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a b s t r a c t

The control of nonlinear systems subject to unmatched perturbations is studied. A new design algorithm
is proposed based on the block control and quasi-continuous higher order sliding modes techniques.
The proposed method provides for the finite time exact tracking of a smooth desired signal in spite of
unmatched perturbations.
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1. Introduction

Traditionally sliding mode (SM) control is used in many
applications; in nonlinear plants it enables high accuracy tracking
and insensitivity to disturbances and plant parameter variations,
e.g. (Utkin, 1992). Nevertheless, classical SM are not able to
compensate unmatched perturbations, e.g. (Utkin, 1992).

Combinations of different robust techniques and SM have
been applied to deal with systems with unmatched uncertainties.
A design method is developed in Choi (2003) where the LMI-
based switching surface is used. For uncertain nonlinear systems
in strict-feedback form, Krstic, Kanellakopoulous, and Kokotovic
(1995) develop the backstepping approach in a step-by-step design
algorithm. The structure of the system allows considering, in
each step, some states as a virtual control. Thus a virtual control
based on Lyapunov methods is constructed in each step. The
combination of the backstepping design and SM mode control
is studied in Bartolini, Ferrara, Giacomini, and Usai (1996) for
systems in strict-feedback form with parameter uncertainties and
extended to the multi-input case in Ferrara and Giacomini (1998).
The procedure proposed in Bartolini et al. (1996) and Ferrara and
Giacomini (1998) reduces the computational load, as compared to
the standard backstepping strategy, because it only retains n − 2
steps of the original backstepping technique, coupling them with
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an auxiliary second order subsystem to which a second order SM
control is applied. In Scarratt et al. (2000) the combination of
dynamical adaptive backstepping and first and second order SM
controls is applied to both triangular and nontriangular observable
minimum phase nonlinear systems with parameter uncertainties,
achieving asymptotic stability.

Another approach to the problem of unmatched uncertainty
compensation is based on the Nonlinear Block Controllable
form (NBC-form) (Loukianov, 2002). In Loukianov (2002) the SM
technique is applied to compensate the matched perturbations. A
high gain approach is used to achieve compensation of unmatched
uncertainties and stabilization of the sliding mode dynamics.
In Huerta-Avila, Loukianov, and Cañedo (2007) a SM controller
is designed using the combination of block control (Loukianov,
1998), a sigmoid approximation to the integral SM control (Utkin,
Guldner, & Shi, 1999) and nested SM control (Adhami-Mirhosseini
& Yazdanpanah, 2005). A coordinate transformation is applied to
design a nonlinear sliding manifold. This transformation requires
smoothness of each virtual control; that is why sigmoid, instead of
signum functions are used. In the proposals in Adhami-Mirhosseini
and Yazdanpanah (2005), Huerta-Avila et al. (2007) and Loukianov
(2002) they prove the convergence to a zone that depends on the
high gain.

In this paper a new design algorithm for systems in strict-
feedback form, a special case of the NBC-form, is proposed. Finite
time exact tracking of the desired output is achieved with this
algorithm in spite of the presence of unmatched perturbations
i.e. parameter uncertainties and external disturbances. In the first
step, the desired dynamics for the first state is defined by the
desired tracking signal. After the first step, the desired dynamics
for each state is defined by the previous one. Each virtual control
is divided into two parts, the first one is intended to compensate
the nominal nonlinear part of the system and the second one is
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aimed to achieve the desired dynamics in spite of perturbations.
Since the reference signal and the perturbations are supposed
to be bounded, the virtual controls are bounded too. The states
acting as virtual controls are bounded. In the second part the
quasi-continuous (QC) higher order sliding mode (HOSM) (Levant,
2005; Shtessel, Shkolnikov, & Levant, 2007) is used for unmatched
uncertainty compensation. A key feature of the design algorithm
proposed in this paper is the use of information on the nominal
systemused in the virtual controllers in order to reduce the control
effort in comparison with the direct application of HOSM (Levant,
2005). In addition, the QC-HOSM controllers were chosen because,
even when they are theoretically discontinuous, in the presence of
switching delays, measurement noises and singular perturbations,
they produce continuous control and produces less chattering than
other HOSM controllers.

