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The second-order sliding mode observer dynamics are analyzed in the frequency domain.

The so-called super-twisting algorithm is utilized for generating the second-order sliding mode

in the observer dynamical system. The frequency response of the observer dynamics is

obtained and used as a characteristic of the observer. The analysis proposed is based on the

describing function method and the concept of the equivalent gains of nonlinear functions of

the super-twisting algorithm.
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1. Introduction

Since the introduction of the observer by Luenberger
(Luenberger 1966) the problem of the observer design
has become a popular area of research, which has also

led to numerous industrial applications. The appealing
feature of the observer is in convenience of the use and
the cost effect provided by the replacement of ‘‘hard’’

sensors and transmitters with ‘‘soft’’ ones, which are
implemented via computer algorithms. One of the most
successful applications of the sliding mode (SM)

principles is the SM observer (Utkin 1992, Edwards
and Spurgeon 1998, Walcott and Zak 1998, Barbot et al.
2002, Edwards et al. 2002, Poznyak 2004). In this type of

observer, the system is designed in such a way that the
difference between the output of the observer and the
output of the plant becomes the sliding variable.

The discontinuous control is designed to provide the
existence of SM in the observer dynamical system. Once
the SM is generated, the measurable states of the

observer become the estimates of the system states being
observed.

Some features of the second-order SM (SOSM)

algorithms (Levant 1998, 2003, Alvarez et al. 2000,

Bartolini et al. 2003, Orlov et al. 2003, Shtessel et al.

2003, Davila and Fridman 2004, Pisano and Usai 2004,

Davila et al. 2005) make them suitable for the use in SM

observers instead of the conventional relay control.

These features are: the higher accuracy of SM motions,

the finite-time convergence, and smaller amplitudes of

chattering (Boiko et al. 2004, Boiko and Fridman 2005).
In the present article, analysis of dynamical properties

of the SOSM observer is done in the frequency domain.

In particular, the observer response to harmonic inputs

of various frequencies is evaluated. The general concept

of analysis is based on the describing function (DF)

method (Atherton 1975). The frequency-domain analy-

sis becomes possible due to the transformation of the

original nonlinear discontinuous system into the linear-

ized dynamics for the averaged variables – via the

concept of the equivalent gain (Atherton 1975, Boiko

2005). The discrete-time realization of the observer is

accounted for as an equivalent delay (Astrom and

Wittenmark 1998, Fridman et al. 2004, Miloslavljevic

2004). The equivalent delay is determined via matching

the frequency of chattering in the original discrete-time*Corresponding author. Email: lfrid-man@servidor.unam.mx
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system and the equivalent continuous-time system with
the delay. As a result of such analysis, the frequency
domain dynamical characteristics of the observation
error can be obtained. This allows for quantitative
analysis of the observation accuracy at different input
frequencies.
The article is organized as follows. In the first section

of the article, the dynamical model of the observer and
plant suitable for the frequency-domain analysis is
considered, and analysis of chattering is done via
application of the DF method. Then the concept of
the equivalent gain and its derivation from the DF
model of the system are presented. Finally an example of
the frequency-domain analysis is given.

2. Second-order sliding mode observer model

Consider an n-dimensional version of the observer
proposed by Utkin (Utkin 1992). Let the linear plant,
the states of which are supposed to be observed, be the
n-th order dynamical system:

_x ¼ Axþ Bu ð1Þ

y ¼ Cx, ð2Þ

where A 2 Rn�n, B 2 Rn�1,C 2 R1�n are matrices. The
pair (C,A) is assumed to be observable.
The SOSM observer can be designed in the same form

as the original system (1), (2) with an additional control
input that depends on the error between the output of
the observer and the output of the plant (system to be
observed):

_
x
_
¼ Ax

_
þ Buþ Lv ð3Þ

y
_
¼ Cx

_
ð4Þ

where x
_
is an estimate of the system state vector, y

_
is an

estimate of the system output, L 2 Rn�1 is a gain matrix,
v is the output of the SOSM algorithm. For the purpose
of driving ŷðtÞ to y(t), let us use the so-called super-
twisting algorithm (Levant 1998, 2003):

v ¼ v1ðtÞ þ v2ðtÞ ð5Þ

_v1ðtÞ ¼ � sign ð�Þ ð6Þ

v2ðtÞ ¼
� s0j j

� sign ð�Þ if �j j > s0

� �j j� sign ð�Þ if �j j � s0

�
ð7Þ

� ¼ y� y
_

ð8Þ

where �, �, � and s0 are design parameters, 0< �� 0.5
(we will consider below only the case of �¼ 0.5), � is the
sliding variable. It can be shown that if the elements of L
are sufficiently large the sliding variable � converges to
zero in finite time. Methods of design of the SM
observers are considered in detail in (Utkin 1992,
Edwards et al. 1998).

