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Abstract—In this paper, an output feedback stabilization of
perturbed double integrator systems using super-twistingcontrol
(STC) is studied. It is shown that when STC is implemented based
on super-twisting observer (STO) then it is not possible to achieve
second order sliding mode (SOSM) using continuous control on
the chosen sliding surface. Two methodologies are proposedto
circumvent the above mentioned problem. In the first method,
control input is discontinuous which may not be desirable for
practical systems. In second method continuous STC is proposed
based on higher order sliding mode observer (HOSMO) which
achieves SOSM on the chosen sliding surface. For simplicity,
we are considering here only the perturbed double integrator,
which can be generalized for an arbitrary order. Numerical
simulations and experimental validation are also presented to
show the effectiveness of the proposed method.

Index Terms—Super-twisting control (STC), super-twisting
observer (STO), higher order sliding mode observer (HOSMO).

I. I NTRODUCTION

SLIDING MODE CONTROL (SMC) [1]- [15] is one of
the most promising robust control techniques. It is able to

reject bounded matched perturbation theoretically completely.
The main disadvantage of SMC is chattering [1]- [3].

To avoid the chattering effect, several methodologies are
proposed in sliding mode literature, STC [16] is one among
them. The STC plays a special role among the sliding mode
controllers. Unlike other second order sliding mode (SOSM)
controllers, STC is applicable to a system (in general, any
order) where control appears in the first derivative of the
sliding variable. It has following advantages:
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• compensates uncertainties/perturbations that are Lips-
chitz1;

• requires only information of the output (sliding variable)
σ;

• provides finite-time convergence to the origin forσ and
σ̇ simultaneously;

• generates continuous control signal and, consequently,
adjusts the chattering;

For example if we want to apply STC on second order
mechanical system to adjust the chattering problem then we
have to design a sliding variable such that it has relative degree
one. If we choose a linear surface then STC ensures the
uncertainties/perturbations compensation, finite time conver-
gence to sliding variable and its derivative, but states converges
asymptotically to the origin.

The sliding mode approach has been exceptionally suc-
cessful in the design of state feedback controllers. However,
in most of the physical systems, an output is available for
measurement. In that case, other states of the system can be
obtained using an observer. The sliding mode observers are
widely used due to the finite time convergence, insensitive
with respect to uncertainties and also the estimation of the
uncertainty [21].

A new generation of observers, based on the cascaded
interconnection of the super-twisting algorithm (STA) have
been recently developed [22], [18]. The STA is a well known
SOSM algorithm introduced in [17] and it has been widely
used for control, observation [22] and robust exact differen-
tiation. Finite time convergence and robustness for the STA
has been proved by geometrical methods [16] and by means
of Lyapunov based approach [19], [20].

An output feedback finite time stabilization for a double
integrator system using observer is already studied in the [26]-
[28]. The controller used in [26]- [28] are able to achieve
finite time stabilization of the states only when system is free
from the disturbance. These controllers are not able to reject
disturbance theoretically completely in the case of disturbance,
so the states will be remain bounded around origin in the
case of disturbance and bound depends onmagnitude of the
disturbance.

Using output feedback, twisting control [25] and prescribed
control law it is possible to achieve finite time stabilization

1First-order sliding-mode can compensate also discontinuous and uni-
formly bounded uncertainties/perturbations.
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of both the states of perturbed double integrator system. But,
the control input is discontinuous in nature and it generates
chattering, which is undesirable. Using STC we can stabilize
both the states of the perturbed double integrator asymptoti-
cally using continuous control. Due to continuous control STC
[29], [30] can adjust the chattering problem which is good
from the practical point of view.

