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been less developed. In this paper, a discrete time super-twisting-like algorithm (DSTA) was proposed to
solve the problems of control and state estimation. The stability proof was developed in terms of the
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Most of the research in sliding mode theory has been carried out to in continuous time to solve the
estimation and control problems. However, in discrete time, the results in high order sliding modes have

discrete time Lyapunov approach and the linear matrix inequalities theory. The system states trajectories
were ultimately bounded inside a small region dependent on the sampling period. Simulation results
tested the DSTA. The DSTA was applied as a controller in a Furuta pendulum and as a signal differentiator
and as a controller in close loop for a DC motor.

& 2016 ISA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Advanced control techniques such as Sliding Modes (SM) allow
the control of uncertain nonlinear systems when they are affected
by modeling imprecisions or external perturbations. Classical
features exhibited by sliding modes are robustness with respect to
external matched uncertainties and finite time convergence. A SM
scheme is obtained by inducing a discontinuity in the control
structure. The discontinuous injection must be designed such that
the trajectories of the system are forced to remain on some surface
defined in the state space. The resulting motion on that surface is
referred as sliding mode [1]. In continuous time systems, the SM
have been extensively studied, the main theoretical results are
presented in [1,2], and references therein. In continuous time, the
second order sliding mode solutions (SOSM) preserve the main
characteristics of classical SM while reduce the undesirable chat-
tering effect [3,4].

On the other hand, SM in discrete-time or discrete sliding
modes (DSM) generate the so-called quasi-sliding regime (QSM)
and it has been less developed than the continuous case. The first
ideas in DSM were introduced by [5,6] where a QSM is established
rights reserved.
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for systems with relative degree one. In [7], the study of SISO
nonlinear systems with relative degree more than one is treated. A
new definition of a QSM regime is addressed in [8], where the
motion of the system is restricted inside a certain band around the
sliding hyperplane. In [9,10], some new developments on QSM
have been reported for several classes of discrete-time linear
systems. An approach to control discrete time systems using the
fast output technique is considered when the system states are not
needed on-line [11]. The idea of second order sliding mode control
in discrete time systems has been introduced in terms of certain
class of discretizations [12]. Although in [13,14] a sort of dis-
cretization has been applied on high order sliding mode con-
trollers, the results are not reported in the literature so far, which
deals with the concept of high-order discrete time sliding mode
control (HDSM).

In this study, a new strategy to develop a Lyapunov like func-
tion for the so-called discrete time Super-Twisting-like Algorithm
(DSTA) is proposed. This name is used considering the similarities
between the Euler discretization applied on the continuous ver-
sion of the super-twisting method. In this scheme, the system
trajectories are confined into a boundary layer in the vicinity of the
sliding surface and stays inside it forever. The upper bound for the
tracking error applying the DSTA is depending on the sampling
period to the square power. The stability analysis is made in terms
systems based on recurrent Super-Twisting-like algorithm. ISA
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of the discrete-time Lyapunov theory. Sufficient conditions for the
existence of QSM by means of a LMI are proposed.

In Section 2, the concept of high-order sliding modes (HOSM) is
introduced. Some mathematical background on the stability of discrete
time nonlinear systems is given in Section 3. Then, a discrete time
super-twisting control, a particular type of discrete time second order
sliding mode control is presented in Section 4. The result about the
convergence of the proposed algorithm is established in terms of a
simple quadratic Lyapunov function. In Section 5, numerical examples
are presented. The first example is regarding the stabilization problem
of a Furuta Pendulum. Then, the DSTA is tested as a robust signal dif-
ferentiator following the result given in [15]. In close loop, the trajectory
tracking problem for a DC motor is presented as a second example.
Finally in Section 6 some conclusions are established.
2. Concept of high-order sliding modes

First, let us briefly introduce the high-order SM controllers
concept applied on continuous time systems. Consider a smooth
dynamic system _x ¼ f xð Þþg xð Þu, where xARn is the system state,
uAR is the scalar control, f : Rn-Rn and g xð Þ : Rn-Rn are some
smooth functions. High-order sliding manifold is given as follows.
Consider that the set

sr ¼ x :
dk

dtk
σ xð Þ ¼ 0; k¼ 0;1;…; r�1

( )
; ð1Þ

is non-empty and consists locally of Filippov trajectories, where σ
is a smooth function (this is considered as the sliding variable).
The trajectories of these functions provide the successive time
derivative of σ. The motion on set (1) is called rth-order sliding
mode [18], which gives the dynamic smoothness degree in some
vicinity of the sliding mode.

