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Abstract— In mobile hydraulic systems, velocities are typically
not measured. However, using their reliable estimates for
feedback is known to allow designing better control laws.
We are going to present a specialized technique to compute
such estimates using measurements of positions and pressures
in the chambers of hydraulic cylinders. With a rough esti-
mate for an upper bound of the second derivative, computed
online from pressures, the goal is to find the first derivative
of the position signal in the presence of noise. We propose a
differentiator with a continuous time-varying gain, constructed
from pressure measurements, achieving chattering attenuation
without compromising the performance of estimation. The gain
is constructively tuned using analysis based on a time-varying
Lyapunov function. In addition, the obtained ultimate bounds
on differentiation errors provide a criterion for the enhancement
of the precision of the proposed algorithm with a constructive
design of its parameters. The experimental results over a forestry-
standard mobile hydraulic crane confirm the advantages of the
methodology.

Index Terms— Time-Varying gain differentiator, mobile
hydraulic system, second order sliding mode, high-gain oberver,
on-line differentiator, velocity observer.

I. INTRODUCTION

THE online first-order differentiation is an old problem,
which has become a focus of intensive research in the

recent years. High-gain observers [1] and high-order sliding
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mode differentiators have shown a very good performance
even in the presence of noise [2]–[5]. Basically, the key
breakthrough appeared in [6], where a robust first-order exact
differentiator using a second-order sliding mode technique,
known as supertwisting algorithm (STA), was introduced.
Based on the STA, an observer for mechanical systems was
presented in [7]. In order to estimate the convergence time,
as in [8] and [9], a non-smooth Lyapunov-function-based
approach was proposed. An exponential second-order sliding
mode differentiator restricted to signals with bounded third
derivative was proposed in [10]. A differentiator based on
a variant of the STA equipped with a hybrid adaptation
was presented in [11], ensuring global differentiation ability.
Recently, some interesting remarks about the convergence time
and disturbance rejection were presented in [12]. In order
to attenuate the characteristic chattering phenomenon, some
adaptive schemes had been developed in [13] and [14]. In [15],
a variable-gain approach was proposed, achieving chattering
attenuation. In [4], a second-order sliding mode algorithm
that included an adaptive growing gain was presented. Uni-
formly convergent algorithms were designed in [16] and [17].
An adaptive STA for actuator oscillatory failure case recon-
struction was proposed in [18]. Regarding hydraulic actuators,
recently in [19], an algorithm with a growing gain has been
introduced, with the drawback that the gain needs resetting and
the acceleration case cannot be covered. Vázquez et al. [20]
presented a design of a time-varying gain based on pressure
measurements that cover the whole practical acceleration
profile; however, the effect of noise was neglected in the
Lyapunov analysis. Besides, to the best of our knowledge,
an enhancement of differentiator parameters or any justifiable
tuning rules for them under the presence of noise has not been
presented for the case of a time-varying gain.

In addition, one of the main difficulties is the selection of
the gain. If a global constant bound is chosen for the whole
practical operation region, the constant would be excessively
large that would result in increasing errors of the differentiator.
Some ideas on how to include a time-varying gain in the design
have been given in [21], assuming that the (n + 1)th-order
derivative has a variable upper bound available in real time;
however, no suggestions on choosing such bounds for con-
trol systems or the enhancement/tuning of the differentiator
parameters under the presence of noise have being given.

Concerning the case study, mobile hydraulic systems are
the main components of heavy-duty machines widely used in
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such industrial activities as forestry, construction, agriculture,
and mining, where high torques and a large ratio between
the delivered force and the size of the actuator are required.
Hydraulic actuators are able to provide large constant torques
for a long period of time [22] that in the case of their
electrical counterpart would cause overheating of motors.
However, the system dynamics are characterized by strong
nonlinearities, uncertainty in the parameters, as well as the
presence of unknown perturbations. Traditionally in heavy-
duty machines, these systems are controlled manually by a
driver via a set of joysticks, and in a few cases, conventional
linear feedback methods are integrated. In order to improve the
efficiency, the driver’s stress alleviation and to avoid accidents,
a robust design of automatic control strategies are required.
In contrast to industrial hydraulics, where high-precision
sensors for pressure, position, velocity, and acceleration of
the cylinders are available [23]–[25], in mobile hydraulics,
the instrumentation is limited and includes only pressure
transducers and low-accuracy position sensors. In addition,
other nonlinear phenomena like dead zones and saturations are
present, making the control design more difficult [26], [27].
In this case, the use of differentiators and observers has
shown to increase the overall performance [28]–[31]; how-
ever, the optimal design for velocity estimation is an open
subject.