A. Main Contribution

If only output is available for perturbed double integrator
system and STC is to be designed then we need both states
information. Using STO it is possible to estimate other state
in finite time in the presence of disturbance. It is shown in the
paper that when STC is implemented based on STO then it
is not possible to achieve SOSM using continuous control on
the chosen sliding surface. In this paper two methodologiesare
proposed to circumvent the above problem. In the first method,
control input is discontinuous which may not be desirable
for practical systems. In second method continuous STC is
proposed based on HOSMO which achieves SOSM on the
chosen sliding surface. For simplicity, we are consideringhere
only the perturbed double integrator, which can be generalized
for an arbitrary order.

B. Structure of the Paper

The paper is organized as follows. Section II discusses the
STC based on STO for perturbed double integrator system.
Section III details the super-twisting output feedback (STOF)
control. HOSMO based STC for perturbed double integrator
is discussed in Section IV . Section V contains application of
proposed method to an industrial plant emulator followed by
the concluding Section.

II. STC BASED ON STO FOR PERTURBED DOUBLE

INTEGRATORSYSTEM

Consider the dynamical system of the following form

ẋ1 = x2

ẋ2 = u+ ρ1

y = x1,

(1)

wherey is an output of the system andρ1 is a disturbance.
Only output information is available here, most of the con-
troller needs the all state information, so first we reconstruct
the other state of the system and then we design the STC
based on the estimated information. STO is already reported
in the literature [22], using that, next we will show that the
STC design based on STO does not have a mathematical
justification.
The STO dynamics to estimate the states of the system (1) is
given in the following form

˙̂x1 = z1 + x̂2

˙̂x2 = z2 + u,
(2)

where z1 and z2 are the correction terms. Let, define the
error variable ase1 = x1 − x̂1 and e2 = x2 − x̂2. The
correction terms are selected asz1 = k1|e1|

1

2 sign(e1) and

z2 = k2sign(e1). Then, we can represent error dynamics in
the following form

ė1 =− k1|e1|
1

2 sign(e1) + e2

ė2 =− k2sign(e1) + ρ1.
(3)

It is assumed that|ρ1| < ∆0. If we choosek1 = 1.5
√
∆0

andk2 = 1.1∆0 then the errore1 ande2 both will go to zero
simultaneously. The above equation’s finite time stabilityis
already proved in the literature [20], [22] so we can conclude,
e1 and e2 both will converge to zero in finite timet > T0.
Once the errore1 and e2 is zero, we can say thatx1 = x̂1

andx2 = x̂2 after finite timet > T0.
Now, for the controller design here an output of the system

(1) has a relative degree two, therefore one cannot apply direct
STC, because STC is applicable for only relative degree one
system. Therefore, we have to define a sliding manifold of the
following form to get a relative degree one

ŝ = c1x1 + x̂2 wherec1 > 0. (4)

To synthesize the control law (for designing STC), taking the
time derivative of (4), then we can write as

˙̂s = c1ẋ1 + ˙̂x2

˙̂s = c1x2 + u+ k2sign(e1)
(5)

Substituting thex2 = e2 + x̂2 in the (5), further we can write
as

˙̂s = c1x̂2 + c1e2 + u+ k2sign(e1). (6)

Now, transforming the system (1) in the co-ordinate ofx1 and
ŝ by using (4) and (6) which can be written as

ẋ1 = ŝ− c1x1 + e2

˙̂s = c1x̂2 + c1e2 + u+ k2sign(e1). (7)

Now, if we select the controlu to get SOSM on̂s as,

u = −c1x̂2 − λ1|ŝ|
1

2 sign(ŝ)−
∫

t

0

λ2sign(ŝ)dτ, (8)

whereλ1 andλ2 are the designed parameters for the controller.
This parameter can be selected as procedure given in [17],
[20]. After substituting the control input (8) into (7), we can
get

ẋ1 = ŝ− c1x1 + e2

˙̂s = c1e2 − λ1|ŝ|
1

2 sign(ŝ)−
∫

t

0

λ2sign(ŝ)dτ + k2sign(e1).

