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This article presents the integral sliding mode technique applied to identify disturbances

and robustify the optimal linear quadratic Gaussian controller for linear uncertain stochastic
systems, which is compared to the conventional sliding mode approach. The obtained
identifier/controller provides a method for estimating uncertainty values and ensures

robustness of the system against matched uncertainties, starting from the initial time instant.
Numerical simulations illustrating the obtained results are given for the inverted pendulum.

Keywords: Sliding mode observers; Identification; Stochastic noises

1. Introduction

The identification and robust control design using
the sliding mode approach has been receiving consider-
able attention in recent years. A particular interest
is given to the integral sliding mode (ISM) technique,
which maintains the state trajectory on the sliding
manifold from the initial time moment, thus assuring
insensitivity against matched uncertainties. The ISM
robust control design was initiated in Utkin and Shi
(1996) and has been continued for linear deterministic
regulators in Basin et al. (2003) and linear stochastic
filters in Basin et al. (2002, 2005). Other recent applica-
tions of the sliding mode approach to stochastic systems
can be found in Azemi and Yaz (2000), Poznyak (2003),
Niu et al. (2005), Shi et al. (2006). In this article, the
sliding mode approach is directed to identify matched
disturbances and design a robust controller for linear
uncertain stochastic systems.
This article studies application of two sliding

mode techniques, ISM and conventional sliding mode
(SM), to the state estimation/control and perturbation
identification problem for linear stochastic systems with
random Gaussian noises and deterministic uncertainties.

The algorithm includes the following steps. In both ISM
and SM cases, the unmeasured state is estimated using
the Kalman–Bucy filter and the linear quadratic
Gaussian (LQG) control is constructed as for the nom-
inal system without disturbances. Simultaneously, one
of the sliding mode techniques is applied to suppress
the matched uncertainties. The sliding mode disturbance
estimation method based on a first-order filter
(see Uktin 1992) is then used for identifying the matched
uncertainties.

The ISM approach rejects the matched uncertainties
in the nominal deterministic system from the initial
time moment, if the system state is measured, while
the conventional SM does the same after a reaching
phase. However, since the original system state depends
on stochastic noises and is not measured, its real value is
unknown. Hence, the control design is based on the
asymptotically converging Kalman–Bucy estimate,
and both ISM and SM disturbance compensation
approaches become asymptotical. As the inverted
pendulum example shows, the estimates steadily
converge to the real state values in both cases, providing
optimization of the quadratic criterion up to the
minimum values reachable for the nominal system.
A certain advantage of the ISM performance,
in comparison to the conventional SM, can be observed
for linear stochastic systems as well. Moreover, although*Corresponding author. Email: lfridman@servidor.unam.mx
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the disturbance estimation technique also becomes
asymptotical, identification of a sinusoidal signal is
very clear, especially in the ISM case.
This article is organized as follows. Section 2 presents

the problem statements for the optimal and robust LQG
control problems, outlines the design principles of the
ISM and conventional SM approaches, and recalls the
disturbance estimation method involving a first-order
filter. In section 3, two problem solutions are obtained
based on the ISM and SM techniques. Performance
of the obtained algorithms, as well as quality of
disturbance identification, are verified for the inverted
pendulum system in section 4. The simulation results
are discussed in section 5.

2. Problem statement

Let ðO,F,PÞ be a complete probability space with an
increasing right-continuous family of �-algebras
Ft, t � t0, and let ðW1ðtÞ,Ft, t � t0Þ and
ðW2ðtÞ,Ft, t � t0Þ be independent Wiener processes.
The Ft-measurable random process ðxðtÞ, yðtÞÞ is
described by a perturbed Ito differential equation for
the system state

dx tð Þ ¼ ðAx tð Þ þ Bu tð Þ þ g tð ÞÞdtþ GdW1 tð Þ,

xðt0Þ ¼ x0, ð1Þ

and a linear Ito differential equation for the observation
process

dy tð Þ ¼ Cx tð ÞdtþHdW2 tð Þ: ð2Þ

Here, xðtÞ 2 Rn is the system state, uðtÞ 2 Rm, m � n, is
the control input, yðtÞ 2 Rp is the observation vector.
The initial condition x0 2 Rn is a Gaussian vector such
that x0, W1ðtÞ , and W2ðtÞ are independent. It is assumed
that HHTðtÞ is a positive definite matrix. All coefficients
in (1)–(2) are deterministic time-invariant matrices of
appropriate dimensions. The pair A,Bf g is controllable,
the pair A,Cf g is observable, and yðtÞ 2 Rp is the
output observation process. The plant operates under
deterministic uncertainties g tð Þ and stochastic noises
dW1ðtÞ and dW2ðtÞ are represented as weak mean
square derivatives (Pugachev 2001) of the Wiener
processes, that is, white Gaussian noises.
The following condition is assumed