In this note, a novel technique consisting of a first-order
differentiator with a time-varying gain is proposed. The
methodology combines two approaches: a high-gain observer
with scaling-based analysis and a second-order sliding mode
regime with exponential rate. Besides, a Lyapunov-function-
based analysis is presented to demonstrate its properties,
including the convergence rate and the ultimate boundedness
of the differentiation error in the presence of noise. This
provides a criterion for the enhancement of differentiator
parameters under the presence of bounded noise. Experiments
on a forestry-standard mobile hydraulic system have been
carried out, obtaining very promising results. The comparison
with others methods, including an offline estimation of the
velocity using smoothing splines, confirms the efficacy of the
methodology.

The remainder of this paper is organized as follows.
First, a brief description of a first-order differentiator is
presented in Section II. In Section III, we introduce the
main contribution, which is the design of a time-varying gain
differentiator (TVD) under the presence of bounded noise in
the measurements. The case study and experimental results are
presented in Section IV. Finally, in Section V, conclusions are
drawn for this paper.

II. PROBLEM FORMULATION: DIFFERENTIATOR

In mechanical systems, a first-order differentiator should
estimate the first derivative of a position signal x(t), under
the presence of noise. Motivated by a particular application,
we consider below the case when an upper bound of the second
derivative is available for the differentiator in real time. The
main assumptions are summarized as follows.

1) The second derivative of the position signal x(t) is
bounded by a continuous signal L(t): |ẍ(t)| ≤ L(t).

2) The signal L(t) is bounded, L ≤ L(t) ≤ L̄.
3) The derivative of L(t) is bounded: |L̇(t)| ≤ Ld , Ld is a

known constant.
Defining x1 := x and x2 := ẋ , the problem can be settled as
the design of an observer for the system

ẋ1 = x2, ẋ2 = ẍ, y = x + v (1)

with the output y and bounded noise v and assuming that ẍ can
be described, for example, by an equation of motion originated
from Newton’s second law or by an Euler–Lagrange equation.

The output of an observer to be designed will be an estimate
for the unmeasured state x2 = ẋ .

Two approaches will be explored in order to solve this
problem: second-order sliding modes and high-gain observers.
The design is partially motivated by [21], where the inclusion
of a time-varying gain, which depends on the available online
signal L(t), is the key idea.

Remark 1: In the case of constant gain, when some noise v
is present in the position measurement, i.e., |v| ≤ vM , for some
vM > 0, no on-line differentiator can provide for an accuracy
of order better than O(

√
L vM ) [3], [32], [33].

III. FIRST-ORDER TIME-VARYING GAIN DIFFERENTIATOR

In this section, a first-order differentiator with a time-
varying gain is introduced. The algorithm is formed by
the combination of two techniques: a high gain observer
with time-varying scaled gains and a discontinuous term,
understood in the equivalent control sense [34]. Furthermore,
the algorithm includes a time-varying gain in order to increase
performance and chattering attenuation as well as to separate
the effects of disturbance attenuation and fast exponential
convergence. The algorithm is as follows:

˙̂x1 = −κ1

ε
L

1
2
h (t)(x̂1 − y) + x̂2

˙̂x2 = −κ2

ε2 Lh(t)(x̂1 − y) − κ3 L(t) sign(x̂1 − y)
︸ ︷︷ ︸

SM-term

(2)

where κ1, κ2, and ε are positive constants, L(t) satisfies
Assumptions 1)–3) mentioned above, and although other
choices are possible, we will simply take Lh(t) = L(t)
for the rest of this paper. Defining the scaled errors
e1 = (x̂1 − x(t))L̄−(1/2)ε−1, e2 = (x̂2 − ẋ(t))L̄−(1/2), and
e = [e1, e2]T , one obtains the perturbed equation

ε ė = A(t)e + ε g0(t) + ε−1g1(t)v(t) (3)

where

A(t) =
[−κ1 L

1
2 (t) 1

−κ2 L(t) 0

]

, g1(t) =
[

k1 L
1
2 (t)L̄− 1

2

−κ2 L(t)L̄− 1
2

]

g0(t) =
[

0

−L̄− 1
2 (κ3 L(t) sign(e1) + ẍ(t))

]

.