Let us consider the observer as a dynamical system
that has two inputs and one output. One of those two
inputs y(t) must be followed (tracked) by the observer
output y

_
ðtÞ as precisely as possible. The other input u(t)

can be treated as a feedforward. Therefore, it makes
sense to consider the observer as a feedback–feedforward
system that utilizes the super-twisting algorithm in the
controller.

In the dynamical model of the super-twisting algo-
rithm the discrete-time realization can be accounted
for as an equivalent time delay as per Astrom et al.
(1998), Fridman et al. (2004), and Miloslavljevic (2004).
However, the determination of the equivalent delay is a
subject that is worth a separate analysis. Further, an
approach based on matching the frequencies of chatter-
ing in the discrete-time and continuous-time realizations
is presented. Therefore, the equivalent continuous-time
SM dynamics may be given by the diagram figure 1.

3. Analysis of self-excited oscillations in SM

observer dynamics

Obviously, in the steady mode, periodic motions occur
in the observer loop. In the case of the first-order SM
control the period of those motions would be equal to
two sampling (execution) periods. In the case of the
SOSM control, when the discontinuous control is
applied to the second derivative of the output, there
may be a few different situations. We can assume that
two execution periods are required to change the sign of
the output and, therefore, the period of the self-excited
oscillations (chattering) would be equal to four execu-
tion periods. This assumption does not however affect
the generality of the proposed approach.

On the other hand, in the continuous-time model
(figure 1), by selecting the equivalent delay to zero we

Figure 1. Plant and observer model.

818 I. Boiko et al.
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can obtain infinite frequency of chattering in the

observer loop. Varying the delay value, we can achieve

the frequency of chattering in the continuous-time

model equal to the frequency of chattering in the

discrete-time model. This would correspond to

the equivalency of the two models. Let us refer to the

corresponding time delay in the continuous-time model

as the equivalent delay. First, assuming that the

equivalent delay is known carry out analysis of

the self-excited oscillation (chattering) that occurs in

the observer loop of the continuous-time model due

to the use of a discontinuous control algorithm. The DF

of the first component of the super-twisting algorithm

can be written as follows (Atherton 1975):

N1 ¼
4�

�ay

1

j!
ð9Þ

which is a result of the cascade connection of the ideal

relay with the DF equal to 4�=ð�ayÞ and the integrator

with the transfer function 1/s (for the harmonic signal

the Laplace variable s can be replaced with j!).
For the second control component having the square

root nonlinearity (�¼ 0.5) the DF formula can be

derived as (Boiko and Fridman 2005):

N2 ¼
2

�ay

Z �

0

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ay sin 

p
sin d 

¼
2�

ffiffiffiffiffi
ay
p

ay
ffiffiffi
�
p

�ð1:25Þ

�ð1:75Þ
�

1:1128�ffiffiffiffiffi
ay
p ð10Þ

where ay is the amplitude of variable ŷðtÞ, ay� s0 (that is

considered the most important range of the amplitude

values for the analysis of the steady state), and � is the

gamma-function defined as follows:

�ðxÞ ¼

Z 1
0

tx�1e�t dt ð11Þ

Taking into account both control components, the DF

of the super-twisting algorithm can be written as:

N ¼ N1 þN2 ¼
4�

�ay

1

j!
þ 1:1128

�ffiffiffiffiffi
ay
p ð12Þ

Note that the DF of the super-twisting algorithm

depends on both: the amplitude and the frequency

values. The parameters of the limit cycle can be found

via the solution of the complex equation.