. The function g tð Þ represents matched uncertainties
such that g tð Þ ¼ B�ðtÞ and the norm k�ðtÞk is
bounded by

� tð Þ
�� �� � qa tð Þ, qa tð Þ > 0, ð3Þ

where qa tð Þ is a finite time-dependent function;
kxk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
Pn

i¼1 x
2
i Þ

p
denotes the Euclidean 2-norm of a

vector x 2 Rn.

Note that the state and observation equations can
also be written in the form of differential equations
with white noises (Anderson and Moore 1971), which
is commonly accepted in engineering applications

_x tð Þ ¼ Ax tð Þ þ Bu tð Þ þ g tð Þ þ G� tð Þ, ð4Þ

y tð Þ ¼ Cx tð Þ þH! tð Þ, ð5Þ

where white Gaussian noises � tð Þ and !(t) are the
weak mean square derivatives (Pugachev 2001) of
the Wiener processes W1ðtÞ and W2ðtÞ, respectively.
The problem statements (1), (2) and (4), (5) are equiva-
lent (Astrom 1970).

2.1 Linear quadratic Gaussian (LQG) problem

2.1.1 Optimal LQG filtering. Consider a linear
stochastic system given by unperturbed linear state and
observation equations

dx tð Þ ¼ ðAx tð Þ þ Bu tð ÞÞdtþ GdW1 tð Þ, xðt0Þ ¼ x0, ð6Þ

dy tð Þ ¼ Cx tð ÞdtþHdW2 tð Þ, ð7Þ

where the initial condition vector x t0ð Þ is a Gaussian
random variable with mean � and variance Pe0

E xðt0Þ
� �

¼ �, ð8Þ

E xðt0Þ � �½ � xðt0Þ � �½ �
T

� �
¼ Pe0: ð9Þ

Furthermore, xðt0Þ is independent of the Wiener
processes W1ðtÞ and W2ðtÞ.

The optimal estimate x̂ðtÞ for system state (6)
is designed to minimize the error covariance

E xðtÞ � x̂ðtÞ½ � xðtÞ � x̂ðtÞ½ �
T

n o
: ð10Þ

It is well-known that the optimal estimate x̂ðtÞ is
given by the Kalman–Bucy filtering equations (see, for
example, Anderson and Moore 1971)

_dx̂ tð Þ ¼ ðAx̂ tð Þ þ Bu tð ÞÞdtþ Kf dy tð Þ � Cx̂ tð Þdt½ �, ð11Þ

with the initial condition x̂ t0ð Þ ¼ �, where

Kf ¼ Pf tð ÞC
T HHT
� ��1

ð12Þ

862 M. Basin et al.
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is the optimal filter gain, and PfðtÞ is the solution to the
differential Riccati equation

_Pf tð Þ ¼ APf tð Þ þ Pf tð ÞA
T þ GGT

� Pf tð ÞC
TðHHTÞ

�1CPf tð Þ, ð13Þ

with the initial condition Pf t0ð Þ ¼ Pe0.

2.1.2 Optimal LQG control. The quadratic functional
to be minimized over the state and control vectors
of the system (5) is defined by

J ¼ E

Z 1

t0

xTVxþ uTWu
� �

dt

� �
: ð14Þ

Note that the inputs to the Kalman–Bucy filter are the
plant input and output vectors, u(t) and y(t), and its
output is the state estimate vector x̂ðtÞ. The separation
principle claims that the optimal control law can be
found taking the estimate x̂ðtÞ instead of the state
vector of a system without noises (see, for example,
Anderson and Moore 1971, Maciejowski 1994):

uðx̂ðtÞ, tÞ ¼ �Kcx̂ðtÞ, ð15Þ

where

Kc ¼ W�1BPC, ð16Þ

and PC satisfies the algebraic Riccati equation

APc þ PcA
T � PcBW

�1BTPc þ V ¼ 0: ð17Þ

2.1.3 Robust LQG control. The objective is to find the
solution to the LQG control/estimation problem for the
system (1) that coincides with the solution of this
problem for the system (6) on a sliding mode manifold,
i.e., is optimal with respect to the criterion (14) there.
The robustness of the obtained solution against determi-
nistic uncertainties is assured using the conventional SM
and integral ISM control techniques.