Let us start with an auxiliary statement to be used in the
proofs in the following.
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Proposition 1: Suppose positive constants α1, κ1, κ2, L,
and L̄ are such that the following inequalities are satisfied:

α1 > 1, L < L̄,

κ2 L
1
2
(

α1 L̄
1
2 − L

1
2
) − 1

4
q12

2 > 0 (4)

where q12 = κ1 L(1/2)((L(1/2)/L̄(1/2)) − 1) + α1(κ2/κ1)L̄(1/2)

((L/ L̄) − 1). Then, the next matrices are positive definite

P =

⎡

⎢

⎢

⎢

⎣

(

α1 κ2

κ1

)

L̄
1
2 −1

−1

(

α1 κ2 + κ2
1

κ1 κ2

)

1

L̄
1
2

⎤

⎥

⎥

⎥

⎦

Q =
[

κ2 L
1
2
(

α1 L̄
1
2 − L

1
2
) 1

2 q12
1
2 q12 1

]

Proof: Note that using Sylvester’s criterion, Proposition 1
can be easily verified.

In the following and in the rest of this paper, λmax(min)[·]
denotes the operation of taking the largest (smallest) eigen-
value of some symmetric matrices and that inequalities
between matrices are componentwise. The Euclidean norm of
a vector x and the induced norm of a matrix A are denoted
by ‖x‖ and ‖A‖, respectively. On the other hand, the lower
and upper constant bounds, elementwise, for a time-varying
matrix, A(t), are given by A and Ā, respectively.

Proposition 2: Consider the scaled error dynamics (3),
where ẍ(t) ≤ L(t) and L ≤ L(t) ≤ L̄. There exist matrices
P and Q as in Proposition 1 such that for all bounded noise
signals v, the solutions e(t) are globally uniformly ultimately
bounded by (1/δ)(( �̄/�))μ̄(ε, v), where

μ̄(ε, v) = (ε‖g0‖∞ + ε−1‖g1‖∞ ‖v‖∞)�̄

with � = λmin[P], �̄ = λmax[P], δ = λmin [ Q ], and ε could

be arbitrary small, i.e., there is a positive constant T such that

‖e(t)‖ ≤ 1

δ

(

�̄

�

)

μ̄(ε, v) ∀t ≥ T . (5)

Proof: Consider the Lyapunov function

V (e) = ε

2
eT Pe (6)

where P is a positive definite symmetric constant matrix, given
in Proposition 1, which implies

ε

2
� ‖e‖2 ≤ V ≤ ε

2
�̄‖e‖2 (7)

where � = λmin[P] and �̄ = λmax[P].
Now, taking the derivative of V along (3), one obtains

V̇ = −eT Q(t)e +
(

εg0(t) + 1

ε
g1(t)v(t)

)

Pe (8)

where P and Q(t) are related by the following Lyapunov
equation:

AT (t)P + PA(t) = −2Q(t). (9)

In order to guarantee stability, we are looking for solutions
of (9) satisfying the next additional assumption

0 < Q ≤ Q(t) ≤ Q̄. (10)

With the particular selection for the matrix P, we have

Q(t) =
⎡

⎢

⎣

κ2 L
1
2 (t)

(

α1 L̄
1
2 − L

1
2 (t)

) 1

2
q12(t)

1

2
q12(t) 1

⎤

⎥

⎦

where q12(t) = κ1 L(1/2)(t)((L(1/2)(t)/L̄(1/2)) − 1) +
α1(κ2/κ1)L̄(1/2)((L(t)/L̄)−1) and Q is given in Proposition 1.
It is not hard to verify that with the previous assumptions

eT Q(t)e ≥ δ‖e‖2

with δ = λmin [ Q ] > 0. With the following change of the
auxiliary function W 2

1 = V , we have:

εẆ1 ≤ −μ0(ε)W1 + 1

2
1
2

ε
1
2 �− 1

2 μ̄(ε, v)

where μ̄(ε, v) = (ε‖g0‖∞ + ε−1‖g1‖∞ ‖v‖∞)�̄ and
μ0(ε) = δ /�̄. Hence, there exists an instant of time T such

that ∀t ≥ T

W1 ≤ 1

2
1
2

ε
1
2

�̄

δ �
1
2

μ̄(ε, v). (11)

Finally, from (7) and (11), we obtain the desired result

‖e‖ ≤
(

2

ε �

) 1
2

W1 ≤ 1

δ

(

�̄

�

)

μ̄(ε, v).

Remark 2: In general, an ultimate bound of steady-state
errors, obtained from the Lyapunov method, is very conser-
vative; however, it can give us valuable information for a
constructive selection of the parameters κ1, κ2, and ε.