(9)

The overall closed loop system controller observer together
can be represented as

Π :

{

ẋ1 = ŝ− c1x1 + e2
˙̂s = c1e2 − λ1|ŝ|

1

2 sign(ŝ)−
∫

t

0
λ2sign(ŝ)dτ + k2sign(e1)

Ξ :

{

ė1 = −k1|e1|
1

2 sign(e1) + e2

ė2 = −k2sign(e1) + ρ1.

It is already discussed earlier that estimation error of system
Ξ converges to zero in finite time, i.e. there exists aT0 > 0
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such that for allt > T0, it follows thate1 = e2 = 0. Note that
the trajectories of systemΠ (above) cannot escape to infinity
in finite time [25, Theorem 5.1]. Usually observer gains are
chosen in such a way that observation error converges faster.
After finite time t > T0, the closed loop system further we
can write as the following

ẋ1 = ŝ− c1x1

˙̂s = −λ1|ŝ|
1

2 sign(ŝ)−
∫

t

0

λ2sign(ŝ)dτ + k2sign(e1).
(10)

In another way by adding some new fictitious state variableL

we can represent dynamics as

ẋ1 = ŝ− c1x1

˙̂s = −λ1|ŝ|
1

2 sign(ŝ) + L+ k2sign(e1)

L̇ = −λ2sign(ŝ).

(11)

A. Discussion of the above Mathematical Transformation

Now, we can conclude from the above mathematical trans-
formation, SOSM never achieved in (11), because˙̂s contains
the non-differentiable termk2sign(e1), which prevents the
possibility of lower two equation of (11) to act as the STA.
Thus second order sliding motion (so thatŝ = ˙̂s = 0 in finite
time) never begins. The block diagram of STC based on STO
for system (1) is given in the Fig 1.

Next, we are going to propose the possible methodology of
the control design such that non-differentiable termk2sign(e1)
cancels out and then the lower two subsystems of (11) act as
the STA and finally SOSM is established. For this purpose
control is selected according to the following proposition,

Proposition 1. The following control input leads to the es-
tablishment SOSM in finite time for(7), which further implies
asymptotic stability ofx1 andx2,

u = −c1x̂2 − k2sign(e1)− λ1|ŝ|
1

2 sign(ŝ)−
∫

t

0

λ2sign(ŝ)dτ,

(12)

whereλ1 > 0 andλ2 > 0.

Proof. The system dynamics after substituting (12) into (7),

ẋ1 = ŝ− c1x1 + e2

˙̂s = c1e2 − λ1|ŝ|
1

2 sign(ŝ)−
∫

t

0

λ2sign(ŝ)dτ.
(13)

Now, the overall closed loop system can be represented as

Π1 :

{

ẋ1 = ŝ− c1x1 + e2
˙̂s = c1e2 − λ1|ŝ|

1

2 sign(ŝ)−
∫

t

0
λ2sign(ŝ)dτ

Ξ :

{

ė1 = −k1|e1|
1

2 sign(e1) + e2

ė2 = −k2sign(e1) + ρ1.

(14)

The observer error of systemΞ converges to zero in finite
time which is discussed earlier. Note that the trajectoriesof
systemΠ1 (above) cannot escape to infinity in finite time [25,

Theorem 5.1]. So, we can substitutee2 = 0, further we can
write closed loop system as

ẋ1 = ŝ− c1x1

˙̂s = −λ1|ŝ|
1

2 sign(ŝ) + ν

ν̇ = −λ2sign(ŝ)

(15)

whereν = −
∫

t

0
λ2sign(ŝ)dτ . The last two equations of (15)

have the structure same as STA. Therefore, one can easily
conclude that after finite timet > T1, ŝ = ˙̂s = 0. Later, the
remaining system dynamics can be written as

ẋ1 = −c1x1

x2 = −c1x1

(16)

Therefore, both the statesx1 andx2 are asymptotically stable
by choosingc1 > 0. The block diagram of the controller (12)
based on STO is shown in the Fig 2.

