Chapter 1

Higher Order Sliding
Modes as a Natural
Phenomenon in Control
Theory

Introduction

Sliding modes are used in order to keep a dynamic system to given con-
straints with utmost precision. They are also insensitive to external and
internal disturbances. These features are provided due to a theoretically
infinite frequency of control switching. At the same time, any presence of
real actuators and measuring devices may cause considerable change in the
real system behavior. There are also many arguments for the use of con-
tinuous controllers as approximations for discontinuous ones. Both reasons
lead to the replacement of regular sliding modes in real systems by some
special ones. Consider the phenomenon more explicitly.

A. Presence of fast actuators

Let the constraint be given by the equality of some constraint function
o to zero and the sliding mode ¢ = 0 be provided by a relay control.
Taking into account an actuator conducting a control signal to the process
controlled, we achieve a more complicated dynamics. In this case a relay
control enters the actuator and continuous output variables of the actuator
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Figure 1.1: Control system with actuator

are transmitted to the plant input ( Fig. 1.1). As a result discontinuous

switching is hidden now in the higher derivatives of the constraint function
[36, 37, 15, 16, 17, 18, 19, 20].

B. Artificial actuator-like dynamics

One of the main known drawbacks of regular sliding modes is the so-called
chattering effect which is exhibited by high frequency vibration of the plant.
This vibration features some definite vibration magnitude of the plant itself
(in the state space) and of the plant velocity. While the first magnitude
is infinitesimally small when switching imperfections (like switching delay)
tend to zero, the second is approximately constant and eventually even
large. Therefore the high frequency vibration energy is also finite or even
large which may cause a system disaster. To avoid chattering several ap-
proaches have been proposed. The main idea is to change the dynamics in
a small vicinity of the discontinuity surface in order to avoid real discon-
tinuity and at the same time to preserve the main properties of the whole
system. A transition to the new dynamics defined near the switching sur-
face has to be sufficiently smooth. The idea is realized by insertion of some
artificial actuator (Fig. 1.2). This actuator may be a functional [33] or
may have its own dynamics [8, 7]. We are interested here in the latter case.

The actuator installed (artificial or real) has mainly some fast dynamics.
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Figure 1.2: Control system with artificial actuator

The faster the dynamics, the more accurate is the modeling of the original
discontinuous dynamics with all its advantages and disadvantages. How-
ever, from time to time a different mode, contiguous to the ordinary slid-
ing mode, appears. The corresponding state and velocity vibration mag-
nitudes both tend to zero when switching imperfections vanish. More-
over, the actuator dynamics does not need to be really fast for the exis-
tence of such a mode. Such modes were called higher order sliding modes
[27, 9, 10, 11, 12, 2, 30, 31, 32, 24]. Convergence to this special mode may
be asymptotic [15, 16, 17, 18, 19, 20, 27, 12, 2, 5, 30, 31, 32] or may feature
a finite time as well [26, 9, 10, 11, 12, 24].

A higher order sliding mode (HOSM) is a movement on a special type
integral manifold of a discontinuous dynamic system. It appears every time
when some fast actuator-like dynamics is implanted instead of an ordinary
relay in a variable structure system. Even if this mode is not stable, it
plays the same role as integral manifold in ordinary differential equations.
Thus, HOSM is an important natural phenomenon in control theory.

In Section 1 the definitions of HOSM are presented. The difference
between the definitions is discussed. The place of HOSM in control theory
and connection between the sliding order and sliding accuracy are discussed
in Section 2. It is shown in Section 3 that HOSM emerges every time when
we have dynamic actuators in sliding mode control systems. Section 4 is
devoted to study of second order sliding mode stability in systems with



actuators. Various examples of second order sliding modes are presented
in Section 5. Section 6 deals with examples of higher order sliding modes,
an example of third order sliding algorithm with finite convergence time is
presented.

1.1 Definitions of higher order sliding modes

Regular sliding mode features few special properties. It is reached in finite
time which means that the shift operator along the phase trajectory exists,
but is not invertible in time at any sliding point. Other important features
are that the manifold of sliding motions has a nonzero codimension and
that any sliding motion is performed on a system discontinuity surface and
may be understood only as a limit of motions when switching imperfections
vanish and switching frequency tends to infinity. Any generalization of the
sliding mode notion has to inherit some of these properties. A definition
developed in [4] deals with the first property and allows, thus, extension
of the definition to dynamic systems of even completely different nature.
The definitions developed below utilize the other properties mentioned. In
many cases both definition systems are satisfied (not only in the case of the
regular sliding mode).