Now, we are going to illustrate how the constants κ1 and κ2
can be computed for a given gain L(t) and for a particular
magnitude of noise v. Solving inequalities (4) and (5),
different values for the ultimate bound (5) can be obtained. To
simplify this, let us define the level sets di , for i = 0, 1, . . . , 6,
such that ‖e‖ ≤ di ; here, each subset di represents a particular
upper bound of the estimation error (5). For experimental
purposes, let us consider α1 = 4, L = 5, L̄ = 70, ε = 0.007,
and ||v||∞ = 0.001. With this information, the feasible
solutions for the pair (κ1, κ2) are obtained for each predefined
level set di . This is done with a numerical procedure resulting
in the picture presented in Fig. 1, which represents the
stability region and provides an optimal criterion for the
selection of the pair (κ1, κ2) for a particular ε and an
amplitude of noise, in this case ||v||∞ = 0.001. In addition,
it is interesting to see how the value of the ultimate bound on
the estimation error is affected by the selection of ε. For this
aim, let us fix a pair (κ1, κ2) from each level set di in the
stability region (see Fig. 1). Then, inequality (4) is computed
as a function of ε, i.e., ‖e‖ versus ε, as shown in Fig. 2.
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Fig. 1. Stability region, κ2 versus κ1, with ε = 0.007, α1 = 4, L = 5,
L̄ = 70, and ||v||∞ = 0.001.

Fig. 2. Ultimate bound estimation, ‖e‖ versus ε, for different level sets,
α1 = 4, L = 5, L̄ = 70, and ||v||∞ = 0.001.

A. Exponential Convergence

In the proposition 2, it has been shown that the proposed
differentiator provides ultimate bounded convergence under
the presence of noise. In contrast, in this section, it is shown
that in the absence of noise, the differentiator provides an
exponential convergence rate of estimation, which is an
important property. For this purpose, let us consider y = x ,
i.e., v = 0. Now, defining the scaled errors differently as
e1 = (x̂1 − x(t))ε−1, e2 = −κ1 L(1/2)e1 + x̂2 − ẋ(t), and
e = [e1, e2]T , one obtains the perturbed equation

ε ė = f(t, e) + ε g0(t) (12)

with f(t, e) = (A(t) + ε �A(t))e, where

A(t) =
[

0 1

−κ2 L −κ1 L
1
2

]

, �A(t) =
⎡

⎣

0 0

− κ1 L̇

2 L
1
2

0

⎤

⎦

g0(t) =
[

0
−κ3 L sign(e1) − ẍ(t)

]

.

Note that the perturbation term ẍ(t) is still present.
Remark 3: A necessary condition for existence of solutions

in either the Filippov [35] or the equivalent control sense [34]
as well as possibility for the appearance of the asymptotic
sliding mode is, obviously, κ3 > 1.

Proposition 3: Consider the time-varying matrices

P(t) =
[

p11(t) p12
p12 p22

]

=

⎡

⎢

⎢

⎣

κ2 α L(t)

κ1 L
1
2

+ κ1 L
1
2 (t) 1

1
α

κ1 L
1
2

⎤

⎥

⎥

⎦

(13)

and

Q(t) =
[

κ2 L(t) 0
0 α − 1

]

(14)

where α, κ1, κ2, L and L̄ are positive constants, and
L ≤ L(t) ≤ L̄. Choosing α > 1, we have Q(t) > 0
and P(t) > 0, satisfying the bounds P ≤ P(t) ≤ P̄ and
Q ≤ Q(t) ≤ Q̄, where

P =

⎡

⎢

⎢

⎣

(

κ2 α

κ1
+ κ1

)

L
1
2 1

1
α

κ1 L
1
2

⎤

⎥

⎥

⎦

P̄ =

⎡

⎢

⎢

⎢

⎣

(

κ2 α L̄
1
2

κ1 L
1
2

+ κ1

)

L̄
1
2 1

1
α

κ1 L
1
2

⎤

⎥

⎥

⎥

⎦

Q =
[

κ2 L 0
0 α − 1

]

, Q̄ =
[

κ2 L 0
0 α − 1

]

.