2.2 ISM and SM approaches to robust control problem

The disturbance compensation, i.e., robustification
of the optimal LQG control can be conducted via the
sliding mode technique. Consider a linear perturbed
system where stochastic noises are not yet included

_x tð Þ ¼ Ax tð Þ þ Bu tð Þ þ gðtÞ: ð18Þ

If only matched uncertainties are present, the following
robustification schemes are applicable.

Remark: The results of the next subsections are
given for a deterministic system (18) and not applied
directly to a stochastic system (1). The main
article result, asymptotical convergence of the optimally
controlled Kalman–Bucy estimate to the sliding
mode motion, where the matched deterministic
disturbance g(t) is compensated, is proved using the
general convergence properties of the Kalman–Bucy
filter in section 3.

2.2.1 Integral sliding mode control. Consider a control
input in the form

uðx, tÞ ¼ u0ðx, tÞ þ u1ðx, tÞ, ð19Þ

where u0ðx, tÞ is the nominal (optimal LQ) control for
the system without deterministic uncertainties

_x0 tð Þ ¼ Ax0 tð Þ þ Bu0 tð Þ: ð20Þ

Let the nominal control u0ðx, tÞ ¼ �KcxðtÞ be assigned
in accordance with the formula (16) for the gain
matrix Kc. The compensator u1ðx, tÞ should be designed
to reject the disturbance g(t) in the sliding mode
sðx, tÞ ¼ 0. The switching function s(x, t) is defined as

sðx, tÞ ¼ s0ðx, tÞ þ �ðx, tÞ s, s0, � 2 Rm ð21Þ

where s0ðx, tÞmay be designed as a linear combination of
the system state components s0ðx, tÞ ¼ BþxðtÞ, where
Bþ ¼ ðBTBÞ�1BT is the left-inverse matrix of B, and
the integral part � is selected to achieve xðtÞ ¼ x0ðtÞ for
all t 2 t0,1ð Þ. In other words, from the initial time
moment, the system state maintains the sliding mode
motion, where the equivalent sliding mode control
ueqðtÞ should compensate for the disturbance term

ueqðtÞ ¼ �gðtÞ: ð22Þ

To achieve this purpose, � is determined from the
equation

_�ðtÞ ¼ �
@s0
@x

AxðtÞ þ Bu0ðtÞ
� �

, �ðt0Þ ¼ �Bþsðxðt0ÞÞ,

ð23Þ

where @s0=@x ¼ r � s0 ¼ Bþ. Finally, the switching
condition takes the form

sðx, tÞ ¼ Bþ xðtÞ � xðt0Þ �

Z t

t0

Axð�Þ þ Bu0½ �d�

� �
: ð24Þ

Sliding mode identification and control 863
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The compensator u1ðx, tÞ is designed as a discontinuous
unitary control

u1 ¼ ��ðx, tÞ
sðx, tÞ

sðx, tÞ
�� �� :

For the Lyapunov function V ¼ ð1=2ÞðsTsÞ, its
functional derivative along the trajectory is calculated

_V ¼ sT _s,

_V ¼ sTBþ _xðtÞ � AxðtÞ þ Bu0½ �ð Þ,

_V ¼ sTBþ AxðtÞ þ Bðu0 þ u1Þ þ gðtÞ
� �

� sTBþ AxðtÞ þ Bu0ð Þ,

_V � �kskð�ðx, tÞ � k�ðtÞkÞ: ð25Þ

Thus, the sliding mode sðx, tÞ ¼ 0 is attractive from the
initial time moment, if

� x, tð Þ > k� tð Þk: ð26Þ

2.2.2 Conventional sliding mode control. Let us first
transform the system (18) into the regular form using
the nonsingular transformation matrix Casta ~nos and
Fridman (2006)

T ¼
B?
� �þ
Bþ

" #
, ð27Þ

where the columns of B? 2 Rðn�mÞ�n span the null space
of BT, Bþ 2 Rm�n. Setting z¼Tx, the following system
equations are obtained in terms of the new variables