Let us remind first what are Filippov’s solutions [13, 14] of a discontin-
uous differential equation

i = o),
where € R", v is a locally bounded measurable (Lebesgue) vector func-
tion. In this case, the equation is replaced by an equivalent differential
inclusion
i € V(x).

In the particular case when the vector-field v is continuous almost every-
where, the set-valued function V(z) is the convex closure of the set of all
possible limits of v(y) as y — =, while {y} are continuity points of v. Any
solution of the equation is defined as an absolutely continuous function x(t),
satisfying the differential inclusion almost everywhere.

In the following Definitions we follow the works by Levantovsky [26],
Emelyanov et. al. [9, 10, 12], Levant [24].

1.1.1 Sliding modes on manifolds

Definition 1 Let L be a smooth manifold. Set L itself is called the first
order sliding set with respect to L. The second order sliding set is defined
as the set of points x € L, where V(x) lies entirely in tangential space Ty,
to manifold L at point x.



Definition 2 [t is said that there exists a first (or second) order sliding
mode on manifold L in a vicinity of a first (or second) order sliding point
x, if in this vicinity of point x the first (or second) order sliding set is an
integral set, i.e. it consists of Filippov’s sense trajectories.

Denote by L; the set of second order sliding points with respect to
manifold L. Assume that L; may itself be considered as a sufficiently
smooth manifold. Then the same construction may be considered with
respect to L. Denote by Lo the corresponding second order sliding set
with respect to Li. Lo is called the 3-rd order sliding set with respect to
manifold L . Continuing the process, achieve sliding sets of any order.

Definition 3 It is said that there exists an r-th order sliding mode on
manifold L in a vicinity of an r-th order sliding point x € L,_1, if in this
vicinity of point x the r-th order sliding set L,._1 is an integral set, i.e. it
consists of Filippov’s sense trajectories.

1.1.2 Sliding modes with respect to constraint func-

tions
Let a constraint be given by an equation o(x) = 0, where o : R" —
R is a sufficiently smooth constraint function. It is also supposed that
total time derivatives along the trajectories o, .4, ...,0 1) exist and are

single-valued functions of x, which is not trivial for discontinuous dynamic
systems. In other words, this means that discontinuity does not appear in
the first 7 — 1 total time derivatives of the constraint function o. Then the
r-th order sliding set is determined by the equalities

c=6=6=..=c"" Y =0 (1)
Here (1) is an r-dimensional condition on the state of the dynamic system.

Definition 4 Let the r-th order sliding set (1) be non-empty and assume
that it is locally an integral set in Filippov’s sense (i.e. it consists of Fil-
ippov’s trajectories of the discontinuous dynamic system). Then the cor-
responding motion satisfying (1) is called an r-th order sliding mode with
respect to the constraint function o.

To exhibit the relation with the previous Definitions, consider a manifold
L given by the equation o(z) = 0. Suppose that o,5,5,...,00~2) are
differentiable functions of  and that

rank[Vo,Va, ..., Vo" D] =r —1 (2)



holds locally. Then L,_; is determined by (1) and all L;,i = 1,...,7 — 2
are smooth manifolds. If in its turn L, _; is required to be a differentiable
manifold, then the latter condition is extended to

rank[Vo, Vo, ..., Vor V] =1r (3)

Equality (3) together with the requirement for the corresponding deriv-
atives of o to be differentiable functions of x will be referred to as the sliding
regularity condition, whereas condition (2) will be called the weak sliding
regularity condition.

With the weak regularity condition satisfied and L given by the equation
o = 0 Definition 4 is equivalent to Definition 3. If the regularity condition
(3) holds, then new local coordinates may be taken. In these coordinates
the system will take the form

Y1 =0, Y1 =9Y2; -5 Yr—1 = Yr;
o™ =g, = d(y,£);
§=U(y,&), E€R™.

Proposition 1 Let reqularity condition (3) be fulfilled and r-th order slid-
ing manifold (1) be non-empty. Then an r-th order sliding mode with respect
to the constraint function o exists if and only if the intersection of the Fil-
ippov vector-set field with the tangential space to manifold (1) is not empty
for any r-th order sliding point.

Proof. The intersection of the Filippov set of admissible velocities
with the tangential space to the sliding manifold (1), mentioned in the
Proposition, induces a differential inclusion on this manifold. This inclu-
sion satisfies all the conditions by Filippov [13, 14] for solution existence.
Therefore manifold (1) is an integral one.O

Let now ¢ be a smooth vector function, o : R — R™, 0 = (01,...,0m),
and also r = (rq,...,7 ), where r; are natural numbers.