Proposition 3 follows from Sylvester’s criterion.
Proposition 4: Consider error dynamics (12) with 0 < L ≤

L(t) ≤ L̄ , |ẍ | ≤ L(t), and L̇(t) ≤ Ld ; there exist matrices
P(t) and Q(t) defined as in Proposition 3 such that provided
the conditions

Ld < min

{

1

ε

κ3 − 1

κ3 + κ4
L,

λmin[Q]
ε λmax[B̄]

}

min

{

1

2
(λmin[Q]−ελmax[B̄]Ld), ε min{q0, q1} p22

}

>0

1 < κ4 ≤ κ3

with q0 = κ4 L − ẍ sign(e2) and q1 = κ3L +
ε(κ3 − κ4 sign(e1e2))(d/dt)(p22L)p−1

22 + ẍ sign(e1) and

B̄ =

⎡

⎢

⎢

⎣

(

α κ2

κ1
− κ1

2

)

1

L
1
2

− α

2L

− α

2L
0

⎤

⎥

⎥

⎦

being satisfied, the equilibrium e = 0 is globally exponentially
stable.

Proof: Consider the discontinuous Lyapunov function

V (t, e) = ε

2
eT P(t)e + ε2 p22L|e1|(κ3 − κ4 sign(e1 e2)) (15)

where κ4 is a positive constant satisfying 1 < κ4 ≤ κ3
and P(t) is a positive definite symmetric matrix containing
time-dependent elements on the diagonal as in Proposition 3.
In particular, the elements of the diagonal are continuous
function of L(t). Monotonicity of V will be proved using the
generalized contingent derivatives (see the Appendix for more
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details or [36]–[38] for a complete study). Moreover, under
Proposition 3, the next properties for matrix P(t) are ensured

0 < P ≤ P(t) ≤ P̄

�AT P(t) + P(t)�A � B0
d L

d t
d

d t
P(t) = B1

d L

d t
, with B1 � ∂

∂ L
P

0 < B ≤ B(t) ≤ B̄, with B(t)=B0 +B1.

(16)

In addition

ε ϕ ‖e‖2 ≤ V ≤ ε ϕ̄ (‖e‖2 + ‖e‖) (17)

where ϕ = min{(1/2)λmin[P], εp22L(κ3 + κ4)} and
ϕ̄ = max{(1/2)λmax[P̄], εp22 L̄(κ3 + κ4)}. The Lyapunov
function V is globally proper, Lipschitz continuous outside
the origin, and continuously differentiable for e1 e2 �= 0.
Here, we need to make use of the generalized derivatives
introduced in the Appendix. In particular, for e1 e2 �= 0,
DF V = (∂/∂ t)V +(∂/∂e)V (ε−1 f (t, e) + g0(t)). Then, taking
the generalized derivative, DF V , along (3) for e1 e2 �= 0

DF V = −W (e, t) (18)

where W (e, t) = (1/2)eT Q0e + εq0 p22|e2| + εq1 p22|e1|,
with Q0 = Q + ε BL̇ , q0 = κ4 L − ẍ sign(e2),
and q1 = κ3L + ε(κ3 − κ4 sign(e1e2))(d/dt)
(p22L)p−1

22 + ẍ sign(e1), with Ld < (1/ε)(κ3 − 1/κ3 + κ4)L.
It is not hard to verify that with the previous assumptions,
the next relation holds

η(‖e‖2 + ‖e‖) ≤ W (e, t) ≤ η̄(‖e‖2 + ‖e‖) (19)

where

η = min

{

1

2
(λmin [ Q ] − ε λmax[B̄]Ld), ε min{q0, q1} p22

}

η̄ = max

{

1

2
(λmax [ Q̄ ] − ε λmin[B̄]Ld ), ε max{q0, q1} p22

}

.

Considering (18) together with (17) and (19), we obtained the
desired result

− η̄

εϕ

(

1 + ε
1
2 ϕ

1
2 V − 1

2
)

V ≤ DF V ≤ − η

εϕ̄
V .

It is important to remark that the function V is discontinuous
on the line e2 = 0 for e1 �= 0, where DF V (e1, 0) =
{−∞} for e1 �= 0 and DF V (0, e2) ≤ −(η/εϕ̄) V (0, e2)
for e2 �= 0. Note that these generalized derivatives can be
obtained with the help of Dini derivatives, as is shown in the
Appendix.