It is clear from the mathematical derivation of the control
(12) that, if one can uses STO to estimate the state of
the second order uncertain system (1) and then design STC
by selecting sliding manifold as (4), the control becomes
discontinuous, because it contains the discontinuous term
k2sign(e1). Therefore, continuous control design based on
STO-STC is not possible. It is also to be noted that in this
method only|ρ1| < ∆0 is needed. Before, going to propose the
solution of above mentioned problem, it is necessary to discuss
the existing methodology of super-twisting output feedback
(STOF) control.

III. SUPER-TWISTING OUTPUT FEEDBACK CONTROL

In the existing references it is reported that first consider
the following sliding sliding surface

s = c1x1 + x2 (17)

assuming that entire state vector is available. After that for
realizing the control expression based on STA, take the first
time derivative of sliding surfaces (17),

ṡ = c1ẋ1 + ẋ2 (18)

Substitutingẋ1 and ẋ2 from (1) into (18), it follows that

ṡ = c1x2 + u+ ρ1 (19)

Now, select control inputu as

u = −c1x2 − λ1|s|
1

2 sign(s)−
∫

t

0

λ2sign(s)dτ, (20)

assuming both the states are available for measurement. After
substituting the control (20) into (19), one can write

ṡ = −λ1|s|
1

2 sign(s)−
∫

t

0

λ2sign(s)dτ + ρ1, (21)

or

ṡ = −λ1|s|
1

2 sign(s) + z

ż = −λ2sign(s) + ρ̇1. (22)

wherez = ν1 + ρ1 andν1 = −
∫

t

0
λ2sign(s)dτ . It is assumed

that |ρ̇1| < ∆1. By selectingλ1 = 1.5
√
∆1 andλ2 = 1.1∆1
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ẋ1 = x2
ẋ2 = u+ d

PLANT

˙̂x1 = x̂2 + k1|e1|
1

2 sign(e1)
˙̂x2 = u+ k2sign(e1)

y = x1 +
y = x̂1

−

e1

ŝ = c1x1 + x̂2

SUPER TWISTING OBSERVER

SLIDING SURFACE

u = −c1x̂2 − λ1|ŝ|
1

2 sign(ŝ) + v

v̇ = −λ2sign(ŝ)

SUPER TWISTING CONTROL

x̂2

Fig. 1. Block diagram of the Super-twisting Control based onSuper-twisting Observer

ẋ1 = x2
ẋ2 = u+ d

PLANT

˙̂x1 = x̂2 + k1|e1|
1

2 sign(e1)
˙̂x2 = u+ k2sign(e1)

y = x1 +
y = x̂1

−

e1

ŝ = c1x1 + x̂2

SUPER TWISTING OBSERVER

SLIDING SURFACE

u = −c1x̂2 − k2sign(e1)− λ1|ŝ|
1

2 sign(ŝ) + v

v̇ = −λ2sign(ŝ)

SUPER TWISTING CONTROL

x̂2

Fig. 2. Block diagram of the Proposition 1 control based on Super-twisting Observer

according to [17], [20], which leads to SOSM in finite time
on s. Onces = ṡ = 0, thenx1 andx2 both converge to zero
asymptotically which is discussed in earlier section.

The control (20) is based on full state information, so we
cannot implement it directly on system (1) because we do not
have the information ofx2. If we use STO to estimate thêx2

and using it in control (20) by replacingx2 with its estimated
value x̂2 then control input (20) becomes,

u = −c1x̂2 − λ1|ŝ|
1

2 sign(ŝ)−
∫

t

0

λ2sign(ŝ)dτ, (23)

where ŝ = c1x1 + x̂2. If the controller (23) is applied to (1)
then it is not possible to get SOSM on the chosen surface. It
is already shown in the section II that control input (8) which
is same as (23) is not able to achieve SOSM on the sliding
surfaceŝ. If the control is applied to the system, then system
becomes (11) where discontinuous term is presents in the first
derivative of the sliding surface which prevents the SOSM
on the chosen surface. So the method is not mathematically
correct to get SOSM on chosen sliding surface.