The relative degree r of the system is assumed to be constant
and known. In other words, the first time at control explicitly
appears in the rth total time derivative of σ is σr ¼ h t; xð Þþ l t; xð Þu,
where

h t; xð Þ ¼ σr j u ¼ 0;

l t; xð Þ ¼ ∂
∂u

σra0; 0okmr ∂
∂u

σrrkM ;

σr
�� ��

u ¼ 0rc; km; kM ; cARþ :

For finite time stabilization at origin, u takes the form given by
u¼φ σ; _σ ;…;σrð Þ. Based on this concept, several sliding mode con-
trollers (the sub-optimal controller [16], twisting controller [17], the
terminal sliding mode controller [18] and super twisting controller [19])
were proposed in continuous time. Moreover, a general output based
controller for rth relative degree system has been also developed.

Formulating HDSM, Wang et al., firstly discretized the continuous
time SMC and after that equivalent control based SMC system with
the relative degree higher than one is formulated in the canonical
form for designing the controller [13]. To define the sliding set, they
replaced high order derivatives of the sliding mode by their respective
discrete counterpart such as _σ ð�Þ≔σ kþ1ð Þ. Using invertible state
transformation matrix, they conclude that the original state is
asymptotically stable.
3. Mathematical background

The following result is needed to demonstrate the convergence
results for the DSTA.

Theorem 1. [20] Consider the nonlinear dynamic system

x1 kþ1ð Þ ¼ f 1 x1 kð Þ; x2 kð Þð Þ; x1 0ð Þ ¼ x10
Please cite this article as: Salgado I, et al. Control of discrete time
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x2 kþ1ð Þ ¼ f 2 x1 kð Þ; x2 kð Þð Þ; x2 0ð Þ ¼ x20 ð2Þ

where x1ADDRn1 , x2ARn2 , n1þn2 ¼ n, f 1 : Rn-Rn1 and f 2 : Rn-

Rn2 are continuous smooth functions. Assume that there exists a
continuous function V : D� Rn2-R and a class of K functions α �ð Þ,
β �ð Þ such that the following inequality is valid

α x1k kð ÞrV x1; x2ð Þrβ x1k kð Þ
x1AD; x2ARn2 ð3Þ

Furthermore, assume that there exists a continuous function W :

D-R such that W x1ð Þ40, x1k k4μ,

ΔV x1; x2ð Þr�W x1ð Þ
x1AD; x2ARn2

where μ40; is such that Bα� 1 β μð Þð Þ 0ð Þ �D, where Bα� 1 is a subset of
D centered at the origin with radius α�1. Finally, assume that

sup
x1 ;x2ð ÞABμ 0ð Þ�Rn2

V f x1; x2ð Þð Þ

exists. Then the nonlinear dynamic system (2) is ultimately bounded
with respect to x1, uniformly in x2 with bound ε9α�1 η

� �
, where

η4max β μ
� �

; sup
x1 ;x2ð ÞABμ 0ð Þ�Rn2

V f x1; x2ð Þð Þ
8<
:

9=
;

Furthermore, limsupk-1 x1 kð Þ
�� ��rα�1 η

� �
. If, in addition D¼Rn and

α �ð Þ is a K1 class function, then the nonlinear dynamic system (2) is
globally ultimately bounded with respect to x1 uniformly in x2 with
bound ε.

In the previous theorem, the following definition was used.

Definition 1. [20] The nonlinear discrete time dynamic system (2)
is uniformly ultimately bounded with bound ε if there exists ϕ40
such that, for every δA 0;ϕ

� �
, exists Tf ¼ Tf δ; ε

� �
40 such that

x0k koδ implies x kð Þ
�� ��oε, kZk0þTf . The nonlinear discrete time

dynamic system (3) is globally uniformly ultimately bounded with
bound ε if for every δA 0;1ð Þ, there is a Tf ¼ Tf δ; ε

� �
40 such that

x0k koδ implies x kð Þ
�� ��oε, kZk0þTf .

Remark 1. This definition has the same meaning that finite time
convergence in continuous time for discrete time in quasi-sliding
mode regimen.

Based on the previous theorem, the next corollary represents
the main tool to demonstrate the convergence of the algorithm
introduced in this paper.

Corollary 1. [20] Consider the nonlinear dynamic system (2).
Assume that there exist a continuous function V : D� Rn2-R and a
class of K functions α �ð Þ, β �ð Þ such that Eq. (3) holds. Furthermore,
assume that there exists a K class function γ : D-R such that

ΔV x1; x2ð Þr�γ x1k kð Þþγ μ
� �

;

x1AD; x2ARn2 ð4Þ

where μ40 is such that Bα� 1 β μð Þð Þ 0ð Þ �D: Then the nonlinear
dynamic system (2) is ultimately bounded with respect to x1 uni-
formly in x2 with bound ε9α�1 η

� �
where η¼ β μ

� �þγ μ
� �

. Fur-
thermore, limsupk-1 x1k krα�1 η

� �
. If, in addition, D¼Rn and α �ð Þ

is a class of K1 function, then, the nonlinear dynamic system (2) is
globally ultimately bounded with respect to x1 uniformly in x2 with
bound ε.

