A, D, C ) has no invariant zeros,
(iii) V� ¼ 0.

It means that if the triple ðA,C,DÞ has invariant zeros,
then there exists an initial condition x0 ¼ � and an
unknown input wðtÞ such that yðtÞ ¼ 0 for all t� 0 and
xðtÞ being not equal to zero for all t� 0. So, in that
case it would be impossible to make an estimation of
the state xðtÞ independently of wðtÞ. Therefore,
the condition A1 is a necessary condition for
designing any observer for which we can modify the
degree of convergence of the estimation error.
Now, we will see that condition A1 is also a sufficient
condition to design an observer.

Consider the following algorithm that takes
the decoupled part to the unknown inputs from the
successive derivatives of the output. First, we make
a definition. For any matrix F 2 Rr�q having
rankF ¼ h, we define F? 2 Rr�h�r as a matrix such
that F?F ¼ 0 and rankF? ¼ r� h.

Algorithm 1:

0. y¼Cx, define MA,1 :¼ C
1. d=dtðCDÞ?yðtÞ ¼ ðCDÞ?CAxðtÞ and construct the

extended vector

d

dt
CDð Þ

?y tð Þ

y tð Þ

" #
¼

CDð Þ
?CA
C

� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

k

MA,2

x tð Þ

k. d=dtðMA,kDÞ
?MA,kxðtÞ ¼ ðMkDÞ

?MA,kAxðtÞ and
construct the extended vector

d

dt
MA,kD
� �?

MA,kx tð Þ

y tð Þ

" #
¼

MA,kD
� �?

MkA
C

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

k

MA,kþ1

x tð Þ

Now, suppose that for some l there is a matrix MA,l

generated by the previous algorithm such that
rankMA,l ¼ n. It would mean that the algebraic
equation

d

dt
MA,l�1D
� �?

MA,l�1x tð Þ

y tð Þ

" #
¼MA,lx tð Þ

would have a unique solution for xðtÞ that could be
found by means of the pre-multiplication of both sides
of the equation by MþA,l :¼ ðMT

A,lMA,lÞ
�1MT

A,l. That is,

MþA,l

d

dt
MA,l�1D
� �?

MA,l�1x tð Þ

y tð Þ

" #
¼ x tð Þ ð5Þ

It means that under the assumption that rankMA,l ¼ n,
the state xðtÞ could be estimated using a linear

Hierarchial second-order sliding-mode observer 795
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combination of the output and its derivatives.
Next we will see that the existence of a constant
l satisfying rankMA,l ¼ n is equivalent to the
nonexistence of invariant zeros for the triple ðA,C,DÞ.

Algorithm 2 (Molinari 1976):

0. Define MA,1 ¼ C
k. Define

MA,kþ1 Að Þ ¼ MA,kD
� �?

MA,kA
C

� �
, k ¼ 1, . . . , n� 1:

ð6Þ

The following statement was proved in Molinari
(1976).

V� ¼ kerMA,n ð7Þ

Due to the equivalences (ii) and (iii), it follows that

ðA,D,C Þ has no invariant zeros iff rankMA,n ¼ n: ð8Þ

Thus, from A1 and (8), we conclude that in our case
rankMA,n ¼ n.

3. Hierarchical second-order sliding-mode concept

3.1 Auxiliary dynamic systems

Firstly, design the following dynamic system

_~xðtÞ ¼ A ~xðtÞ þ BuðtÞ þ K y tð Þ � C ~x tð Þð Þ,

~x 0ð Þ ¼ Cþy 0ð Þ
ð9Þ

where Cþ ¼ ðC ÞK must be designed such that

A3. the eigenvalues of ~A :¼ ðA� KC Þ have negative
real part.
Let rðtÞ ¼ xðtÞ � ~xðtÞ, then, from (1) and (9), the

dynamic equations governing rðtÞ are

_r tð Þ ¼ A� KC½ �r tð Þ þDw tð Þ ¼ ~Ar tð Þ þDw tð Þ

Since A2 is fulfilled, it is well known that rðtÞ is of
bounded norm, i.e., there exist some constants
�, �,�>0 such that

r tð Þ
�� �� � � exp ��tð Þ r 0ð Þ

�� ��þ �wþ ð10Þ

Thus, the inequality in (10) yields the following
statement. For any constant rþ satisfying rþ > �wþ

we have

kr tð Þk < rþ for all t > �
1

�
ln
rþ � �wþ

� r 0ð Þ
�� �� ð11Þ

This means that if rþ > �wþ, from a finite time, rðtÞ will
be bounded by rþ and it will remain in that situation for
all the next time.

