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Abstract—In this paper, an output feedback stabilization of o compensates uncertainties/perturbations that are Lips-
perturbed double integrator systems using super-twistingcontrol chitz;

(STC) is studied. It is shown that when STC is implemented basd . ; ; ; n ;
on super-twisting observer (STO) then it is not possible to ehieve re.quwes only information of the output (sliding variable)

second order sliding mode (SOSM) using continuous controlro g, o o

the chosen sliding surface. Two methodologies are proposed « provides finite-time convergence to the origin forand
circumvent the above mentioned problem. In the first method, & simultaneously;

control input is discontinuous which may not be desirable fo « generates continuous control signal and, consequently,
practical systems. In second method continuous STC is proged adjusts the chattering;

based on higher order sliding mode observer (HOSMO) which .
achieves SOSM on the chosen sliding surface. For simplicity ~FOr example if we want to apply STC on second order
we are considering here only the perturbed double integratp mechanical system to adjust the chattering problem then we

which can be generalized for an arbitrary order. Numerical have to design a sliding variable such that it has relatigzake
simulations and experimental validation are also present®to  jho |f we choose a linear surface then STC ensures the
show the effectiveness of the proposed method. uncertainties/perturbations compensation, finite timaveo
gence to sliding variable and its derivative, but stateveages
Index Terms—Super-twisting control (STC), super-twisting aSymptotically to the origin.
observer (STO), higher order sliding mode observer (HOSMO) The sliding mode approach has been exceptionally suc-
cessful in the design of state feedback controllers. Howeve
l. INTRODUCTION in most of the physical systems, an output is available for
) measurement. In that case, other states of the system can be
LIDING MODE CONTROL (SMC) [1]- [15] is one of qptained using an observer. The sliding mode observers are
Jthe most promising robust control techniques. Itis able {gijely used due to the finite time convergence, insensitive
reject bounded matched perturbation theoretically coteile it respect to uncertainties and also the estimation of the
The main disadvantage of SMC is chattering [1]- [3]. uncertainty [21].
To avoid the chattering effect, several methodologies arep naw generation of observers, based on the cascaded

proposed in sliding mode literature, STC [16] is one amOngerconnection of the super-twisting algorithm (STA) &av
them. The STC plays a special role among the sliding moggen, recently developed [22], [18]. The STA is a well known
controllers. Unllkg other .second order shdmglmode (SOSM)osm algorithm introduced in [17] and it has been widely
controllers, STC is applicable to a system (in general, a@¥eq for control, observation [22] and robust exact difiere
order) where control appears in the first derivative of theyiion Finite time convergence and robustness for the STA
sliding variable. It has following advantages: has been proved by geometrical methods [16] and by means
of Lyapunov based approach [19], [20].
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of both the states of perturbed double integrator systerh. Be, = koSign(e;). Then, we can represent error dynamics in
the control input is discontinuous in nature and it generatthe following form

chattering, which is undesirable. Using STC we can stabiliz . 1.
both the states of the perturbed double integrator asyinptot é1 = — kiles|2sign(es) + ez
cally using continuous control. Due to continuous contrbCS €2 = — kasign(er) + p1.

[29], [30] can adjust the chattering problem which is gooH is assumed thalpi| < Ao. If we choosek: — 1.5v/Ag

from the practical point of view. and ks, = 1.1A¢ then the erroe; andes both will go to zero
simultaneously. The above equation’s finite time stabiigy