These two results are used to develop the stability proof for
the DSTA.
systems based on recurrent Super-Twisting-like algorithm. ISA
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4. Problem statement and main contribution

Consider an uncertain discrete time nonlinear system

x kþ1ð Þ ¼ In�nþτAð Þx kð ÞþτBu kð Þþτf xðkÞð Þ ð5Þ
where xARn is the state vector, uARm is the control input, A, B are
constant matrices of appropriate dimensions, and f is an uncer-
tainty/disturbance in the system, τ is the sampling period of the
system. The form presented in (5) is usually known as the Euler
type discretization of a nonlinear system.

Assume that the following conditions hold

A1) rank B¼m
A2) the pair A;Bð Þ is controllable
A3) the function f is continuous.

It is well-known that under assumptions A1 and A2 there exist a
matrix T such that the transformation

η
ξ

" #
¼ Tx; T ¼ B?

Bþ

" #
;

Bþ ¼ ðB>BÞ�1B> ;

B?B¼ 0

converts the system (5) in its equivalent regular form given by

η kþ1ð Þ ¼ η kð ÞþτA11η kð ÞþτA12ξ kð Þ
ξ kþ1ð Þ ¼ ξ kð ÞþτA21η kð ÞþτA22ξ kð ÞþτuðkÞþτ ~f ηðkÞ; ξðkÞ� � ð6Þ
where ηARn�m and ξARm. In this paper the results are applied to
the single input case (m¼1). However the results can be easily
extended to the multi-input case. Consider now the sliding surface
parametrized by the gain KARm�ðn�mÞ given by

s kð Þ ¼ ξ kð Þ�Kη kð Þ ð7Þ
such that,

η kþ1ð Þ ¼ In�1�n�1þτA11þτA12Kð Þη kð ÞþτA12sðkÞ ð8Þ
obeys a predefined performance. Since the pair A11;A12ð Þ is control-
lable, matrix K can be designed using any linear control design
method in order to obtain practical stability. Then, the problem
considered in this study focuses on designing the control action u
such that the surface s kð Þ is restricted in a QSM. Therefore, if the pair
η; s
� �

is redefined as the state variables under study the following
system is obtained ðξ kð Þ ¼ s kð ÞþKη kð ÞÞ
η kþ1ð Þ ¼ η kð Þþτ A11þτA12Kð Þη kð ÞþτA12s kð Þ
s kþ1ð Þ ¼ Kη kð Þþs kð Þ� �þτA21η kð Þ

þτA22 Kη kð Þþs kð Þ� �þτu kð Þþτ ~f ηðkÞ; ξðkÞ� �
�K η kð Þþτ A11þA12Kð Þη kð ÞþτA12s kð Þ� � ð9Þ

If the controller u kð Þ satisfies the following structure

u kð Þ ¼ � A21þA22K�KA11�KA12Kð Þη kð Þ
� A22�KA12ð Þs kð Þþv kð Þ ð10Þ

then, the system (6) takes the form

η kþ1ð Þ ¼ η kð Þþτ A11þτA12Kð Þη kð ÞþτA12s kð Þ
s kþ1ð Þ ¼ s kð Þþτ ~f η kð Þ; s kð ÞþKη kð Þ; k� �þτv kð Þ ð11Þ
Now the problem considered in this research deals with designing the
function v kð Þ such that s kð Þ becomes a QSM. This new form of the
problem statement is solved with the application of a discrete version
of the Super-Twisting algorithm (DSTA), which satisfies [15]:

v kð Þ ¼ �k1ϕ1 s kð Þð Þþw kð Þ
w kþ1ð Þ ¼w kð Þ�τk2ϕ2 s kð Þð Þ ð12Þ
where

ϕ1 sð Þ ¼ j sj 1=2sign sð Þ; ϕ2 sð Þ ¼ sign sð Þ ð13Þ
The correct selection of gains k1 and k2 makes possible to

render the sliding surface into a QSM behavior.
Please cite this article as: Salgado I, et al. Control of discrete time
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Note that the uncertain function ~f η; sþKη; k
� �

can be rewritten
as

~f η; sþKη; k
� �¼ g1 η; s; k

� �þg2 η; k
� �

g1 η; s; k
� �¼ ~f η; sþKη; k

� �� ~f η;Kη; k
� �

g2 η; k
� �

≔~f η;Kη; k
� � ð14Þ

Eq. (11) with the DSTA becomes

η kþ1ð Þ ¼ I n�mð Þ� n�mð Þ þτA11þA12K
� �

η kð ÞþA12s kð Þ
s kþ1ð Þ ¼ s kð Þ�τ k1ϕ1 s kð Þð Þ�w kð Þþg1 η; s; k

� �� �
w kþ1ð Þ ¼w kð Þ�τ k2ϕ2 s kð Þð Þþdg2 η; k

� �� �

where dg2 ηðkÞ; k� �¼ g2 ηðkþ1Þ; kþ1
� �

. Let us introduce the fol-
lowing extended state vector θ≔½η> s> w> �> . This extended state
vector satisfies the following recurrent dynamics