Definition 5 Assume that the first r; successive full time derivatives of o;
are smooth functions, and a set given by the equalities

O'i:O"i:(.j'i:...ZO'i(nil):O, i:l,...,m,
is locally an integral set in Filippov’s sense. Then the movement mode
existing on this set is called a sliding mode with vector sliding order r with

respect to the vector constraint function o.



The corresponding sliding regularity condition has the form
rank{Vo;, ..., Val(”_l)ﬁ =1,....m}=ri+...+rny.

Definition 5 corresponds to Definition 3 in the case when r = ... = rp,
and the appropriate weak regularity condition holds.

A sliding mode is called stable if the corresponding integral sliding set
is stable.

Remarks.

1. These definitions also include trivial cases of an integral manifold in a
smooth system. To exclude them we may, for example, call a sliding mode
"not trivial” if the corresponding Filippov set of admissible velocities V()
consists of more than one vector.

2. The above definitions are easily extended to include non-autonomous
differential equations by introduction of the fictitious equation ¢ = 1

1.2 Higher order sliding modes in control sys-
tems

All the previous considerations are translated literally to the case of a
process controlled

&= f(t,z,u), o =0(t,z) € R, u=U(t,x) € R,

where x € R"™, t is time, u is control, and f, o are smooth functions. Control
u is determined here by feedback w = U(t,z), where U is a discontinuous
function. For simplicity we restrict ourselves to the case when o and u are
scalars. Nevertheless, all statements below may also be formulated for the
case of vector sliding order.

Regular sliding modes satisfy the condition that the set of possible ve-
locities V' does not lie in tangential vector space T to manifold o = 0, but
intersects with it, and therefore a trajectory exists on the manifold with
velocity vector lying in 7. Such modes are the main operation modes in
variable structure systems [6, 35, 36, 37, 23, 3, 39] and according to the
above definitions they are of the first order. When a switching error is
present the trajectory leaves the manifold at a certain angle. On the other
hand, in the case of second order sliding all possible velocities lie in the tan-
gential space to the manifold and even when a switching error is present,
the state trajectory is tangential to the manifold at the time of leaving.



To see connections with some well-known results of control theory, con-
sider at first the case when

& =a(z) +b(z)u, oc=o(x)€R, ueR,

where a, b, 0 are smooth vector functions. Let the system have a relative
degree r with respect to the output variable o (Isidory [22]). This means
that Lie derivatives Lo, LyL,0, ..., LyL"~20 equal zero identically in a
vicinity of a given point and L, L” !0 is not zero at the point. The equality
of the relative degree to r means, in a simplified way, that u first appears
explicitly only in the r-th full time derivative of o. It is known that in this
case 0 = Lig for i = 1,...,7 — 1, regularity condition (3) is satisfied
automatically and also 9,0(") = LyL"=1o # 0. There is a direct analogy
between the relative degree notion and the sliding regularity condition.
Loosely speaking, it may be said that the sliding regularity condition (3)
means that the ”relative degree with respect to discontinuity” is not less
than r. Similarly, the r-th order sliding mode notion is analogous to the
zero-dynamics notion.

The relative degree notion was originally introduced for the autonomous
case only. Nevertheless, we will apply this notion to the non-autonomous
case as well. As was already done above, we introduce for this purpose a
fictitious variable x,+1 = t,4,41 = 1. It has to be mentioned that some
results by Isidory will not be correct in this case, but the facts listed in the
previous paragraph will still be true.

Consider a dynamic system of the form

& =a(t,z) +b(t,z)u, 0 =0(t,z), u=U(tz) € R.

Theorem 1 Let the system have relative degree r with respect to the output
function o at some r-th order sliding point (to,xo). Let, also, the discontin-
uous function U take on values from sets [K,00) and (—oo, —K] on some
sets of non-zero measure in any vicinity of any r-th order sliding point
near point (to,xo). Then this provides, with sufficiently large K, for the
existence of r-th order sliding mode in some vicinity of point (to, o).

Proof. This Theorem is an immediate consequence of Proposition 1,
nevertheless, we will detail the proof. Consider some new local coordinates
Y= (Y1,---,Yn), Wwhere y; = 0,42 = 7,...,y, = "~V In these coordi-
nates manifold L,_; is given by the equalities y1 = y2 = ... =y, = 0 and
the dynamics of the system is as follows:

gl =Y2, .-, nyl = Yr,
Yr = h(t,y) +g(t,y)u, g(t,y) #0, (4)
£= \Ill(tvy) + \D2(tay)uv §= (yr-‘rla S 7yn)



Denote Ueqy = —h(t,y)/g(t,y). It is obvious that with initial conditions
being on the r-th order sliding manifold L,_; control u = U4 (t,y) provides
for keeping the system within manifold L,_;. It is also easy to see that the
substitution of all possible values from [—K, K] for u gives us a subset of
values from Filippov’s set of the possible velocities. Let |Ug4| be less than
Ky, then with K > Kj the substitution © = U, determines a Filippov’s
solution of the discontinuous system which proves the Theorem. O

The trivial control algorithm u = —K sign o satisfies Theorem 1. Usu-
ally, however, such a mode will not be stable.