A. Main Contribution already proved in the literature [20], [22] so we can conelud

If only output is available for perturbed double integrator; and e, both will converge to zero in finite time > 7.
system and STC is to be designed then we need both stdse the erroe; ande; is zero, we can say that; = 2;
information. Using STO it is possible to estimate otherestagndzy = & after finite timet > Tj.
in finite time in the presence of disturbance. It is shown i th Now, for the controller design here an output of the system
paper that when STC is implemented based on STO ther(%j has a relative degree two, therefore one cannot appdgtir
is not possible to achieve SOSM using continuous control &TC, because STC is applicable for only relative degree one
the chosen sliding surface. In this paper two methodolagjies system. Therefore, we have to define a sliding manifold of the
proposed to circumvent the above problem. In the first mgthddllowing form to get a relative degree one
control input is discontinuous which may not be desirable
for practical systems. In second method continuous STC is
proposed based on HOSMO which achieves SOSM on tifig synthesize the control law (for designing STC), taking th
chosen sliding surface. For simplicity, we are considehiage time derivative of (4), then we can write as
only the perturbed double integrator, which can be germzdli
for an arbitrary order.

®3)

§=rciz1 + 32 wWherec; > 0. (4)

5= c1Ty + .IL'Q
é =Cir2 +u—+ kQSigl’(el)

B. Structure of the Paper Substituting thers = es + 25 in the (5), further we can write

The paper is organized as follows. Section Il discusses ta@
STC based on STO for perturbed double integrator system. B N .
Section Il details the supr;r-twisting output feedgbackQHgf/I §=af+ere+utkpsigie). ()
control. HOSMO based STC for perturbed double integrattow, transforming the system (1) in the co-ordinaterpfand
is discussed in Section IV . Section V contains applicatibn @ by using (4) and (6) which can be written as
proposed method to an industrial plant emulator followed by .
the concluding Section. I1= 8=y + e

§=c12o +cres +u+ /{QSigl'(el). (7)

®)

Il. STC BASED ONSTOFORPERTURBED DOUBLE Now, if we select the controk to get SOSM or¥ as,

INTEGRATORSYSTEM
t
Consider the dynamical system of the following form W= —ciig — /\1|§|%sign(§) _ / \osign(3)dr,  (8)
. 0
T = T
. where)\; and )\, are the designed parameters for the controller.
To =u-+ p1 1) ! 2 9 P

This parameter can be selected as procedure given in [17],
Yy =, [20]. After substituting the control input (8) into (7), warm

wherey is an output of the system and is a disturbance. 9et

Only output information is available here, most of the con.

troller needs the all state information, so first we recactr

t
the other state of the system and then we design the STG — (¢, — )\1|§|%sign(§) _/ AoSign(8)dr + kpsign(e;).
based on the estimated information. STO is already reported 0

1=58—c1x1 + e

in the literature [22], using that, next we will show that the ©)
STC design based on STO does not have a mathematithé overall closed loop system controller observer togethe
justification. can be represented as
The STO dynamics to estimate the states of the system (1) is A
given in the following form m-dtr TfTan + 612 .

PO, 5 =ciex — \i|3|zsign(s) — [ A2sign(3)dr + kasign(e;)

1 — <1 2
Ty = 20+ u, @) =. {él = —kiler|2sign(er) + ez
. . T lés = —kosi .

where z; and z, are the correction terms. Let, define the 2 2sign(er) + 1

error variable ase; = z; — #; andes = x5 — 2. The It is already discussed earlier that estimation error ofesys
. 1. —_ . - . . .
correction terms are selected as = kjlej|zsign(e;) and Z= converges to zero in finite time, i.e. there exist§a> 0



such that for alk > T, it follows thate; = e; = 0. Note that Theorem 5.1]. So, we can substitute = 0, further we can
the trajectories of systeri (above) cannot escape to infinitywrite closed loop system as

in finite time [25, Theorem 5.1]. Usually observer gains are 5 — ey
chosen in such a way that observation error converges faster .