θ kþ1ð Þ ¼ΦðKÞθ kð ÞþBsign sðkÞð ÞþΨ kð Þ ð15Þ
with

ΦðKÞ ¼
Φ11 A12 0
0 Im�m τIm�m

0 0 Im�m

2
64

3
75

Φ11 ¼ I n�mð Þ� n�mð Þ þτ A11þA12Kð Þ

B¼
0

�τk1 sj j1=2
�τk2

2
64

3
75; Ψ kð Þ ¼

0
τg1 η; s; k

� �
τdg2 η; k

� �
2
64

3
75

By assumption, the function ~f η; sþKη; k
� �

is bounded, then

Ψ kð Þ
�� ��2rϰ1 θ kð Þ

�� ��2
Λþϰ2 8kZ0 ð16Þ

where ϰ1 and ϰ2 are positive known constants and Lambda is a
positive definite and symmetric matrix of appropriate dimensions.
The main result of the paper is presented in the following theorem

Theorem 2. Consider the nonlinear system given in (15), selecting
k140 and k240; if the following matrix inequality

Φ> Kð Þ PþP Λ1þΛ2
� �

P
� �

Φ Kð Þ� 1�ϱ
� �

Pþϰ2Λ2o�Q ð17Þ
has a positive definite solution P ¼ P> 40 then, the nonlinear
dynamic system (15) is ultimately bounded with respect to η uni-
formly in ξ with bound

ε≔
λmax Pf g ξþ

2 þ2
γ0
ϱ

� �
þγ0
ϱ

� �
λ1=2min Pf g

ð18Þ

where

γ0≔δ2þ1
4 δ

2
1λmin Q

�2
n o

; δ1≔τ4ωk21k
2
2þz22τ2k

2
1;

δ2≔z33τ2k
2
2þ4z23ω2þϰ2; 0ZϱZ1;

zi;j ¼ Λ1þP
� 	

i;j ¼ 1:n�1; Λ1ARðn�1Þ�ðn�1Þ; ωARþ ð19Þ
Proof. Consider the following Lyapunov candidate function given
by

V kð Þ≔ θ kð Þ
�� ��2

P

This function is bounded by two positive definite K functions as
follows:

λmin Pf g θ kð Þ
�� ��2r θ kð Þ

�� ��2
Prλmax Pf g θ kð Þ

�� ��2
If ξþ

2 ARþ is the upper bound for the vector ~θ ¼ s w½ �> , the last
equation turns in

λmax Pf g θ kð Þ
�� ��2rξþ

2 þ η kð Þ
�� ��2
systems based on recurrent Super-Twisting-like algorithm. ISA
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Then, both functions α �ð Þ and β �ð Þ are defined as

α yð Þ ¼ λmin Pf gy2 β yð Þ ¼ λmax Pf g ξþ
2 þ2y2


 �
Let ΔVðkÞ≔V kþ1ð Þ�V kð Þ then
ΔV kð Þ ¼ θ> kþ1ð ÞPθ kþ1ð Þ�θ> kð ÞPθ kð Þ ð20Þ
Substituting system (11) in (20) becomes

ΔV kð Þ ¼ θ> kð Þ Φ>PΦ�P

 �

θ kð Þ�2θ> kð ÞΦ>PB kð Þsign s kð Þð Þ
þ2θ> kð ÞΦ>PΨ kð ÞþB kð Þ> PB kð ÞþΨ > kð ÞPΨ kð Þ

Using the following MI [21] X>YþY >XrX>Λ�1XþY >ΛY
(X;YARn�m; Λ¼Λ> 40;ΛARn�n) and adding and subtracting
ϱV ðxÞ, the last equation turns in

ΔV kð Þrθ> kð Þ Φ> PþΛ�1
1 þΛ�1

2


 �
ΦP


 �
θ kð Þθ 1�ϱ

� �
θ

þB kð Þ> PþΛ1
� �

B kð ÞþΨ > kð Þ PþΛ2
� �

Ψ kð Þ�ϱV xð Þ

Expanding the term B kð Þ> ZB kð Þ with Z1≔PþΛ1 and using the
bounds described in (16)