Since we are going to use the super twisting algorithm
(Levant 1993), we will need a bound of krðtÞk, thus, (11)
ensures that we can always satisfy such a requirement.

3.2 Procedure to recover MkxðtÞ

As was shown in (5), the state can be recovered by
a linear combination of the output and its derivatives
independently of the unknown inputs. In this article
we proposed to use the super twisting algorithm as
a substitute of a differentiator.

Due to the insertion of the term ~x, in the procedure
described below appears ~A instead of A. That is,
we will recover the vectors M ~A,kxðtÞ instead of the
vectors MA,kxðtÞ, where M ~A,k is the matrix obtained
using the algorithm 2 with ~A instead of A. Thus,
we will show that the invariant zeros of ðA,D,C Þ are
the same as the invariant zeros of ð ~A,D,CÞ, indeed,

rank
sI� ~A �D

C 0

" #
¼ rank

I K

0 I

� �
sI�A �D

C 0

� �� �

¼ rank
sI�A �D

C 0

� �
for all s 2C

Thus, this statement and (8) yield

�
~A,D,C

�
has no invariant zeros iff rankM ~A,n¼ n ð12Þ

Since rankM ~A,n ¼ n, we can define l as the least posi-
tive integer such that rankM ~A,l ¼ n. From (6) we can
infer that for the recovery of M ~A,kþ1xðtÞ , one needs
first to recover M ~A,kxðtÞ for k ¼ 1, . . . , l� 1; therefore,
this subsection is devoted to the recovery of the vectors
M ~A,kxðtÞ (k ¼ 1, . . . , l). The first vector M ~A,1xðtÞ is
already known since M ~A,1 ¼ C.

The recovery of M ~A,2xðtÞ will be based on the
design of a sliding surface sð1Þ and its corresponding
output injection vð1Þ using the ‘‘super-twisting’’ algorithm
(Levant 1993). The components of vð1Þ are defined as

v
1ð Þ
i ¼ z

1ð Þ
i þ l1 s

1ð Þ
i

			 			1=2sign�s 1ð Þ
i

�
, _z

1ð Þ
i ¼ �1sign

�
s
1ð Þ
i Þ

ð13Þ

796 F. J. Bejarano et al.
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the variable sð1Þ is given by the formula

s 1ð Þ yðtÞ, ~xðtÞð Þ ¼

CDð Þ
? y tð Þ � C ~x tð Þ½ �

Z t

�¼0

y �ð Þ � C ~x �ð Þ½ �d�

0
BBB@

1
CCCA�

Z t

�¼0

v 1ð Þ �ð Þ d�

ð14Þ

Here, we note that all the solutions of the dynamic
systems are defined in Filippov’s sense (Filippov 1988).

The dimension of the vector vð1Þ is the same as the

dimension of sð1Þ and this is equal to the number of

rows of ðCDÞ? that depends on the specific values that

the matrices of the triple ðA,C,DÞ take. Thus, in view

of (1), (9), and (6) the time derivative of sð1Þ is

_s 1ð Þ tð Þ ¼M ~A,2 x tð Þ � ~x tð Þ½ � � v 1ð Þ tð Þ ð15Þ

Now, choose the scalar gains l1, �1 so that the following
conditions are fulfilled

�1 > �1 �M ~A,2

��� ~A
��rþ þ Dk kwþ

�

l1 >
�1 þ �1ð Þ 1þ �ð Þ

1� �ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�1 � �1

s
, 0 < � < 1

ð16Þ

where rþ satisfies (11). In view of (11), one can always
satisfy (16) in finite time. It was shown in Levant
(1993) that if the bounds in (16) are fulfilled,

then there exists a finite time t1 such that the following

equalities

s 1ð Þ tð Þ ¼ _s 1ð Þ tð Þ ¼ 0, t � t1 ð17Þ

hold, where t1 is the reaching time. From (13), it is clear
that if sð1Þ ¼ 0, then vð1Þ 	 zð1Þ, so the vectorM ~A,2xðtÞ can

be recovered from (15) in the following manner:

M ~A,2x tð Þ �M ~A,2 ~x tð Þ ¼ z 1ð Þ tð Þ for t � t1 ð18Þ

Now, for recovering M ~A,3xðtÞ we design a sliding surface
sð2Þ and its corresponding output injection vð2Þ

v
2ð Þ
i ¼ z

2ð Þ
i þ l1 s

2ð Þ
i

			 			1=2sign s
2ð Þ
i

� �
, _z

2ð Þ
i ¼ �1sign s

2ð Þ
i

� �

The variable sð2Þ is given by the formula

s 2ð Þ yðtÞ, z 1ð Þ tð Þ
� �

¼

M ~A,2D
� �?

z 1ð Þ tð Þ

Z t

�¼0

y �ð Þ � C ~x �ð Þð Þd�

0
BBB@

1
CCCA

�

Z t

�¼0

v 2ð Þ �ð Þd� ð19Þ

By the substitution of (18) into (19), sð2Þ takes the form

s 2ð Þ yðtÞ, z 1ð Þ tð Þ
� �

¼

M ~A,2D
� �?