After finite time ¢ > T,, the closed loop system further we = —A1]3|2sign(s) + v (15)
can write as the following v = —Xasign(3)

1
S

T1=5—cm whererv = — j;f A2sign($)dr. The last two equations of (15)
. L L . (10) have the structure same as STA. Therefore, one can easily
§ = —A1[5]7sign(s) —/0 A2SigN(3)dT + kasign(er). conclude that after finite time > 73, § = s = 0. Later, the

) o ) remaining system dynamics can be written as
In another way by adding some new fictitious state varidble

we can represent dynamics as T = -1 (16)
. ~ Tog = —C12q
rpE =85—C1T1 )
NEP . 11 Therefore, both the states andx, are asymptotically stable
= —M[3[7sign(s) + L + ksignles) (11) by choosinge; > 0. The block diagram of the controller (12)

5
L = —\ysign(s). based on STO is shown in the Fig 2. O

It is clear from the mathematical derivation of the control
(12) that, if one can uses STO to estimate the state of
A. Discussion of the above Mathematical Transformation the second order uncertain system (1) and then design STC

Now, we can conclude from the above mathematical tran? selecting sliding manifold as (4), the control becomes

formation, SOSM never achieved in (11) becatsmontains Iscontinuous, because it contains the discontinuous term
the non—éiﬁerentiable ternkssign(e: ), wh,ich prevents the kasign(er). Therefore, continuous control design based on

possibility of lower two equation of (11) to act as the ST, STO-STC is not possible. It is also to be noted that in this

Thus second order sliding motion (so thiat § = 0 in finite method onlyp,| < A, is needed. Before, going to propose the

time) never begins. The block diagram of STC based on S A éu'g?(ir;tci);abovehmgnltlonedfprobleT, 't. IS necessaryftaﬁd:c

for system (1) is given in the Fig 1. g methodology of super-twisting output feedbac
Next, we are going to propose the possible methodology {%TOF) control.

the control design such that non-differentiable témsign(e;

cancels out an(? then the lower two subsystems ofg(q(l) )act as”l' SUPERTWISTING OUTPUT FEEDBACK CONTROL

the STA and finally SOSM is established. For this purposeIn the existing references it is reported that first consider

control is selected according to the following proposition the following sliding sliding surface

Proposition 1. The following control input leads to the es- 5= c1x1 + T2 17)
tablishment SOSM in finite time f@r), which further implies

. . assuming that entire state vector is available. After tloat f
asymptotic stability ofr; and x-,

realizing the control expression based on STA, take the first
t time derivative of sliding surface (17),

w=—c1do — koSign(ey) — Ay|3] 7 sign(s) — / Aosign(3)dr,
0

Substitutingz; andis from (1) into (18), it follows that
whereA; > 0 and \; > 0.
. . . $=czzt+u+tp (19)
Proof. The system dynamics after substituting (12) into (7),
Now, select control input, as
T1=8—c1x1 + e

t
. 1 t 13 = — — % i — i
&= cres — M |3|Fsign(s) — / Nosign@ydr. D) = —eims = Ails|2signs) /0 AsSign(s)dr, —(20)
0

assuming both the states are available for measuremeast. Aft
Now, the overall closed loop system can be represented aybstituting the control (20) into (19), one can write

. R t
Ty =S—cr1ter . 1. .
Il : < . : $ = —\|s|2si s—//\SI s)dr + p1, 21
' {s = crea — M3|Esign(3) — [ Agsign(s)dr . tlslEsions) = | astonte)dr o (1)
1. or
=. é1 :—k1|€1|75|gr(61)+62 -
- ey = —kzsign(el) + p1. §= _/\1|S|§S|gr(s) +z
Z = —Xosign(s) + p1. (22)

The observer error of systef converges to zero in finite
time which is discussed earlier. Note that the trajectooes wherez = 14 + p; andv, = — fot Aosign(s)dr. It is assumed
systemlI; (above) cannot escape to infinity in finite time [25that |p;| < A;. By selecting\; = 1.5v/A; and Ay = 1.1A,



jjlzx2 y:xlf\ y:jl

To=u-+d + - \

PLANT

- T =@y + k1|@1|%Sign(@1)
T9 = u + kosign(e;)