_z1
_z2

� �
¼

A11 A12

A21 A22

� �
z1
z2

� �
þ

0
I

� �
uðtÞ, ð28Þ

where A11 2 Rðn�mÞ�ðn�mÞ, A12 2 Rðn�mÞ�m,
A13 2 Rm�ðn�mÞ, and A22 2 Rm�m. Define the switching
condition as

s ¼ s0ðz1Þ þ z2, s 2 Rm: ð29Þ

Since the pair A,Bf g is controllable, the pair A11,A12f g is
controllable too. Moreover, the pair fTAT�1,CT�1g is
observable in view of observability of the pair A,Cf g,
since T is a nonsingular quadratic matrix. To stabilize
the reduced-order system _z1 ¼ A11z1 þ A12z2, where
z2 ¼ �Fz1 is employed as a virtual control, the
optimal sliding mode (OSM) control technique
(Uktin 1992) is used. The OSM control is associated

with the following criterion taking its minimal value
in the sliding mode

J ¼

Z 1

t0

xTQx dt: ð30Þ

The switching condition is then calculated as

sðx, tÞ ¼ F I
	 


Tx ¼ 0, ð31Þ

where F ¼ �ðQ�1
22 A12PþQ�1

22 Q
T
12Þ and

ðT�1Þ
TQT�1 ¼

Q11 Q12

Q21 Q22

� �
, QT

21 ¼ Q12,

where P is the unique solution to the matrix Riccati
equation

P A11 � A12Q
�1
22 Q

T
12

� �
þ ðA11 � A12Q

�1
22 Q

T
12Þ

TP

�PA12Q
�1
22 A

T
12Pþ ðQ11 �Q12Q

�1
22 Q

T
12Þ ¼ 0:

Finally, the control takes the form

uðx, tÞ ¼ ��ðx, tÞ
sðx, tÞ

sðx, tÞ
�� �� : ð32Þ

In this case, the derivative of the Lyapunov function
V ¼ ð1=2ÞðsTsÞ is estimated as

_V � FA11 þ A21ð Þz1 þ FA12 þ A22ð Þ
�� ��ksk
� ð�ðx, tÞ � k� tð ÞkÞksk: ð33Þ

It is necessary to choose �ðx, tÞ > 0 sufficiently large
in order to yield _V < 0 and, thereby, assure the
attractiveness of the sliding mode sðx, tÞ ¼ 0.

2.3 Disturbance estimation

In the sliding mode sðx, tÞ ¼ 0, the control input takes its
equivalent form

u ¼ u0 þ u1eq, ð34Þ

where the equivalent control value is determined from
the equation dsðx, tÞ=dt ¼ 0, following the equivalent
control method (Uktin 1992), and, therefore, depends
on the unknown disturbance g tð Þ. However, as shown
in Uktin (1992), the equivalent control value (22) can
be calculated as the asymptotic value of a first-order
linear filter, with the discontinuous control as its input

� _u1av þ u1av ¼ u1: ð35Þ

864 M. Basin et al.
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The constant � should be selected small but such
that the first-order filter does not eliminate the slow
oscillation component, that is equal to u1eq.
In addition, the use of the equivalent control

estimate produced by the first-order filter alleviates the
high frequency chattering arising due to the disconti-
nuous nature of SM control schemes. Note that
this approach does not lead to the loss of robustness
or accuracy, which occurs if a continuous approxima-
tion of the sign function is used.

3. Problem solution

Consider a linear stochastic system (1) and the
observations (2), assuming the conditions of section 2.
Consider the Kalman–Bucy filtering equations (11)
and (13), which are optimal if the disturbance is
absent, gðtÞ ¼ 0,

dx̂ tð Þ ¼ ðAx̂ tð Þ þ Bu tð ÞÞdt

þ P tð ÞCTðHHTÞ
�1 dy tð Þ � Cx̂ tð Þdt½ �, ð36Þ

_P tð Þ ¼ AP tð Þ þ P tð ÞAT

þ GGT � P tð ÞCTðHHTÞ
�1CP tð Þ, ð37Þ

with the initial conditions x̂ t0ð Þ ¼ � and P t0ð Þ ¼ Pe0.
We can calculate the estimate x̂ tð Þ of the state vector
x tð Þ as the solution of (36) and use it in the control
law (19)