M ~A,2 x tð Þ � ~x tð Þ½ �Z t

�¼0

y �ð Þ � C ~x �ð Þð Þd�

0
BB@

1
CCA

�

Z t

�¼0

v 2ð Þ �ð Þd�

Thus, the derivative of sð2Þ is

_s 2ð Þ yðtÞ, z 1ð Þ tð Þ
� �

¼
M ~A,kD
� �?

M ~A,2
~A x tð Þ � ~x tð Þ½ �

y tð Þ � C ~x tð Þ

0
@

1
A

� v 2ð Þ tð Þ

¼M ~A,3x tð Þ �M ~A,3 ~x tð Þ � v 2ð Þ tð Þ

Now, choosing the scalar gains l2, �2 in the following
form

�2 > �2 �M ~A,3

��� ~A
��rþ þ Dk kwþ

�
l2 >

�2 þ �2ð Þ 1þ �ð Þ

1� �ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�2 � �2

s
, 0 < � < 1

one gets that there exists a finite time t2 such that the
following equalities are true

s 2ð Þ tð Þ ¼ _s 2ð Þ tð Þ ¼ 0, t � t2 � t1 ð20Þ

Therefore, since in the sliding-motion vð2ÞðtÞ 	 zð2ÞðtÞ,
we have

M ~A,3x tð Þ �M ~A,3 ~x tð Þ ¼ z 2ð Þ tð Þ for t � t1

We can follow the same procedure recursively
to obtain M ~A, kxðtÞ, k ¼ 1, . . . , l� 1. Subsequently,
we give the general design of the auxiliary system and
the sliding surfaces with their corresponding output
injection.

Hierarchial second-order sliding-mode observer 797
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(a) Design the output injection vðkÞ at the k-th level as a
‘‘super-twisting’’ controller (Levant 1993):

v
kð Þ
i ¼ z

kð Þ
i þlk

		s kð Þ
i

		1=2sign�s kð Þ
i

�
, _z

kð Þ
i ¼�ksign

�
s
kð Þ
i

�
ð21Þ

where lk and �k are constants satisfying

�k > �k �Mkþ1

��� ~A
��rþ þ Dk kwþ

�
lk >

�k þ �kð Þ 1þ �ð Þ

1� �ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�k � �k

s
, 0 < � < 1

9>>=
>>;1 � k < l� 1

�l�1 > �l�1 �
�� ~A
��rþ þ Dk kwþ

ll�1 >
�l�1 þ �l�1ð Þ 1þ �ð Þ

1� �ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�l�1 � �l�1

s
, 0 < � < 1

9>>=
>>;,

k ¼ l� 1

ð22Þ

where rþ should satisfy (11).
(b) The variables sðkÞ and zðkÞ are related as

s kð Þ y, z k�1ð Þ
� �

¼

M ~A,1D
� �?

y tð Þ � C ~x tð Þ½ �

Z t

�¼0

y �ð Þ � C ~x �ð Þð Þd�

0
BBB@

1
CCCA�

Z t

�¼0

v 1ð Þ �ð Þd�,

k ¼ 1

M ~A,kD
� �?

z k�1ð Þ

Z t

�¼0

y �ð Þ � C ~x �ð Þð Þd�

0
BBB@

1
CCCA�

Z t

�¼0

v kð Þ �ð Þd�,

1 < k < l� 1

Mþ~A,l

M ~A,l�1D
� �?

z l�2ð Þ

Z t

�¼0

y �ð Þ � C ~x �ð Þð Þd�

0
BBB@

1
CCCA�

Z t

�¼0

v l�1ð Þ �ð Þd�,

k ¼ l� 1

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð23Þ

Notice that, since rankM ~A,l ¼ n the matrix Mþ~A, l ¼
½MT

~A,l
M ~A,l�

�1MT
~A, l

is well defined and Mþ~A,lM ~A,l ¼ I.
That is why we included Mþ~A,l in the variable sðl�1Þ, this
allows obtained directly a representation of the state
xðtÞ that is shown in the following lemma.

The following lemma establishes how the vectors
M ~A, kxðtÞ can be recovered by the second-order sliding
motions (sðkÞ ¼ _sðkÞ ¼ 0).