This paper proceeds as follows. In Section 2 the class of systems
studied and the problem formulation are introduced. Section 3
begins by presenting the QC controllers as proposed in Levant
(2005). The section continues by introducing the hierarchical
design algorithm proposed in this work. Section 3 ends with
the convergence proof of the proposed algorithm. In Section 4
the algorithm is applied and simulations results are presented.
The note then concludes with a brief comment on the proposed
algorithm.

2. Problem statement

Consider a class of nonlinear systems, with constant relative
degree, presented in the special NBC-form (Loukianov, 2002):

ẋ1 = f1(x1, t) + B1(x1, t)x2 + ω1(x1, t)
ẋi = fi(xi, t) + Bi(xi, t)xi+1 + ωi(xi, t)
ẋn = fn(x, t) + Bn(x, t)u + ωn(x, t) i = 2, . . . , n − 1


(1)

where x ∈ Rn is the state vector, xi ∈ R, x̄i = [x1 · · · xi]T ; u ∈

R is the control. Moreover fi and Bi are smooth scalar functions,
ωi is a bounded unknown perturbation term due to parameter
variations and external disturbances with at least n − i bounded
derivatives w.r.t system (1), Bi ≠ 0 ∀x ∈ X ⊂ Rn, t ∈ [0, ∞).
The output is y = x1. The control problem is to design a controller
such that the output y tracks a smooth desired reference yd with
bounded derivatives, in spite of the presence of unknown bounded
perturbations. The whole state vector x is assumed to be known. In
this paper, the solutions of all differential equations and inclusions
are understood in the Filippov sense (Filippov, 1988).

3. Hierarchical quasi-continuous controller design

In this section the QC homogeneous controllers reported in
Levant (2005) are presented; after that the hierarchical controller
design algorithm is introduced. Finally, the convergence proof is
included.

3.1. Quasi-continuous controller (Levant, 2005)

Consider a Single-Input–Single-Output system

ξ̇ = a(t, ξ) + b(t, ξ)u, ξ ∈ Rm, u ∈ R (2)
σ : (t, ξ) → σ(t, ξ) ∈ R
where σ is the measured output of the system, u is the control.
The smooth functions a, b, σ are assumed to be unknown, the
dimension m can also be uncertain. The task is to make σ vanish
in finite time by means of a possibly discontinuous feedback and
to keep σ ≡ 0. It is assumed that system (2) has relative degree r ,
constant and known. As follows from (Isidori, 1989) the equation

σ (r)
= h(t, ξ) + g(t, ξ)u, g(t, ξ) ≠ 0 (3)

holds, where h(t, ξ) = σ (r)
|u=0, g(t, ξ) =

∂
∂uσ

(r). The uncertainty
prevents immediate reduction of (2) to (3). Suppose that the
inequalities

0 < Km ≤
∂

∂u
σ (r)

≤ KM , |σ (r)
|u=0| ≤ C (4)

hold globally for some Km, KM , C > 0. Then (3), (4) imply the
differential inclusion

σ (r)
∈ [−C, C] + [Km, KM ]u. (5)

The bounded feedback control, u, is constructed such that the r-
sliding mode σ = σ̇ = · · · = σ (r−1)

= 0 is established in finite
time. In order to reduce chattering, a controller is designed which
is continuous everywhere except in this set. Such a controller is
naturally called quasi-continuous.

In practice, in the presence of switching delays, measurement
noises and singular perturbations, the motion will take place in
some vicinity of the r-sliding set σ = σ̇ = · · · = σ (r−1)

= 0
never hitting it, with r > 1. Denote

ϕ0,r = σ , N0,r = |σ |, Ψ0,r = ϕ0,r/N0,r

ϕi,r = σ (i)
+ βiN

(r−i)/(r−i+1)
i−1,r Ψi−1,r

Ni,r = |σ (i)
| + βiN

(r−i)/(r−i+1)
i−1,r

Ψi,r(·) = ϕi,r/Ni,r; i = 0, . . . , r − 1.