B> kð ÞZB kð Þ ¼ z22τ2k
2
1 sj jþ2z23τ2k1k2 sj j1=2þz33τ2k

2
2

Using again the matrix inequality mentioned above in the term
that contains sj j1=2 and considering the definition Z2 ¼ PþΛ2

� �
;

and using the assumption that there exists a matrix Q ¼ Q > 40
such that, MI given by (17) has a positive definite and symmetric
solution P, then ΔV kð Þ becomes into (for any ωARþ )

ΔV kð Þr�θ> kð ÞQθ kð Þþδ1 sj jþδ2�ϱV kð Þ
By Choleskii decomposition [21] with ~Q ¼Q1=2 we obtain

ΔV kð Þr� Qθ kð Þ
�� ��2þδ1 Q Q

�1
θ kð Þ

��� ����ϱV kð Þþδ2

The arrangement of the terms in the previous inequality yields to

ΔV kð Þr�ϱV kð Þþδ2þ1
4 δ

2
1 Q

�1
��� ���2

� Qθ kð Þ
�� ���1

2 δ1 Q
�1

��� ���
 �T
Qθ kð Þ

�� ���1
2 δ1 Q

�1
��� ���
 �

Considering that the last term in the previous inequality is always
negative

ΔV kð Þr�ϱV kð Þþδ2þ1
4 δ

2
1λmin ðQ �1Þ2

n o
ð21Þ

Using the definition of γ0 presented in Theorem 2, we can rewrite
last equation as

ΔV kð Þr�ϱV kð Þþγ0r�ϱ x1 kð Þ
�� ��2þγ0

Defining the function γ as γ yð Þ≔ϱy2, ΔVðkÞ can be upper bounded
by ΔV kð Þr�γ x1j jð Þþγ μ

� �
. Following the result given in Theorem

1 and Corollary 2, the bounds for the DSTA convergence are
obtained as ζ ¼ β μ

� �þγ μ
� �

where μ2≔ϱ�1γ0. Therefore, using the
previous definition, one has

ζ μ
� �¼ λmax Pf g ξþ þ2μ2


 �
þαμ2

and the upper bound for the equilibrium point of (15) is
ðε9α�1 η

� �Þ, that concludes the proof. □

The condition about the bound ξþ
2 imposed on the vector θ¼

½s> w>�> is a strong condition that sometimes cannot be
accomplished in all the real cases. Therefore, to relax this condi-
tion the next corollary is introduced

Corollary 2. If the MI in (17) is feasible for a positive definite solution
P ¼ P> 40, then, the equilibrium point of system (15) is ultimately
Please cite this article as: Salgado I, et al. Control of discrete time
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bounded in a neighborhood around the origin with radius r defined as

r¼ γ0
1�ϱ

ð22Þ

with γ0 and ϱ defined in (19).

Proof. With the definition of γ0 in (19), Eq. (21), is rewritten as

ΔVðkÞr�ϱV ðkÞþγ0

And ΔVðkÞ ¼ Vðkþ1Þ�VðkÞ, then
Vðkþ1Þr ð1�ϱÞVðkÞþγ0

The last equation is an invariant discrete time inequality and its
solution can be obtained as

Vðkþ1Þr ð1�ϱÞkVð0Þþ
Xk
i ¼ 1

ð1�ϱÞi�1γ0 ð23Þ

If the upper limit of last equation is taken, that is,

lim
k-1

ðVðkÞÞrr ð24Þ

The Corollary 2 is proven. □

Remark 2. The solution of the MI showed in Eq. (17) seems to be a
restrictive condition. However, this MI can be transformed into
two LMIs. The MI in (17) is rewritten as

Φ> ðKÞðPþP ~ΛPÞΦðKÞ�ð1�ρÞPþϰΛ2r�Q ð25Þ
With ~Λ ¼Λ�1

1 þΛ�1
2 . If the next inequality is fulfilled

PþP ~ΛPrG ð26Þ
that is equivalent (by Shur complement [21]) to

G�P P

P ~Λ
�1

" #
Z0 ð27Þ

The MI in (25) can be presented as

Φ> ðKÞGΦðKÞ�ð1�ρÞPþϰIr�Q ð28Þ
Then, the solution of (17) is relaxed to the solution of (27) and (28).
5. Numerical results

5.1. The stabilization problem

The DSTC is testing in a Furuta Pendulum, with dynamic model
is given by the Euler–Lagrange formulation as