Lemma 3.1: Under the assumptions A1–A3, if the
auxiliary state vector xðkÞa and the variable sðkÞ, for all
k ¼ 1, . . . , l� 1, are designed as in (21)–(23), then, from
some finite time tk, one has

M ~A,kþ1x tð Þ ¼M ~A,kþ1 ~xðtÞ þ z kð Þ tð Þ, for k ¼ 1, . . . , l� 2

x tð Þ ¼ ~xðtÞ þ z kð Þ tð Þ, for k ¼ l� 1

ð24Þ

Proof: We prove the lemma by induction. For k¼ 1, as
it was shown above, there exists a finite time t1 such that
M ~A,2xðtÞ is recovered by the equation

M ~A,2x tð Þ ¼M ~A,2 ~xðtÞ þ z 1ð Þ tð Þ, t � t1

Now, suppose that there exist a finite time tj�1 such
that (24) is true for some intermediate k ¼ j� 1.
Thus, according to (23), sð jÞ is in the form

s jð Þ y tð Þ, z j�1ð ÞðtÞ
� �

¼

M ~A,jD
� �?

z j�1ð ÞZ t

�¼0

y �ð Þ � C ~x �ð Þð Þd�

0
BB@

1
CCA

�

Z t

�¼0

v jð Þ �ð Þd� ð25Þ

Substitution of zð j�1ÞðtÞ, from (24), into (25) yields

s jð Þ tð Þ ¼
M ~A,jD
� �?

M ~A,j x tð Þ � ~x tð Þ½ �Z t

�¼0

y �ð Þ � C ~x �ð Þ½ �d�

0
B@

1
CA� Z t

�¼0

v jð Þ �ð Þd�

for t � tj�1. Thus, from (1), (9), and (6), the derivative of
sð jÞ is obtained by the equation

_s jð ÞðtÞ ¼M ~A,jþ1 x tð Þ � ~x tð Þ½ � � v jð Þ tð Þ ð26Þ

Again, as it was shown in Levant (1993), if the condition
(22) is satisfied, then a second-order sliding-mode is
obtained, i.e.

s jð Þ tð Þ ¼ _s jð Þ tð Þ ¼ 0, t � tj ð27Þ

where tj is the reaching time. Thus, from the structure
of vð jÞ, sð jÞ ¼ 0 implies vð jÞ 	 zð jÞ. Then in view of (27),
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the equality (24) for k¼ j is deduced from (26).
In the same form, since Mþ~A,lM ~A,l ¼ I, designing sðlÞ

and vðlÞ as in (21)–(23) we can prove that
xðtÞ ¼ ~xðtÞ þ zðl�1ÞðtÞ. œ

3.3 Design of the observer

From (24) we have that

x tð Þ ¼ ~xðtÞ þ z l�1ð Þ tð Þ for all t � tl�1 ð28Þ

where tl�1 is the reaching time. Since the right hand side
of (28) is known, the observer is designed as

x̂ tð Þ ¼ ~xðtÞ þ z l�1ð Þ tð Þ ð29Þ

Now, we can resume the previous result in the following
theorem.

Theorem 3.2: Under assumptions A1–A3,

x̂ tð Þ ¼ xðtÞ for all t � tl�1 ð30Þ

Proof: It follows immediately from (28) and (29). œ

We conclude this section with the algorithm for the
design of the observer given in (29).

Algorithm 1 (Design of the observer):

A. Find the matrices Mk according to the algorithm 2.
Determine the value of the least positive integer l
so that rankMl ¼ n.

B. Design ~x according to (9) with the gain K
satisfying A3.

C. Design l� 1 sliding surface s ðkÞ according to (23) and
design the output injections v ðkÞ following (21), each
one fulfilling (22).

D. Design the observer according to (29).

Remark 1: It should be noticed that the control u is
not supposed to be smooth and, in general, the design
of the observer does not depend on u.

4. Uncertainty identification

Since now xðtÞ is available, the uncertainty wðtÞ can be
identified. To this goal, we will use the equivalent
control approach (Utkin 1992, Ahmed-Ali et al. 2004).