Remark 1. If we use this method for practical implementation
it may work (which may not be true for all system), because
most of the time controller implemented digitally through
computer. It mean that controller is implemented at some fix
sampling time, so the value of discontinuous termk2sign(e1)
will be constant during sampling interval.

In STOF control approach one has to choose STO gainsk1
andk2 based on the upper bound of the disturbance and STC
gainsλ1 and λ2 based on the upper bound of the derivative
of the disturbance.

Now, in the next section we are going to proposed the new

strategy, which gives the correct way to implement STC, when
only output information of the perturbed double integrator(1)
is available.

IV. HOSMO BASED STC FOR PERTURBEDDOUBLE

INTEGRATORSYSTEM

The dynamics of HOSMO to estimate the states of perturbed
double integrator system (1) is given as

˙̂x1 = x̂2 + z1

˙̂x2 = x̂3 + u+ z2

˙̂x3 = z3,

(24)

wherez1, z2 and z3 are the correction terms. Let us define
the error variablee1 = x1 − x̂1 and e2 = x2 − x̂2.
The correction terms are defined asz1 = k1|e1|

2

3 sign(e1),
z2 = k2|e1|

1

3 sign(e1) and z3 = k3sign(e1) , wherek1, k2
andk3 are the positive constant. Then, error dynamics can be
written as

ė1 = −k1|e1|
2

3 sign(e1) + e2

ė2 = −k2|e1|
1

3 sign(e1)− x̂3 + ρ1

˙̂x3 = −k3sign(e1),

(25)

Now, defining the new variable ase3 = −x̂3 + ρ1. We also
assumed that disturbanceρ1 is a Lipschitz and|ρ̇1| < ∆1.
Then, further we can rewrite (25) as

ė1 = −k1|e1|
2

3 sign(e1) + e2

ė2 = −k2|e1|
1

3 sign(e1) + e3

ė3 = −k3sign(e1) + ρ̇1,

(26)
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The above equation is finite time stable which is already
proved in literature [23], [24], so we can conclude thate1,
e2 and e3 will converge to zero in finite timet > T2, by
selecting the appropriate gainsk1, k2 and k3 [18]. After the
convergence of error, one can find thatx1 = x̂1, x2 = x̂2 and
x̂3 = ρ1 after finite timet > T2.

Now, we will design a STC based on the estimated state
information for a system (1). For that consider the same sliding
surface (4) and taking its time derivative, it follows that,

˙̂s = c1ẋ1 + ˙̂x2

˙̂s = c1x̂2 + c1e2 + u+ k2|e1|
1

3 sign(e1) +
∫

t

0

k3sign(e1)dτ

(27)

Representing the system (1) in the co-ordinate ofx1 and ŝ by
using (4) and (27), then we can write dynamics as

ẋ1 = ŝ− c1x1 + e2

˙̂s = c1x̂2 + c1e2 + u+ k2|e1|
1

3 sign(e1) +
∫

t

0

k3sign(e1)dτ

(28)

The main aim here, is to design a continuous controlu, such
that the SOSM occurs in finite time on the sliding surface.
For this purpose control is selected according to the following
proposition.

Proposition 2. The following control input leads to the
establishment of SOSM on̂s in finite time, onceŝ = 0 it
further implies asymptotic stability ofx1 and x2,

u = −c1x̂2 − k2|e1|
1

3 sign(e1)−
∫

t

0

k3sign(e1)dτ

− λ1|ŝ|
1

2 sign(ŝ)−
∫

t

0

λ2sign(ŝ)dτ (29)

or

u = −c1x̂2 −
∫

t

0

k3sign(e1)dτ − λ1|ŝ|
1

2 sign(ŝ)

−
∫

t

0

λ2sign(ŝ)dτ (30)

whereλ1 > 0 andλ2 > 0.