M qð Þ ¼
M11 qð Þ M12 qð Þ
M12 qð Þ M22 qð Þ

" #
; N q; _qð Þ ¼

N1 q; _qð Þ
N2 q; _qð Þ

" #

here

M11 qð Þ ¼ JeqþMpr2 cos 2 q1
� �

M12 qð Þ ¼ �1
2Mprlp cos q1

� �
cos q2

� �
M22 qð Þ ¼ JpþMpl

2
p

N1 q; _qð Þ ¼Mpr �2r cos q1
� �

sin q1
� �

_q2
1


 �
þMpr

1
4
lp cos q1

� �
sin q2

� �
_q2
2

� �

N2 q; _qð Þ ¼ 1
2Mplp sin q1

� �
cos q2

� �
_q2
1þg sin q2

� �
 �

where q¼ ½q1 q2�> are the generalized coordinates described in
Fig. 1. q1 is the angular rotation of the Furuta pendulum measured
in the horizontal plane and q2 is the angular rotation of the second
arm that describes the Furuta pendulum, Mp is the mass of the
pendulum, lp is the length of pendulum center of mass from the
systems based on recurrent Super-Twisting-like algorithm. ISA
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Fig. 1. Furuta pendulum and its generalized coordinates [22].

Table 1
Parameters of furuta pendulum.

Notation Value Units

Mp 0.027 kg
lp 0.153 m
Lp 0.191 m
r 0.0826 m
g 9.810 m/s2

Jeq 1:23� 10�4 kg m2

Jp 1:10� 10�4 kg m2
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pivot, Lp is the total length of the pendulum, r is the length of the
arm pivot to pendulum pivot, g is the gravitational acceleration
constant, Jp is the pendulum moment of inertia about its pivot axis
and Jeq is the equivalent moment of inertia about motor shaft pivot
axis. The Physical parameters of the Furuta pendulum are defined
in Table 1.

The equation of motion is linearized around qn ¼ π;0ð ÞAR2.
Thus, matrices A; B and C of the linear system are

A¼

0 0 1 0
0 0 0 1

�6:591 125:685 �6:262 25:525
3:031 �112:408 2:879 �11:737

2
6664

3
7775

B¼

0
0

56:389
�25:930

2
6664

3
7775; C ¼

0
1
0
0

2
6664

3
7775

>

ð29Þ

The gain K for the sliding surface (7) was obtained using the
Ackerman–Utkin formula [1]. The DSTA with k1 ¼ 10 and k2 ¼ 20,
was tested in the linearized system. The sampling period was
settled as 0.01 s.

To obtain the bound ϵ we follow the next procedure: The
matrix ΦðKÞ described in Eq. (15) is given by

ΦðKÞ ¼

0:9989 0:0367 0 56:3890 0
0:0005 0:9831 0 �25:9300 0
�0:0001 �3:0767 1:0000 4:3846 0

0 0 0 1:0000 0:0010
0 0 0 0 1:0000

2
6666664

3
7777775

Selecting ϱ¼ 0:01, ϰ1 ¼ 0:1, ϰ2 ¼ 0:8, Q ¼ 5nI5�5 and
~Λ ¼Λ�1

1 þΛ�1
2 ¼ I5�5, the solution of (17) under the methodology
Please cite this article as: Salgado I, et al. Control of discrete time
Transactions (2016), http://dx.doi.org/10.1016/j.isatra.2016.04.024i
proposed in Remark 2 is given by

P ¼

0:0352 0:0793 0:0175 �0:0003 �0:0000
0:0793 0:1861 0:0634 0:0258 �0:0000
0:0175 0:0634 0:1447 0:0031 0:0000
�0:0003 0:0258 0:0031 0:6750 0:0003
�0:0000 �0:0000 0:0000 0:0003 0:5348

2
6666664

3
7777775

and

G¼

1:1945 0:1505 0:0336 0:0082 �0:0000
0:1505 1:4775 0:1025 0:0624 �0:0001
0:0336 0:1025 1:3021 0:0086 0:0000
0:0082 0:0624 0:0086 2:2485 0:0005
�0:0000 �0:0001 0:0000 0:0005 1:9640

2
6666664

3
7777775

The value of λminð ~Q
�2Þ ¼ 1:4782, from the solution P, the elements

z33 ¼ 1:5348 and z23 ¼ 0:003 of matrix Z ¼ PþΛ1. Then from Cor-
ollary we obtain the values of γ0 ¼ 0:8006 and finally

rr 0:8006
1�0:01

¼ 0:8087 ð30Þ

This boundary condition can be easily verified in Figs. 2–5 where a
comparison between three different control strategies is shown.
The strategies used in simulation are a FOSM and a classical state
feedback control. The gain applied in the FOSM was selected as
KFOSM ¼ 60. And the control structure as

v¼ KFOSMsign s kð Þð Þ
For the feedback controller, the Ackerman formula was employed
to collocate the poles of the continuous Furuta pendulum descri-
bed in Eq. (29) in ½�5τ; �10τ;15�τ; �20τ�. The gain obtained
was injected in the signal control u as

u kð Þ ¼ �KSFx kð Þ
with KSF ¼ ½4:754; �18:8017;0:0559;32:001�. Finally for the dis-
crete controller based on the DSTA, the sliding surface was stabi-
lized with a K ¼ ½�19:5� 10�3;651:6� 10�3; �3:99� 10�4�
obtained from the Ackerman formula collocating the poles in
½�1; �12�5�. The gains for the DSTA were chosen as k1 ¼ 60,
k2 ¼ 30. The coupled control perturbation for the simulation was
selected as