Wð j�Þ �Nðay,�Þ ¼ �1 ð13Þ

where � is the frequency, which provides solution to the
system, W(s)¼C(sI�A)�1Le��s. Write equation (13)
in the form, N(ay, �)¼�W�1(j�), where N(ay, �) is
given by

4�

�ay

1

j�
þ 1:1128

�ffiffiffiffiffi
ay
p ¼ �W�1ð j�Þ ð14Þ

Considering the real part of both sides we can obtain:

1:1128�ffiffiffiffiffi
ay
p ¼ �ReW�1ð j�Þ ð15Þ

Express ay from the above equation and substitute this
value in the equation, which can be obtained by
considering the imaginary parts of the previous complex
equation. Finally, one equation with one unknown
variable � can be obtained as follows:

�ð�Þ ¼
4�

��

1

ImW�1ð j�Þ
�

1:1128�

ReW�1ð j�Þ

� �2
¼ 0: ð16Þ

The amplitude ay can be computed as follows:

ay ¼
4

��

1

ImW�1ð j�Þ
: ð17Þ

Therefore, if a periodic motion occurs its parameters can
be found from (16) and (17). Determination of the
equivalent delay from the known execution period, and
therefore frequency �, can be done from equation (16),
where W(j�) should be considered a function of the
unknown delay.

4. Propagation of slow inputs through the

observer dynamics

Chattering represents the fast component of the motion
in the observer dynamics. Slow motions exist along with
chattering – due to external inputs. It is known that fast
oscillations have a linearizing effect on the propagation
of the slow motions through the system nonlinearities.
This effect is known as ‘‘chatter smoothing’’ phenom-
enon. Therefore, it is convenient to describe propagation
of the slow signals through the oscillating system using
the concept of the equivalent gain of the nonlinearity
(Hsu and Meyer 1968). Essentially, the equivalent gain is
the ratio of the averaged (on the period of chattering)
values of the output and input of the nonlinearity.
Transformation of the original dynamics of the super-
twisting algorithm into equivalent dynamics for the
averaged motions is illustrated below by figures 2 and 3.

Describing functions analysis of SOSM observers 819
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Now the objective, therefore, is to obtain the values of

the equivalent gains kn1 and kn2 for the two nonlinea-

rities of the ST algorithm.
The equivalent gain kn for each nonlinearity can be

defined as follows:

kni ¼
@�i0
@�0

����
�0¼0

, i ¼ 1, 2 ð18Þ

where �10 and �20 are the averaged outputs of the first

and the second nonlinearities respectively, and �0 is the
averaged input to those nonlinearities. As a result, for

the first nonlinear function:

kn1 ¼
2�

�ay
ð19Þ

where � is the amplitude of the relay and ay is the

amplitude of chattering at the relay input. And for

the second nonlinearity, we can write:

�20 ¼
�

2�

Z 2�

0

ð�0 þ �y � sin Þ
1=2d ð20Þ

Taking the derivative of (20) results in the following

formula:

kn2 ¼ �
�ð1=4Þ

2
ffiffiffiffiffi
ay
p ffiffiffi

�
p

�ð3=4Þ
� �

0:8346ffiffiffiffiffi
ay
p ð21Þ

With both equivalent gains available we can easily build

the linearized model of the observer–plant dynamical

system. For that purpose, the nonlinear functions of the

super-twisting controller need to be replaced with the

respective equivalent gains (figure 3), and the subse-

quent analysis can be done as the one of a linear system.

The equivalent gains are functions of the amplitude of

chattering, which was determined at the analysis of

chattering.

5. Examples

Consider an example of performance analysis of the

SOSM observer. Let the plant be the second-order

system:

_x ¼ Axþ Bu

y ¼ Cx,
ð22Þ

where

A ¼
0 1

�1 �3

� �
, B ¼

1

1

� �
, C ¼ 1 1

� 	

and the observer dynamics is given as follows:

_
x
_
¼ Ax

_
þ Buþ L�

y
_
¼ Cx

_
ð23Þ

where

L ¼
1
4

� �

Let us consider that the equivalent delay has been

found and is equal to �¼ 0.01 s. Determine the response

of the system under observation and the observer

dynamics to the harmonic oscillation of variable

frequency: ut¼ sin (!t)
Write an expression for the transfer function of the

internal model of the observer:

WlðsÞ ¼ CðsI� AÞ�1Le��s ¼
5sþ 6

s2 þ 3sþ 1
e�0:01s ð24Þ

Figure 3. Linearized model of the super-twisting algorithm.