It follows from the proof above that the movement in the r-th order
sliding mode is described by the equivalent control method (Utkin [35]),
on the other hand this dynamics coincides with the zero-dynamics [22] for
corresponding systems.

There are some recent papers devoted to the higher order sliding mode
technique. The sliding mode order notion, which appeared in 1990 [2, 5],
seems to be understood in a very close sense (the authors had no possibility
to acquaint themselves with the work by Chang [2]). The same idea is
developed in a very general way from the differential-algebraic point of
view in the papers by Sira-Ramirez [30, 31, 32]. In his papers sliding modes
are not distinguished from the algorithms generating them. Consider this
approach.

Let the following equality be fulfilled identically as a consequence of the
dynamic system equations [32]:

P(U(T)w-~7d707$7u(k)7"'7u7u):O' (5)

Equation (5) is supposed to be solvable with respect to o™ and u®). Func-
tion o may itself depend on u. The r-th order sliding mode is considered as
a steady state o = 0 to be achieved by a controller satisfying (5). In order
to achieve for o some stable dynamics

L=0""Y4a0D 4+ . +a,_10=0
the discontinuous dynamics
¥ = —sign¥ (6)

is provided. For this purpose the corresponding value of o(") is evaluated
from (6) and substituted into (5). The obtained equation is solved for u(*),

Thus, a dynamic controller is constituted by the obtained differential
equation for u which has a discontinuous right hand side. With this con-
troller successive derivatives o, . .., c(" =1 will be smooth functions of closed
system state space variables. The steady state of the resulting system will



satisfy at least (1) and under some relevant conditions also the regularity
requirement (3), and therefore Definition 4 will hold.

Hence, it may be said that the relation between our approach and the
approach by Sira-Ramirez is a classical relation between geometric and
algebraic approaches in mathematics. Note that there are two different
sliding modes in system (5), (6): a regular sliding mode of the first order
which is kept on the manifold ¥ = 0, and an asymptotically stable r-th
order sliding mode with respect to the constraint ¢ = 0 which is kept in
the points of the r-th order sliding manifold o =6 =6 =... =o(""1 = 0.

Real sliding and finite time convergence

Remind that the objective is synthesis of such a control u that the constraint
o(t,z) = 0 holds. The quality of the control design is closely related to the
sliding accuracy. In reality, no approaches to this design problem may
provide for ideal keeping of the prescribed constraint. Therefore, there
is a need to introduce some means in order to provide a capability for
comparison of different controllers.

Any ideal sliding mode should be understood as a limit of motions
when switching imperfections vanish and the switching frequency tends to
infinity [13, 14]. Let € be some measure of these switching imperfections.
Then sliding precision of any sliding mode technique may be featured by a
sliding precision asymptotics with € — 0.

Definition 6 Let (t,x(t,e)) be a family of trajectories, indexed by € € R,
with common initial condition (to,z(to)), and let t > to (or t € [to,T]).
Assume that there exists t1 > to (orty € [to,T]) such that on every segment
[t|prime, t|prime|prime], where t|prime x t1, (or on [t1,T]) the function
o(t,z(t,€)) tends uniformly to zero with e tending to zero. In this case we
call such a family a real sliding family on the constraint o = 0. We call the
motion on the interval [to,t1] a transient process, and the motion on the
interval [t1,00) (or [t1,T]) a steady state process.

Definition 7 A control algorithm, dependent on a parameter ¢ € R*, is
called a real sliding algorithm on the constraint o = 0 if, with ¢ — 0, it
forms a real sliding family for any initial condition.

Definition 8 Let y(e) be a real-valued function such that v(e) — 0 as
€ — 0. A real sliding algorithm on the constraint o = 0 is said to be
of order r (r > 0) with respect to v(¢) if for any compact set of initial
conditions and for any time interval [T, Ts| there exists a constant C, such
that the steady state process for t € [Th,T5] satisfies

lo(t, z(t, €))] < Chy(e)]



In the particular case when 7(e) is the smallest time interval of control
smoothness, the words ”with respect to 7’ may be omitted. This is the
case when real sliding appears as a result of switching discretization.