~f kð Þ ¼ 0:1 sin 10τkð Þ�0:5 cos 5τkð Þ
Finally, the sampling period was selected as 0.001 and the initial
conditions were chosen as

xð0Þ ¼ 2:5 0 0 0
� 	> ð31Þ

A total of 10,000 samples were simulated. In Fig. 2, the averaged
trajectories for the pendulum position and the theta angle are
shown. The control based on the DSTA shows a smooth behavior in
contrast to the FOSM controller. This can be seen in the subfigure
d, where the chattering phenomena appear. This classical dis-
advantage of FOSM was alleviated with discrete time high order
sliding modes. Moreover, the zone of convergence is smaller when
the DSTA is applied. In the case of the state feedback controller,
with the previous parameters shows a faster convergence into a
bigger zone than the other two controllers. Also, the overshot in
the pendulum position is 10 times greater than the techniques
involving discrete-time sliding mode theory.

In Fig. 3 the control signal is plotted. The energy used by the
FOSM is bigger than the other controllers and presents fast oscil-
lations. The feedback controller presents bigger overshoot but less
oscillations. However, the convergence zone is bigger than the
FOSM and DSTA. It seems that the DSTA presents better cap-
abilities to control the Furuta pendulum, it offers less energy than
the FOSM but better convergence than the state feedback
systems based on recurrent Super-Twisting-like algorithm. ISA
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Fig. 2. Comparison between the DSTA, the FOSM and a state feedback controller (FB). The trajectories for the position and angle of a Furuta pendulum are obtained by
simulations.

Fig. 3. Comparison between the control energy required for the DSTA, a first order
sliding mode (FOSM) and a state feedback controller (FBC).

Fig. 4. Comparison between the sliding surface for a DSTA and a first order sliding
mode (FOSM). The simulation time that is plotted was reduced to obtain a better
appreciation of the signals.
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Fig. 5. Description of the boundary region defined by Eq. (30).

Fig. 6. Block scheme for the proposed controller using discrete STA as differentiator
as well as controller.

Table 2
Parameters of DC motor system.

Notation Value Units

J 0.011 kg m2

l 37� 10�3 μH
b 0.0005 N s
kt 0.37 N A�1

r 3.565 Ω

ke 0.37 s rad�1

vn 100 sin kτð Þ volts
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controller. In Fig. 4, the sliding surface for the FOSM and DSTA is
shown. The QSM layer given by the DSTA is smaller than the FOSM.
In Fig. 5 we can see the bound for the convergence of vector θ. This
region of convergence coincides with the theoretical calculation
provided by Corollary 2.

5.2. The differentiation and tracking problem

Consider the following lineal time invariant system equations
that describe the dynamics for a DC-motor driver [19]

J
d
dt
ω tð Þ ¼ �bω tð Þþkti tð Þ�TL tð Þ

l
d
dt

i tð Þ ¼ �keω tð Þ�ri tð Þþv tð Þ ð32Þ

where ω tð Þ is the shaft speed, i tð Þ is the motor current, v tð Þ is the
supply voltage, TL tð Þ is the load torque, J and b are the overall
mechanical inertia and viscous friction coefficient at the motor
shaft, respectively, kt is the torque constant, l and r are the
armature inductance and resistance, and ke is the back
electromagnetic-force constant. All motor parameters are assumed
uncertain.

The shaft position Θ and the motor current i are available for
measurement, while the shaft speed ω is assumed to be unknown.
After an Euler discretization, the system described in (32) turns on

ω kþ1ð Þ ¼ω kð ÞþτJ�1 �bω kð Þþkti kð Þ�TL kð Þ� 	
i kþ1ð Þ ¼ i kð Þþτl�1 �keω kð Þ�ri kð Þþv kð Þ� 	 ð33Þ

The structure for the closed loop for the complete discrete sliding
mode control is depicted in Fig. 6.