U= —c18y — M\ |8|2sign(§) +v e [
0 = —Mgsign(8) <L SUPER TWISTING OBSERVER

S=cr1 + 2o

SUPER TWISTING CONTROL

SLIDING SURFACE

Fig. 1. Block diagram of the Super-twisting Control basedSuper-twisting Observer

1= Ty Yy=2x Yy = T
1';2 =Uu + d 1@ !
€1
PLANT l
i . &1 = & + kile|2sign(er)
i’g =u-+ kgsign(el)

u= —c1&y — kosign(e;) — )\1|§|%sign(§) +0 e |
0 = —Agsign(8) <L SUPER TWISTING OBSERVER

§= C121 +i2

SUPER TWISTING CONTROL

SLIDING SURFACE

Fig. 2. Block diagram of the Proposition 1 control based opesdwisting Observer

according to [17], [20], which leads to SOSM in finite timestrategy, which gives the correct way to implement STC, when
on s. Onces = § = 0, thenxz; andxs both converge to zero only output information of the perturbed double integrdtor
asymptotically which is discussed in earlier section. is available.

The control (20) is based on full state information, so we

cannot implement it directly on system (1) because we do not |\ HOSMO BASED STC FOR PERTURBED DOUBLE

have th_e iqfqrmation of». If we use _STO tc_> e;timatg thie, INTEGRATOR SYSTEM
and using it in control (20) by replacing, with its estimated ) ]
value i, then control input (20) becomes, The dynamics of HOSMO to estimate the states of perturbed
. double integrator system (1) is given as
u=—cila — )\1|§|%sign(§) —/0 Aosign($)dr, (23) bp =G0+ 21
wheres = ¢1x1 + 2. If the controller (23) is applied to (1) Ty = I3+ u+ 2 (24)
then it is not possible to get SOSM on the chosen surface. It I3 = 23,

is already shown in the section Il that control input (8) whic ) ,
is same as (23) is not able to achieve SOSM on the indiH‘@ereZl' #2 and z; are the correction terms. Let us ‘?ef'”e
surfaces. If the control is applied to the system, then systerwe error variablee; = 2, — & and ez = ;2 e
becomes (11) where discontinuous term is presents in the fithe correction terms are defined as = kifei|3sign(e),
derivative of the sliding surface which prevents the SOSKe = kzle1|?sign(er) and =3 = kssign(e1) , whereky, ko

on the chosen surface. So the method is not mathematicAfjf#s are the positive constant. Then, error dynamics can be
correct to get SOSM on chosen sliding surface. written as

—k1|€1|%3igf‘(€1) + e

Remark 1. If we use this method for practical implementation €1 =
. . i .
it may work (which may not be true for all system), because éa = —kaler|3sign(e;) — &3 + p1 (25)
most of the time controller implemented digitally through o G
i : &3 = —kssign(e1),
computer. It mean that controller is implemented at some fix
sampling time, so the value of discontinuous térsigne;) Now, defining the new variable ag = —#3 + p1. We also
will be constant during sampling interval. assumed that disturbange is a Lipschitz and|p:| < A;.

In STOF control approach one has to choose STO ghins Then, further we can rewrite (25) as
and k5 based on the upper bound of the disturbance and STC ) 2 .
gains \; and )\, based on the upper bound of the derivative é1 = —kales|7signier) + e>
of the disturbance. ¢y = —kaler|3sign(er) + es (26)

Now, in the next section we are going to proposed the new és = —kssign(e1) + p1,



The above equation is finite time stable which is alreadyis already discussed earlier that estimation error ofesys
proved in literature [23], [24], so we can conclude that =; converges to zero in finite time. Note that the trajectories
es and e3 will converge to zero in finite time > 75, by of systemlIl, (above) cannot escape to infinity in finite time
selecting the appropriate gaiis, ke and ks [18]. After the [25, Theorem 5.1]. So, we can substitute= e = 0. Once
convergence of error, one can find that= 2, 2o = 22 and the error becomes zero, the closed loop system is given by the
I3 = p; after finite timet > Tb. following expression