As follows from [24], with the r-th order sliding regularity condition
satisfied, in order to get the r-th order of real sliding with discrete switching
it is necessary to get at least the r-th order in ideal sliding (provided by
infinite switching frequency). Thus, the real sliding order does not exceed
the corresponding sliding mode order. The regular sliding modes provide,
therefore, for the first order real sliding only. The second order of the real
sliding was really achieved by discrete switching modifications of the second
order sliding algorithms [26, 9, 10, 11, 12, 24]. A special discrete switching
algorithm providing for the second order real sliding was constructed in
[34]. Real sliding of the third order is demonstrated later in this paper.

Real sliding may also be achieved in a way different from the discrete
switching realization of sliding mode. For example, high gain feedback
systems [29, 38] constitute real sliding algorithms of the first order with
respect to k!, where k is a large gain. Another example is adduced in
Section 5 (Example 2).

It is right that in practice the final sliding accuracy is always achieved
in finite time. Nevertheless, besides the pure theoretical interest there are
also some practical reasons to search for sliding modes attracting in finite
time. Consider a system with an 7-th order sliding mode. Assume that
with minimal switching interval 7 the maximal r-th order of real sliding is
provided. This means that the corresponding sliding precision |o| ~ 7" is
kept, if the r-th order sliding condition holds at the initial moment. Suppose
that the r-th order sliding mode in the continuous switching system was
asymptotically stable and does not attract the trajectories in finite time. It
is reasonable to conclude in this case that with 7 — 0 the transient process
time for fixed general case initial conditions will tend to infinity. If, for
example, the sliding mode were exponentially stable, the transient process
time would be proportional to rlnT—!. Therefore, it is impossible to observe
such an accuracy in practice, if the sliding mode is only asymptotically
stable. At the same time, the time of the transient process will not change
drastically, if it was finite from the very beginning.



1.3 Higher order sliding modes and systems
with dynamic actuators

Suppose that the plant has relative degree r with respect to the output
function . That means that we can describe the behavior of the first r
coordinates of the control system in form (4). Assume that relay control u
is transmitted to the input of the plant (Fig. 1.1) by a dynamic actuator
which itself has an I-th order dynamics. The behavior of the first [ actuator
coordinates and of the first r plant coordinates is described by the equations

yl =y2,---,yr71 = Yr,

gr = h(t,y) +9(t,y)z1, g(t,y) #0,

21:2:2,...,2.’17122’1 (7)

Z=p(ty, 2) +q(t,y,2)u, q(t,y,z) #0 (8)

where y; = 0. This means that the complete model of the sliding mode
control system has relative degree r + [, and, therefore, the (r + [)-sliding
regularity condition holds. According to Theorem 1, a sliding mode with
respect to o has to appear here, which has sliding order r+1. If the controller
itself is chosen in an actuator-like form (Fig. 1.2), the corresponding sliding
order will be still larger.

Thus, higher order sliding modes emerge every time when we have to
take into account dynamic actuators in a sliding mode control system.

Consider a special case when the actuator is fast. In this case equation
(8) has the form

:U‘Zl :p(tayvzau) + Q(t7y7z7:u')u (9)

where p is a small actuator time constant. In fact all motions in system
(7), (9) have fast velocities in such a case.

There are two approaches to investigation of systems with such actu-
ators: consideration of a small neighborhood of HOSM set [16, 18], and
transformation to a basis of eigenvectors. In both cases the complete model
of the control system will be a singularly perturbed discontinuous control
system. Fast motions in such systems are described by a system with an
(r + 1)-th order sliding mode.

Adduce some simple informal reasoning valid under sufficiently general
conditions.

Let an actuator be called precise if its output is used by the process
controlled exactly as a substitution for the control signal. This means, in
particular, that the dimensions of the actuator output and control coincide.
Also require for such an actuator that for any admissible constant input the



output of the actuator be set at the input value after some time and that
this transient time be small if the actuator is fast.

No chattering is generally observed in a system with a precise actua-
tor, if the corresponding higher order sliding mode is stable. Indeed, let
common conditions on regular sliding mode implementation be satisfied
for the process controlled. This means, in particular, that & = 0 implies
U = Ueq Where equivalent control u., is a sufficiently smooth function of
the state variables. Therefore, the output of the actuator inevitably tends
to this smooth function while the process enters the higher order sliding
mode ¢ = 0 and the chattering is removed. However, if a fast actuator is
not precise, fast motion stability in the higher order sliding mode is also to
be required in order to avoid chattering (see remark at the end of the next
section).