Let us design the variable �x satisfying the following
equation

_�xðtÞ ¼ Ax̂ðtÞ þ BuðtÞ þD �u tð Þ

Define a sliding surface 	ðtÞ in the form

	 tð Þ ¼ Dþ x̂ tð Þ � �x tð Þð Þ

where Dþ :¼ ðDTDÞ�1DT. Since x̂ðtÞ ¼ xðtÞ for t � tl�1,
and from (1), the time derivative of 	ðtÞ is as follows

_	 tð Þ ¼ w tð Þ � �u tð Þ for t � tl�1 ð31Þ

Thus, �uðtÞ is designed in the following form

�u tð Þ ¼
	 tð Þ

k	 tð Þk

with the condition { > wþ. Thus, under A2, the follow-
ing equations hold

	 tð Þ ¼ _	 tð Þ ¼ 0 for all t � tl�1 ð32Þ

Thus, from (31) and (32) one gets the following identity

w tð Þ ¼ �ueq tð Þ 8t � tl�1 ð33Þ

It is known that the control �uðtÞ is a high-frequency
signal. To overcome this obstacle, �ueq should be
substituted by the output of the first-order filter

� _�uav þ �uav ¼ �u, � > 0

For �! 0 very small, the output of the filter approaches
to the equivalent control �ueq, i.e., lim�!0 �uav ¼ �ueq
(see Utkin 1999 and Fridman 2001). That is why the
identification of wðtÞ can be done by means of the substi-
tution of �ueq by uav in (33), in other words, the identifi-
cation of w is achieved by means of the signal
ŵðtÞ ¼ �uavðtÞ; where lim�!0ðwðtÞ � ŵðtÞÞ ¼ 0 8t � tl�1.

5. Example

Now, we have an academic example that illustrates the
method suggested in this manuscript. Thus, the matrices

Hierarchial second-order sliding-mode observer 799
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in (1) take the form

A ¼

0:52 0:78 0:22 0:62 �0:43

0:13 �0:26 �0:28 0:23 �0:32

�0:25 0:83 �0:36 0:44 �0:83

�0:77 0:58 �0:25 �0:24 �0:47

�0:55 0:25 �0:58 0:36 �0:87

2
6666664

3
7777775,

B ¼

1

0:6

1

1

0:5

2
6666664

3
7777775, D ¼

0 �1

0 �1

0 �1

0 1

�1 1

2
6666664

3
7777775, C ¼

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

2
64

3
75,

u tð Þ ¼ 3 sin tð Þ, w tð Þ ¼
2 sin 3tð Þ þ 0:63

0:5 cos tð Þ þ 0:23

" #

It can be verified that the triple ðA,C,DÞ has no
invariant zeros. Following the algorithm 2, we have
that the matrix M ~A,2 has rank equal to 5.

M ~A,1¼C,

M ~A,2¼

�0:842 0:4338 0:7008 0:2327 0:1184

�0:1922 1:1757 �0:7073 0:1485 �0:3606

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

2
666666664

3
777777775

Thus, we must design only one sliding surface for the
construction of the observer. Since in this case

Mþ~A,2 ¼M�1~A,2, the output injection v
ð1Þ
i and the sliding

surface take the form

v
1ð Þ
i ¼ z

1ð Þ
i þ 5 s

1ð Þ
i

			 			1=2sign s
1ð Þ
i

� �
, _z

1ð Þ
i ¼ 7 sign s

1ð Þ
i

� �

s 1ð Þ tð Þ ¼M�1~A,2

CDð Þ
?z l�2ð ÞZ t

�¼0

y �ð Þ � C ~x �ð Þð Þd�

0
B@

1
CA� Z t

�¼0

v 1ð Þ �ð Þd�

The figure 1 shows the trajectories of the state x. A zoom
of the trajectories of the state and the observer is shown
in figure 2; here we only depicted the last two states since
the three first states are already known. Figure 3 shows
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Figure 1. Trajectories of the state x.
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Figure 2. Zoom of the trajectories of the state x and the
observer x̂.
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Figure 3. Error of estimation eðtÞ ¼ xðtÞ � x̂ðtÞ.
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the error of state estimation, and we can see that

such an error converges to zero in a very short time.

The estimation of the unknown input w is shown in
figure 4. Finally, figure 5 shows the sliding surface.

6. Conclusions

A new hierarchical approach for the problem of

LTISUI is suggested. In the framework of the

proposed approach, we show that necessary and

sufficient conditions for the design of the observer

suggested is the absence of invariant zeros. The

observer suggested

. follows a scheme that uses the output of the system
and a linear combination of its derivatives to recover
the state of the system. In this article we proposed
to use the super twisting algorithm as a substitute of
a differentiator;

. ensures the insensitivity of the observer with respect to
the unknown inputs,

. provides a global convergence of the estimation error
to the zero value;

. identifies the unknown inputs since we recover the
exact state in afinite time;

. provides the finite time estimation of the states of
the system; therefore the ‘‘separation principle’’
(concerning the independence of state estimation and
control processes) is fulfilled.
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