(6)

Theorem 1 (Levant, 2005). Provided that β1, . . . , βr−1, α > 0 are
chosen sufficiently large in the listed order, the above design result in
the r-sliding homogeneous controller

u = −αΨr−1,r(σ , σ̇ , . . . , σ (r−1)) (7)

providing for the finite time stability of (5), (7). The finite time stable
r-sliding mode σ ≡ 0 is established in system (2), (7).

3.2. Design algorithm

At each step i the constraint σi = 0 is established and kept by
means of the virtual control xi+1 = φi, which forms the constraint
σi+1 = xi+1 − φi for the next step.
Step 1. Defining x2 = φ1, the next virtual controller is constructed

φ1(x1, t, u1) = B1(x1, t)−1
{−f1(x1, t) + u1}

u(n−1)
1 = −α1Ψn−1,n(σ1, σ̇1, . . . , σ

(n−1)
1 )

(8)

where σ1 = x1 − yd i.e. the nth order QC-HOSM, as defined in
(6), is introduced in φ1 through n − 1 integrators. The derivatives
σ1, σ̇1, . . . , σ

(n−1)
1 are calculated bymeans of robust differentiators

with finite time convergence (Levant, 2003).

Remark 1. The values for each βi are taken from Levant (2005);
only αi, for each QC controller, and the L parameter of the
corresponding differentiator (Levant, 2003), have to be adjusted.
The adjustment is made through simulation step-by-step.

Step i. The remaining virtual controls are constructed as follows.

φi(xi, t, ui) = Bi(xi, t)−1
{−fi(xi, t) + ui}

u(n−i)
i = −αiΨn−i,n−i+1(σi, σ̇i, . . . , σ

(n−i)
i )

σi = xi − φi−1; i = 2, . . . , n.

(9)

Ψn−i,n−i+1 is defined according to (6), with σ = σi. Notice that in
step n, the real control is calculated i.e. φn = u.

u = Bn(x, t)−1
{−fn(x, t) + un}; un = −αnsign(σn).

It is possible to smooth the control signal by raising the order of the
QC controller in each φ. If it is done, the super-twisting algorithm
can also be used in un.
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Fig. 1. Signals yd, x1 .
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Fig. 2. States x1, x2, x3 .

Theorem 2. Provided that ωi(xi, t) in system (1) and yd are smooth
functions with n−i and n bounded derivatives, respectively, the above
hierarchic design results in an ultimate controller u, providing for the
finite time stability of σ1 = x1 − yd = σ̇1 = · · · = σ

(n−1)
1 = 0 in

system (1).

3.3. Convergence proof

• Consider the state xn

ẋn = fn(x, t) + Bn(x, t)u + ωn(x, t)
with u = Bn(x, t)−1

{−fn(x, t) − αnsign(σn)};

σn = xn − φn−1; φn−1 sufficiently smooth.

Thus σ̇n = −αnsign(σn)+ωn(x, t)−φ̇n−1. Takingαn ≥ |ωn(x, t)|+
|φ̇n−1|, provides for the appearance of a 1-sliding mode for the
constraint σn.
• Now for the state xn−1, we have

σ̇n−1 = ẋn−1 − φ̇n−2
= fn−1(xn−1, t) + Bn−1(xn−1, t)φn−1

+ ωn−1(xn−1, t) − φ̇n−2

= un−1,1 + ωn−1(xn−1, t) − φ̇n−2

σ̈n−1 = u̇n−1 + ω̇n−1(xn−1, t) − φ̈n−2 (10)
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Fig. 3. Control signal u.
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Fig. 4. B1u11, ẏd − ω1(·).

and according to (9)

u̇n−1 = −α(n−1)Ψ1,2(σn−1, σ̇n−1). (11)

That is (10) takes the form (3):

σ̈n−1 = hn−1(t, x) + gn−1(t, x)u̇n−1 (12)
with hn−1(t, x) = σ̈n−1|u̇n−1=0 = ω̇n−1 − φ̈n−2

gn−1(t, x) = ∂σ̈n−1/∂ u̇n−1.