Now, we will design a STC based on the estimated state
information for a system (1). For that consider the saméngjid

‘fl =5— C1X1
surface (4) and taking its time derivative, it follows that, E

—\1]3]7sign(s) + v
—Agsign(s) (33)

0

§ = 61.5'61 + fg
i . 1, L The lower two equation of (33) is a STA, by selecting
§ = c1diz + creg + u+ kzler[ssign(es) +/ kssign(e1)dT  gppropriate gaing; > 0 and A, > 0, thens = 4 = 0 in

0 (27) finite time, which further implies, that the closed loop &yst

. . . R is given as
Representing the system (1) in the co-ordinate0fnds$ by

using (4) and (27), then we can write dynamics as T = —c171

. A To = —C1X 34
T1 =8 —c1T1 + e 2 171 (34)

. . I L Therefore, both the statas andz, are asymptotically stable
§ = 12 + crea + u + kafer|3sign(en) +/ kssign(e1)dT  py choosinge; > 0. The block diagram for super-twisting
0 (28) control based on HOSM observer is depicted in Fig 3.0

The main aim here, is to design a continuous conitauch . . .
that the SOSM occurs in finite time on the sliding surfacé' Discussion of HOSMO based STC Design

For this purpose control is selected according to the fatigw It is clear from the STC control (29) and (30) expression
proposition. based on HOSMO (24) is continuous. Also, when we design

o ) ) STC control based on HOSMO then one has to tune only the
Proposition 2. The fo”°""l”9 control input Iezids to the ypserver gains, according to the first derivative of disine,
establishment of SOSM onin finite time, onces = 0 it pecayuse it is necessary for the convergence of the error

further implies asymptotic stability of, and z, variables of the HOSMO. However, during controller design
L t there is no explicit gain condition for th&, with respect to
u = —c1y — kalex[¥sign(er) — / kssign(er)dr the disturbances.
' 0 One can also observe that super-twisting output feedback
— A1 8|2 sign(3) —/ Aosign(s)dr (29) controller (23) design based on super-twisting obseneer, r
0 quires two gains, one is STO gain means observer gain
or based on the explicit maximum bound of the direct disturlbanc
. L 1L and another is\,, STC gain based on the maximum bound of
U= —C1T — / kasign(er)dr — A1[3]2sign(s) the derivative of disturbance.
t 0 Therefore, one can conclude from the above observation that
— / Aosign(§)dr (30) sound mathematical analysis reduces the two gains conslitio
0 with respect to disturbance by simply one gain conditiorsAl
where); > 0 and A2 > 0. the precision of the sliding manifold is much improved by us-

Proof. Substituting the control input (29) in the (28), we caf'9 the-HOSMO based STC. r_ather thgn_ STO b_ased STC Due
to the increase of this precision of sliding variable priecis

get of the states are also much affected. In other word if we talk
i1 =8 —ciw1 + e about stabilization problem, then states are much closer to
$=creq — )\1|,§|%sign(§) T (31) the origin in the case of HOSMO based STC rather than STO
) L based STC. We only talk about the closeness of states variabl
¥ = —ASIgN(3), with respect to an equilibrium point, because only asyniptot

Now, the overall closed loop system can be represented astability is possible in both the design methodology.

I =s-an +€12 _ V. APPLICATION OFHOSMOBASED STCFOR THE
I:q5  =ciea — \i]3]2sign(3) +v POSITION CONTROL OF NDUSTRIAL EMULATOR

b = —Agsign(s), The industrial emulator system shown in Fig. 4 is an

] 5 . (32) . .