As shown in Fig. 6 there exists an objective system, that is in
the form of (33). The goal for the control action is to minimize the
tracking error between the objective system and the real system
shown in the block DC-Drive. If the error dynamics are defined
according to Fig. 4. The equations in differences describing the
error are

eω kþ1ð Þ ¼ eω kð ÞþτJ
�1½�beωðkÞþktiðkÞ�T LðkÞ�

eiðkþ1Þ ¼ eiðkÞþτl
�1½�keeωðkÞ�reiðkÞ�vðkÞþvnðkÞ� ð34Þ

where vnðkÞ denotes a known control action applied to the
objective system defined as vnðkÞ ¼ 100 sin kτð Þ with τ being the
sampled period and vðkÞ is the action to be calculated under the
DSTC technique. The terms with the upper bar represent a kind of
uncertainties in the system parameters, that is, there exist some
positive constants Jþ , J� , bþ , b� , …, such that the following
inequalities hold

J� r Jr Jþ b� rbrbþ k�
t rktrkþ

t

Please cite this article as: Salgado I, et al. Control of discrete time
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l� r lr lþ r� rrrrþ k�
e rkerkþ

e

The error dynamics are already in the normal form described in
(6), so it is straightforward to follow the procedure to use the
proposed DSTA described in Eq. (12) and applied the final control
action vðkÞ in the form of (10).

The available output does not consider the angular velocity ω,
so in the scheme depicted in Fig. 6, there is a block located in the
feedback loop, that is a real discrete-time robust differentiator
based on the DSTA, that provides a finite-time-converging estima-
tion (in terms of the QSM concept described above) for the angular
velocity ω̂.

The resulting differentiator based on the discrete super-
twisting like algorithm as well as its proofs of convergence was
presented in [15]. The parameters for the objective system are
described in Table 2 [19].

It is assumed that the real system to be controlled has uncer-
tainties. In the case of the second simulation, the parameters for
the FOSM are KFOSM ¼ 1000. For the DSTA k1 ¼ 500 and k2 ¼ 200.
The poles to stabilize the surface were selected as ½�2:91 �3:91�.
Finally, the pole assignment for the state feedback controller was
designed for the desired poles ½�1:91; �2:91; �3:1�. The coupled
perturbation was defined as ~f tð Þ ¼ 0:3 sin 20τkð Þ�0:7 cos 10τkð Þ.
The results obtained for this simulation are shown in Figs. 7–9. The
sampling time τ was selected as 0.001.
systems based on recurrent Super-Twisting-like algorithm. ISA
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Fig. 7. Comparison between the DSTA, a first order sliding mode (FOSM) and a state feedback controller. The waveforms for the shaft velocity and the motor current plotted
obtained by simulations. The blue line is the reference and the dotted red line represents the real waveforms. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this paper.)

Fig. 8. Comparison between the three control signals: DSTA, a first order sliding
mode (FOSM) and a state feedback controller.

Fig. 9. Comparison between the sliding surface when the DSTA and a first order
sliding mode (FOSM). The simulation time that is plotted was reduced to obtain a
better appreciation of the signals.
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In Fig. 7, the waveforms for the shaft velocity and motor current
are plotted. It is possible to see with the state feedback controller
how the real waveforms do not reach the reference as good as the
techniques applying sliding modes. Also the oscillation in the
motor current is bigger in the state feedback controller.
Please cite this article as: Salgado I, et al. Control of discrete time
Transactions (2016), http://dx.doi.org/10.1016/j.isatra.2016.04.024i
In Fig. 8, the control signals are depicted. The three controllers
have a similar performance. However, the signal when the DSTA is
applied is smooth and does not present the fast oscillations
associated for a FOSM. We can see that the FOSM exhibits more
oscillations than the control obtained by the DSTA. Taking into
account that we are controlling a DC motor, these oscillations can
damage this kind of electromechanical systems. In fact, this is the
systems based on recurrent Super-Twisting-like algorithm. ISA
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main disadvantage of FOSM theory. With the DSTA we can reduce
these oscillations almost to a smooth signal. Finally, in Fig. 9, the
behavior of the sliding surfaces is shown, the zone of convergence
is reduced if the DSTA is implemented. The same procedure pre-
sented in the first numerical example can be followed in order to
obtain the region of convergence r.
6. Conclusions

In this paper a Super twisting-like algorithm for discrete time
systems has been presented. Finite time ultimate boundedness of
the states was proved by means of the Lyapunov method for the
control problem. Indeed, this is the main contribution proposed in
this paper. Also, the upper bound of the neighborhood where the
waveforms are converging is analytically calculated. The DSTA was
applied as a controller (the pendulum example) and as a differ-
entiator (control of a dc motor), preserving the characteristics that
the Super-Twisting presents in the continuous time domain when
a small sample period is chosen. The results obtained can be
compared with the results obtained for the Super-Twisting control
in continuous time. The discrete form for the controller can be
implemented in a Microcontroller to be applied in other industrial
applications.
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