On the other hand instability of the sliding mode of corresponding order
r > 2 leads to appearance of a real sliding mode which is usually accompa-
nied by a chattering effect, if the system with a fast stable precise actuator
is considered (Fig. 1.1). Indeed, suppose that the actuator output is al-
ways stabilized at some slow function value. This is possible only if the
relay output is constant or an infinite frequency switching of the relay out-
put takes place. The latter means that such a value may be achieved only
if ¢ = 0. Thus, also total derivatives of o of orders up to r — 1 equal zero
in this mode and the higher order sliding mode is stable in contradiction
to our conditions. On the other hand the actuator output will be set at
the relay output value before the system leaves some small vicinity of the
manifold o = 0. This prescribes the needed sign to ¢ and prevents leaving
this small vicinity of the manifold. Hence, the actuator output performs
fast vibrations while the trajectory does not leave a small manifold vicinity.

1.4 Stability of second order sliding modes in
systems with fast actuators

Consider a simple example of a dynamic system

U1 =1Y2, Y2 = ay1 +bys +cys + ksigny

yi = Z?:1 ai’jyj, 7 = 3,...7’0 (10)

The second order sliding set is given here by equalities y; = y2 = 0.
Following [1], we single out the exponentially stable and unstable cases.

o FExponentially stable case. Under the conditions

b<0, k<0 (ES)



the set y1 = y2 = 0,|cys| < k is an exponentially stable integral
manifold for system (10).

e Unstable case. Under the condition
k>0 or b>0 (US)

the second order sliding set of system (10) is an unstable integral
manifold.

o Critical case.
k<0, b<0, bk=0. ()
With ¢ = b = 0,k < 0 the second order sliding set of system (10)
is stable but not asymptotically stable, with ¢ # 0 stability is deter-
mined by the properties of the whole system.
Condition (ES) is used in works by Fridman [18, 19, 20] for analysis of
sliding mode systems with fast dynamic actuators. It is not required that

actuators be precise. Adduce a simple outline of these reasonings. Let the
system under consideration be rewritten in the following form:

uz = Az + Bn+ Dz,
un = Cz+bn+ Dox + ksigno,

o=,
x‘ = F(z777’0-7x)5

(11)

where z € R™,x € R",n,0 € R.

With (ES) fulfilled and Re Spec A < 0 system (11) has an exponentially
stable integral manifold of slow motions being a subset of the second order
sliding manifold and given by equations

z=H(p,z)=—-A""Diz+O(p), o =n=0.

Function H may be evaluated with any desired precision with respect to
the small parameter p .
Therefore, according to [18, 19, 20], under the conditions

ReSpecA <0, b<0, <0 (CHA)

the motions in a system with a fast actuator of relative degree 1 consist of
fast oscillations, vanishing exponentially, and slow motions on a submani-
fold of the second order sliding manifold.

Thus, if conditions (CHA) of chattering absence hold, the presence of a
fast actuator of relative degree 1 does not lead to chattering in sliding mode
control systems. For any chattering simulation in this case it is necessary to
take into account some other factors like positive feedbacks [18] and time
delays [21] or to consider systems with relative degree of actuator more
than 1.



Remark

Stability of the fast actuator and of the second order sliding mode still do
not guarantee absence of chattering if the actuator is not precise. Indeed,
stability of a fast actuator corresponds to the stability of the fast actuator
matrix

A B
Re Spec ( c b )<0. (SA)

Consider the system

w1 =21+ 20 +n+ Dz,

WZs = 229 + 23 + Dax;

un = 24z; — 6029 — 9 + Dsx + ksign o,
o =1,

&= F(z,22,n,0,2),

where 21, 29,1, 0 are scalars. The dimensions of the actuator output 21, 22,7
and relay output sign o are not equal, so the actuator is not precise. It is
easy to check that the spectrum of the matrix is {—1, —2, —3} and condition
(ES) holds for this system. On the other hand the motions in the second
order sliding mode are described by the system

[Lzl =21+ 29 + Dll';
Wzs = 229 + Doz
&= F(z1,22,0,0,z).

The fast motions in this system are unstable and the absence of chattering
in the original system cannot be guaranteed.

1.5 Examples of second order sliding modes

Without loss of generality we shall illustrate the approach by some sim-
ple examples. Consider, for instance, sliding mode usage for the tracking
purpose. Let the process be described by the equation

T=u, z,u€R,

and the problem is to track a signal f(t) given in real time, where | f|, | f],|f] <
0.5. Only values of z, f, u are available. The problem is successfully solved
by the controller

u= —signo, oc=uz— f(t),

keeping o = 0 in the sliding mode of the first order. In practice, however,
there is always some actuator between the plant and the controller, which



inserts some additional dynamics and removes the discontinuity from the
real system. With respect to Fig. 1.1 let the system be described by the
following scheme:

T =z, u = some dynamics = z,u = —signo,

o =—f(t)+ 2

Example 1. Assume that the actuator has some fast first order dy-
namics. For example
Uz =u—z

where p is a small positive number. The second order sliding manifold L
is given here by the equations

c=x—f(t)=0, 6 =2z— f(t)=0. (12)

Equality .