If for some Kmn−1 , KMn−1 , Cn−1 > 0 the inequalities 0 < Kmn−1 ≤

gn−1 ≤ KMn−1 , |hn−1| ≤ Cn−1 are fulfilled, then the next differential
inclusion is implied

σ̈n−1 ∈ [−Cn−1, Cn−1] + [Kmn−1 , KMn−1 ]u̇n−1 (13)

and controller (11) provides for the finite time stability of (13),
(11). The finite time stable 2-sliding mode is established for the
constraint σn−1.
• It is possible to obtain an analogous equation to (10) for each of
the remaining states, thus for the state x1

σ
(n)
1 = h1(t, x) + g1(t, x)u

(n−1)
1 (14)

u(n−1)
1 = −α1Ψn−1,n(σ1, σ̇1, . . . , σ

(n−1)
1 ) (15)

σ
(n)
1 ∈ [−C1, C1] + [Km1 , KM1 ]u

(n−1)
1 (16)

the differential inclusion (16) is implied for some constants
Km1 , KM1 and C1. The controller (15) provides for the finite time
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stability of (16). The finite time stable n-slidingmode is established
for the constraint σ1.

Due to the dependence on states of functions in (14), the
inclusion (16)may be ensured only locally. The same applies to the
inclusion obtained for each virtual control.

4. Example

Consider the perturbed third order system

ẋ1 = 2 sin(x1) + 1.5x2 + ω1(x1, t)
ẋ2 = 0.8x1x2 + x3 + ω2(x2, t)
ẋ3 = −x23 + 2u + ω3(x, t)
ω1(x1, t) = 0.2 sin(t) + 0.1x1 + 0.12
ω2(x2, t) = 0.3 sin(2t) + 0.2x1 + 0.2x2 − 0.4
ω3(x, t) = 0.2 sin(2t) + 0.2x1 + 0.3x2 + 0.2x3 + 0.3.

Tracking of yd = 2 sin(0.15t) + 4 cos(0.1t) − 4 by x1 is desired.

φ1 =
1
1.5

{−2 sin(x1) + u1}; u̇1 = −α1Ψ2,3(σ1, σ̇1, σ̈1)

Ψ2,3 =
σ̈1 + 2(|σ̇1| + |σ1|

2/3)−1/2(σ̇1 + |σ1|
2/3sign(σ1))

|σ̈1| + 2(|σ̇1| + |σ1|
2/3)1/2

φ2 = −0.8x1x2 + u21; ü2 = −α2Ψ1,2(σ2, σ̇2)

Ψ1,2 =
σ̇2 + |σ2|

1/2sign(σ2)

|σ̇2| + |σ2|
1/2

u =
1
2
{x23 + u3}; u3 = −α3sign(σ3)

where σ1 = x1 − yd, σ2 = x2 − φ1 and σ3 = x3 − φ2.
Results obtained by simulation are shown in Figs. 1–4, using α1 =

4.5, α2 = 3.6 and α3 = 9. Since σ1 = x1 − yd, straightforward
algebra reveals that B1u11 = ẏd − g1(·) has to be accomplished in
order to achieve that x1 tracks yd, these signals are shown in Fig. 4.

5. Conclusion

The compensation of unmatched perturbations via NBC-form
usually requires the use of a smooth approximation of SM control
as virtual controllers, for example: high gain approximation
(Loukianov, 2002), sigmoid functions instead of signum functions
(Adhami-Mirhosseini & Yazdanpanah, 2005; Huerta-Avila et al.,
2007). The approximative nature of such controllers cannot ensure
the exact compensation of the unmatched perturbations. In this
paper, we proposed the corresponding order integrated QC-HOSM
controllers as the virtual control. It is shown that the proposed
control law ensures exact trackingw.r.t. unmatched perturbations.
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