u x̂ tð Þ, tð Þ ¼ u0 x̂ tð Þ, tð Þ þ u1 x̂ tð Þ, tð Þ, ð38Þ

where u0 x̂ tð Þ, tð Þ is the LQG control for system without
disturbances, g tð Þ ¼ 0, and u1 x̂ tð Þ, tð Þ is the SM or
ISM discontinuous control based on the estimate x̂ tð Þ.
As follows from Jazwinski (1970), if the pair A,Bf g is
controllable and the pair A,Cf g is observable, x̂ tð Þ
asymptotically converges almost surely (with probability
one, w.p.1) to the state � tð Þ that satisfies the equation

d� tð Þ ¼ ðA� tð Þ þ Bu0 � tð Þ, tð ÞÞdtþ GdW1 tð Þ, ð39Þ

taking into account that u1 x̂ðtÞ, tð Þ is selected to reject
g(t) (equation 22). Consequently, the observation equa-
tion converges (w.p.1) to

dyðtÞ ¼ C�ðtÞdtþHdW2ðtÞ: ð40Þ

For this filtering system, x̂ðtÞ serves as the optimal
estimate in the Kalman sense, as follows from the results
of subsection 2.1.1. Furthermore, x(t) asymptotically
converges almost surely (w.p.1) to �(t), taking
into account that u1 is selected to reject g(t) and x̂ tð Þ

asymptotically converges almost surely (w.p.1) to the
state �(t). Thus, there is an asymptotic compensation
of matched disturbances almost surely (w.p.1).

The compensation algorithm functioning can be
explained as follows. Both the random state x(t) under
influence of deterministic disturbances and the optimal
estimate x̂ðtÞ converge to the random state �(t), which
is free of deterministic disturbances (see equation 39).
The state x(t) asymptotically converges to �(t) in view
of the disturbance compensator u1 dependent on the
optimal estimate x̂ðtÞ (equation 38), which asymptoti-
cally converges to the state xðtÞ, feeding up the cur-
rent-time information on the disturbed state x(t)
through the observations y(t). Note that availability of
real-time information on the disturbed state x(t) for
the optimal estimate x̂ðtÞ and, as a consequence, for
the compensator u1ðx̂ðtÞ, tÞ is the decisive point of the
algorithm. Thus, the algorithm is based on the system
of two variables simultaneously converging to the
same limit, as time goes to infinity, in such a way that
one of them, x̂ðtÞ, collects information on and regulates
the other one, x(t).

Two sliding mode control approaches, ISM and con-
ventional SM, are further used to form the compensat-
ing control u1. Note that the sliding mode control
u1ðx̂ðtÞ, tÞ, based on the estimate x̂ðtÞ, is realized
taking into account that the equation (36) for x̂ðtÞ is a
posteriori deterministic. Indeed, since x̂ðtÞ is defined
as an expectation conditional with respect to the
observation process y(t), the equation (36) is a priori
stochastic, but becomes deterministic upon substituting
a specific realization of y(t) into its right-hand side.

3.1 Solution using LQG/SM

Define u1 as

u1 x̂ðtÞ, tð Þ ¼ �Kcx̂ðtÞ � �ðx̂, tÞ
sðx̂ðtÞ, tÞ

s x̂ðtÞ, tð Þ
�� �� ,

where sðx̂ðtÞ, tÞ is designed using the optimal sliding
mode control theory (31)

sðx̂ðtÞ, tÞ ¼ F I
	 


Tx̂ðtÞ, ð41Þ

and Kc ¼ W�1BPCðtÞ is the LQG gain (16).

3.2 Solution using LQG/ISM

Define u1 as

u1 x̂ðtÞ, tð Þ ¼ �Kcx̂ðtÞ � �ðx̂, tÞ
sðx̂ðtÞ, tÞ

s x̂ðtÞ, tð Þ
�� �� , ð42Þ

Sliding mode identification and control 865
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where sðx̂ðtÞ, tÞ is designed using the ISM approach (24)

sðx̂, tÞ ¼ Bþ

"
x̂ðtÞ � x̂ðt0Þ �

Z t

t0

Ax̂ð�Þ þ Bu0ðx̂ð�Þ, �Þ½ �d�

#
,

ð43Þ

and Kc ¼ W�1BPCðtÞ is the LQG gain (16).
A study of the LQG/ISM-SM control of a linear

stochastic system describing an inverted pendulum
system perturbed with deterministic uncertainties
and stochastic Gaussian noises is presented in the next
section.