é1 = —kiley|3signier) + ea electromechanical system that represents the importasses$

. 1 f systems such as conveyors, machine tools, spindle drives
E— 5 or sy yors, » SP _

?2 2|e_1|35|gn(61.) tes and automated assembly machines. The setup is provided by

és = —kssign(er) + pu, Educational Control Products (ECP) [31], California , USA.

w



Ty = T2 Y= ‘y:j'l

C'EQ =u-+ d =
€1
PLANT ; v -
&) = &y + kyles|5sign(er)
v L 1

i |12=% + u + koleq|3sign(er)
U= —c1d — &5 — kaler|sign(er) — Ai§|2sign(8) + v 3 = kssign(e;)
0 = —Aosign(s) HIGHER ORDER OBSERVER

7 W}

SUPER TWISTING CONTROL

§=c1x1 + 2o

SLIDING SURFACE

23 = [ ks sign(e;)dr

Fig. 3. Block diagram of the Super-twisting Control basedHBSM Observer

The system consists of a drive disk which is driven througbr the implementation. The controller and observer ganes a

a drive motor (servo actuator). The drive disk is coupled &elected as follows

the drive motor through a timing belt. The motion of the drive | gToF

disk is transferred to another disk called load disk which'is STC qainsh: — 2 and A, — 2

used to load the system. The motion from drive disk to load =~ gai kl i 2 d ks — 11 h

disk is transferred through a speed reduction assemblgr(idl gainsk; = 1.5y/m andk; = 1.lm, where

pulleys) and a timing belt. The load and the drive disk irerti m = 100.

are adjustable. High resolution encoder is used to meakare t ° STC-HOSMO

position of the drive disk and load disk. The drive motor is — STC gains\y =2 and Xy =2

driven by a servo amplifier. The system equation in stateespac — HOSMO gainsk; = 6n3, ky = 11n? andks = 6n,
wheren = 50.

dmm‘p et ' controller and observer is implemented in MATLAB with
i sampling time 1ms. Control objective is to bring the load
disk from zero position to the desired position, we have
selected 60 degree as the desired position. The simulatidn a
experimental results comparison of STOF and STC-HOSMO

methods are illustratedh the Fig.5 and Fig.60ne can see
the both method achieves desired load disk position, but fro
- coconcd e zoom version we can say that precision of position in STC-
Tt breke mmﬁnﬁ;&;s HOSMO is more compare to STOF. The experimental results
for the same is shown in Fig.5(b). Fig.5(c) and (d) shows the
simulation and experimental results of estimated statasgyus
STO and HOSMO. One can see the estimated state using
HOSMO is more correct than the STO. The control input plot
in simulation and experimental is depicted in Fig.5(e) ayd (

Brushiess DC (E»asncormelasnc The sliding surface is chosen d@s= x; + = z%2. The

High resolu‘nonB/v

Fig. 4. Industrial Emulator Setup [31]

form is given by

1 0 respectively
{ ] { —8. 4344 } { } + [ 458.46 } (u+d) From the observation one can say that control input is more
smoother in the case of STC-HOSMO compare to STOF. The
Y= [ 10 ] { T ] sliding surface simulation plot is shown in tikég.6(a),one

(35) can see that precision of the sliding variable (in zoom plot)
is more (up to the order of?) in the case of STC-HOSMO,
wherez1, x5 are the angular position and the angular velocityhile in the case of STOF precision is only the orderrof
of the load disky is the input voltage to the drive motor add So, we can say that in STOF method we are not able to get
is the disturbance voltage signal injected externally tdysb exact second order sliding mode, but in STC-HOSMO we are
the plant. getting the exact second order sliding mode on the sliding
For the simulation and experimental resdlt= 0.2sin(¢) is surface. The plot of sliding surface in experiment is deguict
chosen. The control input in propositidnis discontinuous in Fig.6(b). The evolution of observer error in simulatiamda
which is not good for practical setup, So we have comparegperiment are shown in the Fig.6(c) and (d). The precision
the two control techniques STOF and STC based on HOSM® error in HOSMO is more compared to STO that we can
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Fig. 5. Simulation and Experimental Results: Industria@rPIEmulator
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