Proof. Substituting the control input (29) in the (28), we can
get

ẋ1 = ŝ− c1x1 + e2

˙̂s = c1e2 − λ1|ŝ|
1

2 sign(ŝ) + v

v̇ = −λ2sign(ŝ),

(31)

Now, the overall closed loop system can be represented as

Π2 :











ẋ1 = ŝ− c1x1 + e2
˙̂s = c1e2 − λ1|ŝ|

1

2 sign(ŝ) + v

v̇ = −λ2sign(ŝ),

Ξ1 :











ė1 = −k1|e1|
2

3 sign(e1) + e2

ė2 = −k2|e1|
1

3 sign(e1) + e3

ė3 = −k3sign(e1) + ρ̇1,

(32)

It is already discussed earlier that estimation error of system
Ξ1 converges to zero in finite time. Note that the trajectories
of systemΠ2 (above) cannot escape to infinity in finite time
[25, Theorem 5.1]. So, we can substitutee1 = e2 = 0. Once
the error becomes zero, the closed loop system is given by the
following expression

ẋ1 = ŝ− c1x1

˙̂s = −λ1|ŝ|
1

2 sign(ŝ) + v

v̇ = −λ2sign(ŝ) (33)

The lower two equation of (33) is a STA, by selecting
appropriate gainsλ1 > 0 and λ2 > 0, then ŝ = ˙̂s = 0 in
finite time, which further implies, that the closed loop system
is given as

ẋ1 = −c1x1

x2 = −c1x1 (34)

Therefore, both the statesx1 andx2 are asymptotically stable
by choosingc1 > 0. The block diagram for super-twisting
control based on HOSM observer is depicted in Fig 3.

A. Discussion of HOSMO based STC Design

It is clear from the STC control (29) and (30) expression
based on HOSMO (24) is continuous. Also, when we design
STC control based on HOSMO then one has to tune only the
observer gains, according to the first derivative of disturbance,
because it is necessary for the convergence of the error
variables of the HOSMO. However, during controller design
there is no explicit gain condition for theλ2 with respect to
the disturbances.

One can also observe that super-twisting output feedback
controller (23) design based on super-twisting observer, re-
quires two gains, one is STO gain means observer gaink2
based on the explicit maximum bound of the direct disturbance
and another isλ2, STC gain based on the maximum bound of
the derivative of disturbance.

Therefore, one can conclude from the above observation that
sound mathematical analysis reduces the two gains conditions
with respect to disturbance by simply one gain condition. Also
the precision of the sliding manifold is much improved by us-
ing the HOSMO based STC rather than STO based STC. Due
to the increase of this precision of sliding variable precision
of the states are also much affected. In other word if we talk
about stabilization problem, then states are much closer to
the origin in the case of HOSMO based STC rather than STO
based STC. We only talk about the closeness of states variable
with respect to an equilibrium point, because only asymptotic
stability is possible in both the design methodology.

V. A PPLICATION OFHOSMO BASED STC FOR THE

POSITION CONTROL OFINDUSTRIAL EMULATOR

The industrial emulator system shown in Fig. 4 is an
electromechanical system that represents the important classes
of systems such as conveyors, machine tools, spindle drives,
and automated assembly machines. The setup is provided by
Educational Control Products (ECP) [31], California , USA.
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ẋ1 = x2
ẋ2 = u+ d

PLANT

˙̂x1 = x̂2 + k1|e1|
2

3 sign(e1)

˙̂x2 = x̂3 + u+ k2|e1|
1

3 sign(e1)

y = x1 +
y = x̂1

−
e1

ŝ = c1x1 + x̂2

HIGHER ORDER OBSERVER

SLIDING SURFACE

u = −c1x̂2 − x̂3 − k2|e1|
1

3 sign(e1)− λ1|ŝ|
1

2 sign(ŝ) + v

v̇ = −λ2sign(ŝ)