4. LQG-optimal and robust control problem for

inverted pendulum system

Consider an inverted pendulum system, which
consists of a cart moving along a metal guiding bar.
The corresponding Euler–Lagrange model is given by

Mþm m‘
m‘ cos 	 m‘2

� �
€r
€	

� �
¼

m‘ _	2 sin 	 � fc þ F
mg‘ sin 	 � f�

� �
:

The specific pendulum parameters are listed in table 1.
The system equations linearized in state variables take
the form

dx tð Þ ¼ ðAx tð Þ þ Bu tð Þ þ gðtÞÞdtþ dW1ðtÞ, ð44Þ

dy tð Þ ¼ Cx tð Þdtþ dW2ðtÞ, ð45Þ

where

A ¼

0 0 1 0

0 0 0 1

0 �0:8818 �1:9148 0:0056

0 21:4964 3:8498 �0:1362

2
666664

3
777775,

B ¼

0

0

0:3088

�0:6209

2
666664

3
777775, C ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2
666664

3
777775:

The control input u(t) is applied to the cart in order
to move and maintain the pendulum in the vertical
position. The state variable x(t) consists of four
components: x1 is the car position, that is the distance
from a reference point to the trolley, x2 is the angle
between the vertical line and the pendulum, x3 is the
trolley velocity, and x4 is the pendulum angular velocity.

The disturbance is matched: gðtÞ ¼ B�ðtÞ, and

�ðtÞ ¼ 7þ 6 sin t; thus, �(t) satisfies the condition (3).
The matrices in the criterion (30) are equal to

V ¼

10 0 0 0
0 10 0 0
0 0 1 0
0 0 0 1

2
664

3
775, W ¼ 1:

To simulate the system, the state initial condition is
chosen as

xðt0Þ ¼ 1
9


180
0 0

� �
:

The pair A,Bf g is controllable. Moreover, the vector
state is assumed completely measurable but corrupted
by noise, therefore, C 2 Rn�n, and the pair A,Cf g is

observable.
The first task is to implement the Kalman–Bucy filter

(36)–(37), which yields the state estimate vector x̂ðtÞ.
Then, the estimate-based control is defined according
to (38):

u x̂ tð Þ, tð Þ ¼ u0 x̂ tð Þ, tð Þ þ u1 x̂ tð Þ, tð Þ,

where u0ðx̂ðtÞ, tÞ ¼ �Kcx̂ðtÞ is the nominal LQG control
(15), and

Kc ¼ 3:1 106:6 15:4 23
	 


:

The discontinuous control u1ðx̂ðtÞ, tÞ ¼ ��ðx̂, tÞ �
ðsðx̂ðtÞ, tÞ=ks x̂ðtÞ, tð ÞkÞ, which compensates for the
matched disturbances, the gain �ðx̂, tÞ, and

the switching function sðx̂ðtÞ, tÞ are further designed
depending on a selected technique, conventional SM
or ISM.

Table 1. Inverted pendulum parameters.

Parameters Value

M Mass of the cart
m Mass of the pendulum
	 Angular position of the pendulum

r Linear position of the car
f� Friction proportional to the angular velocity
fc Friction proportional to the linear velocity

‘ Center of gravity position
F Input force

866 M. Basin et al.
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4.1 LQGSM control

Using LQGSM control yields

u x̂ tð Þ, tð Þ ¼ u0 x̂ tð Þ, tð Þ þ u1 x̂ tð Þ, tð Þ

¼ �Kcx̂ðtÞ � �ðx̂, tÞ
sðx̂ðtÞ, tÞ

s x̂ðtÞ, tð Þ
�� �� :

The system without stochastic noises (18) should
be transformed into the regular form using the
transformation matrix

T ¼

1 0 0 0
0 1 0 0
0 0 1 0:4973
0 0 0:6422 �1:2912

2
664

3
775:

The obtained regular form is given by

_z1, 1

_z1, 2

_z1, 3

_z2, 1

2
666664

3
777775 ¼

0 0 0:8017 0:3088

0 0 0:3987 �0:6209

0 9:8093 �0:0249 0:0385

0 �28:3222 �4:8993 �2:0261

2
666664

3
777775

_z1, 1

_z1, 2

_z1, 3

_z2, 1

2
666664

3
777775

þ

0

0

0

1

2
666664

3
777775uþ

0

0

0

6 sin tþ 7

2
666664

3
777775: ð46Þ

To stabilize the reduced order system

_z1, 1

_z1, 2

_z1, 3

2
64

3
75 ¼

0 0 0:8017

0 0 0:3987

0 9:8093 �0:0249

2
64

3
75

_z1, 1

_z1, 2

_z1, 3

2
64

3
75

þ

0:3088

�0:6209

0:0385

2
64

3
75 _z2, 1
	 


, ð47Þ

the optimal sliding mode (OSM) control is designed,
and the functional (30) reaches its minimum value if
the condition (31) holds