G um z) = ft)
shows that the relative degree here equals 2 and, according to Theorem 1,
a second order sliding mode exists in the system, provided g < 1. The
motion in this mode is described by the equivalent control method or by
zero-dynamics, which is the same: from ¢ = ¢ = § = 0 achieve u =
pf(t) + z,z = f(t) and therefore

z=[f(t), 2= f(t), u=pf(t) + 2

According to Section 4, the second order sliding mode is stable here with p
small enough. Note that the last equality describes the equivalent control
[35, 36, 37] and is kept actually only in the average, while the first and the
second are kept accurately in this sliding mode.

Here and further the examples are accompanied by simulation results
with

f(t) =0.08sint + 0.12co0s0.3t , x(0) =0, 2(0) =0.
Here z is the actuator output. The plots of x(t) and f(¢) with p = 0.2

are shown in Fig. 1.3, whereas the plot of z(¢) is demonstrated in Fig.
1.4.

Example 2. One of the main ideas of the binary system theory [8, 7] is
to insert some artificial fast dynamics in the switching process. This may



1.897384E-01

N\

-6.961547E-02 \
0.000000E+-00 5.988000

Figure 1.3: Asymptotically stable second order sliding mode in a system
with a fast actuator. Tracking: x(¢) and f(¢).
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Figure 1.4: Asymptotically stable second order sliding mode in a system
with a fast actuator: actuator output z(t).
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Figure 1.5: Unstable second order sliding mode in a system with A,-
controller. Tracking: =(¢t) and f(¢).

be regarded as an installation of a fast actuator. For example, let

s f-n >
H —signwu, |z| < |ul,

where p is a small positive number. This is a slightly modified A,,-algorithm

by Emelyanov and Korovin [8]. Having substituted u = —sign o achieve the
classical form of the algorithm with z being considered as a control.
1
—+2, |z| > 1,
. _ m
¥ { —%sign o, |z| <1, (13)

Similarly to the previous example, achieve here a second order sliding mode
provided p < 2. Simple calculation shows that the trajectories revolve
around the second order sliding manifold in coordinates ¢, z,z. Algorithm
(13) provides for appearance of a real sliding mode of the first order with
respect to g~ '. Simulation results for z = 0.01 are shown in Fig. 1.5, 1.6.
The chattering is obvious here.

Example 3. The last actuator-like algorithm (13) may be modified in
order to receive finite time convergence to the second order sliding mode.
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Figure 1.6: Unstable second order sliding mode in a system with A,-
controller: control z(t) (values are taken at discrete times).

The aim is gained by twisting algorithms [26, 28, 9, 10, 24]

-2z, |z| > 1,
=< —bsigno, 06>0, |z]<1,
—signo, o06<0, |z|<1.

Derivative ¢ has to be calculated here in real time. Having substituted the
first difference of o for &, achieve another version of the algorithm adapted
for implementation:

—z(t;), |z(t;)] > 1,
z2=<( —bsigno(t;), o(t;)Ao; >0, |z(t) <1,
—signo(ti), o(ti)Ao; <0, |2(t:)] < 1.

Here t; < t;41. This algorithm modification constitutes a second order real
sliding algorithm, which means that the sliding accuracy is proportional
to the measurement time interval squared. The corresponding simulation
results are shown in Fig. 1.7, 1.8.

Example 4. Another algorithm [12, 24] serving the same goal is the
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Figure 1.7: Second order sliding mode attracting in finite time: twisting
algorithm. Tracking: z(¢) and f(¢).
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Figure 1.8: Second order sliding mode attracting in finite time: twisting
algorithm. Control z(t).
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Figure 1.9: Example 4: second order sliding mode attracting in finite time.
Tracking: z(t) and f(t).

algorithm

. -z, zl > 1,
z= =20 + 21, Zl:{ Iz}<1

—sign o,

The discrete switching modification of this algorithm also constitutes a
second order real sliding algorithm. Its simulation results are shown in Fig.
1.9, 1.10.

Note that in the latter example only the weak regularity condition (2)
holds. Examples 3 and 4 are representatives of large algorithmic families.
Details and a number of other examples for second order sliding modes
attracting in finite or infinite time may be found in [9, 11, 12, 26, 27, 28, 2,
5, 31, 32, 24].
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Figure 1.10: Example 4: second order sliding mode attracting in finite time.
Control z(t).