Figure 2. Block diagram of the super-twisting algorithm.

820 I. Boiko et al.
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Carry out analysis of periodic motions in the systems
with the super-twisting SOSM observer if the param-
eters of the algorithm are given as: �¼ 0.5, � ¼ 0.8,
�¼ 0.6. The harmonic balance equation (13) with the
transfer function given by (24) has the solution (16):
�¼ 118.73 rad s�1. From (17) the amplitude of chatter-
ing can be found as ay¼ 9.30�10�4. This matches well
with the simulation: �sim¼ 117.24 rad s�1, aysim¼
9.76�10�4. The convergence of the observation error
to a limit cycle is shown in figure 4. Finding
parameters of chattering is illustrated by figure 5.
The steady oscillatory modes for the plant output
and super-twisting controller output are presented in
figures 6 and 7 respectively.

Now let us obtain the linearized model of the observer
dynamics for the averaged motions – via replacement of
the two nonlinearities with two equivalent gains.
Compute the gain values as per (19) and (21):
kn1¼ 547.63 and kn2¼ 16.421.

With the nonlinear functions replaced with the
equivalent gains, we can carry out analysis of the
observer dynamics as its response to the harmonic signal
of variable frequency. Write expression for the transfer
function from input u(t) to the error signal �(t),Wu��(s),
as follows:

Wu��ðsÞ ¼ CðsI� AÞ�1B

�
1� e��s

1þ ðkn2 þ kn1 � 1=sÞCðsI� AÞ�1Le��s

ð25Þ

Figures 8 and 9 give the transient response of the
SOSM observer. Figure 10 gives the frequency response
of the observer. The characteristics such as the
bandwidth, resonant frequencies and others can be
easily obtained from the transfer function (25) of the
linearized plant–observer model.

The observation error can also be computed for x1
and x2 using the transfer functions from the system
input to the difference of the variable and its estimate as
(26) for x1 and (27) for x2. The amplitude–frequency
characteristics corresponding to (26) and (27) are
presented in figure 11.

Wu��x1 sð Þ

¼
CðsI�AÞ�1Bð1� e��sÞðkn2þkn1=sÞC1ðsI�AÞ�1Le��s

1þðkn2þkn1=sÞCðsI�A�Þ�1Le��s

ð26Þ

where C1¼ [1 0]

Wu��x2ðsÞ

¼
CðsI�AÞ�1Bð1�e��sÞðkn2þkn1=sÞC2ðsI�LÞ�1Le��s

1þðkn2þkn1=sÞCðsI�AÞ�1Le��s

ð27Þ

where C2¼ [0 1]

6. Conclusion

The problem of obtaining frequency-domain chara-
cteristics of dynamical accuracy of sliding mode
observers that utilize the SOSM control algorithms is
presented in the article. The problem is solved with
the use of the describing function method and of the

Figure 4. Super-twisting trajectory of the observer system.

Figure 5. Point of intersection of the function 1/N(ay) and of

the Nyquist plot Wl(j!) for the example.

Describing functions analysis of SOSM observers 821
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Figure 6. Observer output ŷ(t) for u(t)¼ 0.

Figure 7. Output v of super-twisting algorithm for u(t)¼ 0.

Figure 9. Observation error � ¼ y� y
_
(the initial condition

y¼ 0.5 and u(t)¼ sin(t).
Figure 8. Output of the plant y(t) in (lower plot) and output

tracking for observer.

822 I. Boiko et al.
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concept of the equivalent gain of the nonlinearity.
This concept is extended to the SOSM algorithms.
The problem is solved with the use of a two-step
procedure.
At the first step, the problem of finding the

parameters of chattering is solved, and after that at
the second step the input–output problem with respect
to the oscillatory observer dynamics is solved with the
use of the equivalent gain concept. As a result, such
characteristics of the observer as the transfer function
and the frequency response for the observation errors
can be obtained. This provides a straightforward
methodology of the SOSM observer performance
evaluation and design.
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