_z2 ¼ � �4:5602 �15:7301 �4:7292� _z1:
	

The corresponding switching condition is calculated as

s x̂ðtÞ, tð Þ ¼ �4:56 �15:73 �4:72 1
	 


ẑðtÞ

¼ �4:56 �15:73 �4:08 �3:64�x̂ðtÞ, ð48Þ
	

and the estimate-based control takes the form

u x̂ðtÞ, tð Þ ¼ �3:1 �106:6 �15:4 �23½ �x̂ðtÞ

þ �ðx̂, tÞ
s x̂ðtÞ, tð Þ

ks x̂ðtÞ, tð Þk
:

The gain �ðx̂, tÞ should satisfy the condition
(equation 33):

�ðx̂, tÞ > 0 �74:71 �10:76 �15:25�
	 �� x̂k k þ k�ðtÞk;

��
since

�ðtÞ
�� �� < 20,

then

�ðx̂, tÞ > 77 x̂k k þ 20:

This presents the worst case, which was experimentally
adjusted to �ðx̂, tÞ ¼ 20 x̂k k þ 20. Finally,

u x̂ðtÞ, tð Þ ¼ �3:1 �106:6 �15:4 �23
	 


x̂ðtÞ

� ð20 x̂k k þ 20Þ
sðx̂ðtÞ, tÞ

s x̂ðtÞ, tð Þ
�� �� : ð49Þ

4.2 LQGISM control

In the integral sliding mode (LQGISM), the
nominal system control u0 is the LQG control (15),
and the sliding mode is defined according to (24)

sðx̂ðtÞ, tÞ ¼ Bþ x̂ðtÞ � x̂ðt0Þ �

Z t

t0

ðA� BKcÞx̂ð�Þd�

� �
:

The gain �ðx̂, tÞ in (42) should satisfy the condition
(see equation 26): �ðx̂, tÞ > k�ðtÞk, where k�ðtÞk � 13,
and is set to �¼ 20. Finally, the entire control is given by

u x̂ðtÞ, tð Þ ¼ �Kcx̂ðtÞ � 20
sðx̂ðtÞ, tÞ

s x̂ðtÞ, tð Þ
�� �� ,

where Kc ¼ 3:1 106:6 15:4 23�:
	

4.3 Disturbance estimation

As described in section 2.3, passing u1 x̂ðtÞ, tð Þ through
first-order filter yields an estimate of the disturbance
term. The constant � of the first-order filter (35) is
experimentally set to �¼ 0.2.

Sliding mode identification and control 867
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5. Simulations

Numerical simulations are conducted for both control-
lers, LQGSM and LQGISM, and the perturbed stochas-
tic system. Figure 1 shows the perturbed system
response in both cases, the LQGSM results in the left
graph and the LQGISM results in the right one.
One can observe more control input oscillations when
the conventional SM is used, because there is no
insensibility to perturbations until the state enters the
sliding mode; due to this reason the control signal is
larger during transient response. The LQGISM control
also performs better, providing less oscillatory
estimate trajectories and identifying the disturbance
more precisely, than the LQGSM does. Finally, the
LQGISM approach leads to a closer approximation
of the real state by the estimate. Note that a good
estimate for the disturbance gðtÞ could be obtained
setting ĝðx, tÞ ¼ E u1ðt, x̂ðtÞÞ

� �
.

6. Conclusions

. The disturbance identification problem is solved for
a linear time-invariant stochastic uncertain system,
applying the conventional SM and ISM based
approaches.

. Although the real state value is unknown (unmea-
sured), the combination of the Kalman–Bucy estimate
with the LQG optimal control and ISM
technique yields a reliable state estimate, robust
control minimizing the cost functional, and
trustworthy disturbance identification.

. The robust controller problem is solved for a linear
stochastic system under white Gaussian noises and
deterministic uncertainties, using the conventional
SM and ISM techniques.

. A better performance is obtained for the ISM-based
approach, in comparison to the conventional SM.
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