SUPER TWISTING CONTROL

˙̂x3 = k3sign(e1)
x̂2

x̂3 =
∫
t

0 k3 sign(e1)dτ

Fig. 3. Block diagram of the Super-twisting Control based onHOSM Observer

The system consists of a drive disk which is driven through
a drive motor (servo actuator). The drive disk is coupled to
the drive motor through a timing belt. The motion of the drive
disk is transferred to another disk called load disk which is
used to load the system. The motion from drive disk to load
disk is transferred through a speed reduction assembly (idler
pulleys) and a timing belt. The load and the drive disk inertias
are adjustable. High resolution encoder is used to measure the
position of the drive disk and load disk. The drive motor is
driven by a servo amplifier. The system equation in state space

Fig. 4. Industrial Emulator Setup [31]

form is given by
[

ẋ1

ẋ2

]

=

[

0 1
0 −8.4344

] [

x1

x2

]

+

[

0
458.46

]

(u+ d)

y =
[

1 0
]

[

x1

x2

]

(35)

wherex1, x2 are the angular position and the angular velocity
of the load disk,u is the input voltage to the drive motor andd
is the disturbance voltage signal injected externally to perturb
the plant.
For the simulation and experimental resultd = 0.2 sin(t) is
chosen. The control input in proposition1 is discontinuous
which is not good for practical setup, So we have compared
the two control techniques STOF and STC based on HOSMO

for the implementation. The controller and observer gains are
selected as follows

• STOF

– STC gainsλ1 = 2 andλ2 = 2
– STO gainsk1 = 1.5

√
m and k2 = 1.1m, where

m = 100.

• STC-HOSMO

– STC gainsλ1 = 2 andλ2 = 2
– HOSMO gainsk1 = 6n

1

3 , k2 = 11n
1

2 andk3 = 6n,
wheren = 50.

The sliding surface is chosen aŝs = x1 + 1

458.46
x̂2. The

controller and observer is implemented in MATLAB with
sampling time 1ms. Control objective is to bring the load
disk from zero position to the desired position, we have
selected 60 degree as the desired position. The simulation and
experimental results comparison of STOF and STC-HOSMO
methods are illustratedin the Fig.5 and Fig.6.One can see
the both method achieves desired load disk position, but from
zoom version we can say that precision of position in STC-
HOSMO is more compare to STOF. The experimental results
for the same is shown in Fig.5(b). Fig.5(c) and (d) shows the
simulation and experimental results of estimated states using
STO and HOSMO. One can see the estimated state using
HOSMO is more correct than the STO. The control input plot
in simulation and experimental is depicted in Fig.5(e) and (f)
respectively.

From the observation one can say that control input is more
smoother in the case of STC-HOSMO compare to STOF. The
sliding surface simulation plot is shown in theFig.6(a),one
can see that precision of the sliding variable (in zoom plot)
is more (up to the order ofτ2) in the case of STC-HOSMO,
while in the case of STOF precision is only the order ofτ .
So, we can say that in STOF method we are not able to get
exact second order sliding mode, but in STC-HOSMO we are
getting the exact second order sliding mode on the sliding
surface. The plot of sliding surface in experiment is depicted
in Fig.6(b). The evolution of observer error in simulation and
experiment are shown in the Fig.6(c) and (d). The precision
of error in HOSMO is more compared to STO that we can
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Fig. 5. Simulation and Experimental Results: Industrial Plant Emulator

see from the zoom version.

VI. CONCLUSION

It is shown in the paper that when STC is implemented
based on super-twisting observer (STO) then it is not possible
to achieve second order sliding mode (SOSM) using continu-
ous control on the chosen sliding surface. Two methodologies
are proposed to circumvent the above mentioned problem.
For simplicity, here only the perturbed double integrator is
considered, which can be generalized for an arbitrary order.
Numerical simulations and experimental validation are also
presented to show the effectiveness of the proposed method.
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