1.6 Sliding modes of order 3 and higher

Note, following [1], that for any [ > 3,a; j, k # 0 the I-th order sliding sets
in systems

=Yz, -y Yi-1 =Y,

U =5 @y + ksignyi,

yi = Z;;lai_jyj, z:l—l—l,,n
are always unstable with k # 0.

This leads to an important conclusion. Even a stable high order actuator
may insert additional chattering into the closed dynamic system. Whenever
a possibility of using actuators with r-th order dynamics (r > 2) for first
order sliding mode control systems is concerned, one has to search for stable
attractors of a corresponding (r 4+ 1)-dimensional fast dynamic system or
use some special control algorithms.

Example 5. Continuing the example series, let now the actuator have
second order dynamics:

5=z, 4430z + 202 = 20%u,

where u = 1/a — 0. Let also |f®)(¢)] < 0.5 be true. Calculation shows
that
o® = — 3 (1) - 3az; — 2a%2 + 20°u.
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Figure 1.11: Unstable third order sliding mode in a system with actuator
of relative degree 2: x(t) and f(¢).

It is easy to check (see Theorem 1) that, with ;2 < v/3/3, there is a Filippov’s
solution lying on set ¢ = 6 = & = 0, which corresponds to the third order
sliding mode. However, it is unstable according to the classical result by
Anosov [1]. Certainly, an approximation of ideal regular sliding mode is
achieved with p — 0 (Fig. 1.11). However, the actuator introduces here
considerable chattering (Fig. 1.12).

The following is the first published example of a third order sliding
algorithm with finite convergence time as well as of a third order sliding
mode being attractive in finite time at all.

Example 6. An example of a third order sliding algorithm with finite
convergence time. Define, determining by continuity when necessary,

1 5 ) .
U(o,6) = max{0, min[l, 3 +6(0 + E|Cf\2/5sign g)|0|72/5}},

®(0,6) = 5(1 — 2\11(0,6))(%|c'f|3 + %W)%.

In order not to change the notation, variable z is used below as an actual
control. Introduce also an auxiliary variable z;. The following algorithm
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Figure 1.12: Unstable third order sliding mode in a system with actuator of
relative degree 2: actuator output z(¢) (values are taken at discrete times).

provides for finite time convergence to the third order sliding mode
z= 21,

71 = —15sign (6 — ®(0,9)).

The proof is provided by a sequence of simple calculations. It is necessary
to check that

e ®(0,0) is a continuous piece-wise smooth function;

e Functions o,d,5 may be taken as new coordinates. There is a first
order sliding mode on the manifold

G = ®(0,0); (14)
e The corresponding sliding motion is described by equation (14) which
provides for finite time convergence to the origin o = ¢ = 0.

In a similar way a finite time convergence algorithm of an arbitrary
sliding order may be constructed.
The discrete switching modification of this algorithm

z = Zl(ti),
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Figure 1.13: Third order sliding mode attracting in finite time. Tracking:
x(t) and f(¢).

Z.l = 715sign (AO’(tl) - T@(U(tl),a(t,)))

constitutes a third order real sliding algorithm providing for the sliding
accuracy being proportional to the third power of the discretization interval
7. The simulation results are shown in Fig. 1.13, 1.14, 1.15. It was
taken that 7 = 1073,107%,5 - 107° and the sliding precision sup |o| =
2.8-107%,1.9-107?,2.7 - 10~ '° was achieved.

Note that the sliding algorithms from examples 3, 4, 6 cannot be pro-
duced by the powerful differential-geometric methods by Sira-Ramirez. At
the same time these algorithms are beyond any doubt of practical interest.
One of the present authors has already successfully applied such algorithms
in solving avionics problems and constructing robust differentiators [25]. It
has to be mentioned that these algorithms also provide for much higher
accuracy than the regular sliding modes [24].
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Figure 1.14: Third order sliding mode attracting in finite time. Control

z(t).
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Figure 1.15: Third order sliding mode attracting in finite time. Control
derivative z1(t) = 2(t).



Conclusions

Higher order sliding mode definitions were formulated.

It was shown that higher order sliding modes are natural phenomena
for control systems with discontinuous controllers if the relative degree
of the system is more than 1 or a dynamic actuator is present.

A natural logic of actuator-like algorithm introduction was presented.
Such algorithms also provide for the appearance of higher order sliding
modes.

Stability was studied of second order sliding modes in systems with
fast stable dynamic actuators of relative degree 1.

A number of examples of higher order sliding modes were listed.
Among them the first example was presented of a third order sliding
algorithm with finite time convergence. The discrete switching modi-
fication of this algorithm provides for the third order sliding precision
with respect to the minimal switching time interval.
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