Setting particular values for ε and Ld , it is straightforward
to verify the required conditions in Proposition 4. Fig. 3 shows
the stability region in terms of κ1 and κ2 for ε = 0.007,
α = 4, L = 5, L̄ = 70, Ld = 40, κ3 = 1.2, and
κ4 = 1.1. We would like to point out that the obtained
upper bound for Ld , i.e., Ld ≤ (1/ε)K (κ1, κ2), where
K (κ1, κ2) = min{(κ3 − 1/κ3 + κ4)L, (λmin[Q]/λmax[B̄])}, is
due to the proposed Lyapunov function. The design of a
Lyapunov function for an arbitrary Ld is an open problem even

Fig. 3. Stability region, κ1 versus κ2, for ε = 0.007, α = 4, L = 5, L̄ = 70,
Ld = 40, κ3 = 1.2, and κ4 = 1.1.

TABLE I

PHYSICAL PARAMETERS OF THE LINK

for the linear case. However, the proposed Lyapunov function
offers a tradeoff between the selection of ε and Ld : the lower
the value of ε is taken, the greater the value of Ld can be
tolerated.

IV. MOBILE HYDRAULIC SYSTEM CASE STUDY

The experimental setup under the study is a laboratory
prototype of an industry-standard hydraulic forestry crane.
Such equipment is widely used in forestry and is a subject
of many research studies aimed at automation or remote
monitoring of such systems [39]. One important related issue
is the online velocity estimation problem. In this section, we
show how this problem can be successfully solved by the
proposed differentiator. We solve this problem for a telescopic
link of the crane; however, similar results can be easily
obtained for the other joints. Some physical parameters of the
link are given in Table I.

A. Modeling Mechanical and Hydraulic Systems

The telescopic link of the crane consists of a double-acting
single–side hydraulic cylinder and a solid load, which is
attached to a piston of the cylinder (see Fig. 4).

The position of the link x varies from 0 to 1.55 m; positive
velocity ẋ > 0 corresponds to extraction of the cylinder. This
link can be described as a 1-DOF mechanical system actuated
by a hydraulic force, and the equation of the motion is

mẍ = fh − fgrav − ffric

where m is the mass, fh is the force generated by the
hydraulics, fgrav is the gravity force, and ffric is the friction
force. The force generated by the hydraulics is given by

fh = Pa Aa − Pb Ab (20)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

Fig. 4. Industrial hydraulic forestry crane.

where the piston areas Aa and Ab are known geometric
parameters, while Pa and Pb are the measured pressures
in chambers A and B of the cylinder, respectively. The
friction is approximated by Coulomb and viscous models:
ffric = fc sign(ẋ) + fv ẋ . Hence

ẍ = fh

m
− 1

m
( fgrav + fc sign(ẋ)) − fv

m
ẋ

= fh

m
− f0 − f1 ẋ . (21)

During normal operation, the dynamics of the pressures can
be approximately described [22, Sec. 3.8] by

Ṗa = β

Va(x)
(−ẋ Aa + qa), Ṗb = β

Vb(x)
(ẋ Ab − qb) (22)

where Va(x) = Va0 + x Aa and Vb(x) = Vb0 − x Ab are
volumes of the chambers A and B for the given piston
position x , respectively, Va0 and Vb0 are known geometric
constants, β is an experimentally identified bulk modulus, and
qa and qb are flows to the chamber A and from the chamber B ,
respectively. Differentiating (20) and substituting (22)
lead to

ḟh = β

Va(x)Vb(x)
(Aa Vb(x)qa + Ab Va(x)qb)

− β

Va(x)Vb(x)
(A2

a Vb(x) + A2
b Va(x))ẋ .

Therefore, we obtain ẋ = η0(x, qa, qb) − η1(x) ḟh , where

η0(x, qa, qb) = Aa Vb(x)qa + Ab Va(x)qb

A2
a Vb(x) + A2

b Va(x)

η1(x) = Va(x)Vb(x)β−1

A2
a Vb(x) + A2

b Va(x)
. (23)

From (21), the following expression is obtained:

ẍ = 1

m
fh − f0 − f1 η0(x, qa, qb) + f1 η1(x) ḟh

= fh

m
− c0(x, qa, qb) + c1(x) ḟh . (24)

B. Bounds on the Variables

Both pressures Pa and Pb are bounded by the tank pres-
sure Pt and the supply pressure Ps . However, it is not a
realistic practical situation when both pressures have extreme
contrary values simultaneously. Due to internal restrictions,
the practical bound is | fh | ≤ f̄h . The bound for the gravity
force f̄g is defined by the given mass. Hence, for (21), we
can define the upper bound | f0| ≤ f̄0 with f̄0 = ( f̄g + fc)/m.
The parameter f1 = fv/m > 0 is constant.

Both flows qa and qb are bounded by a factory-set level of
a maximum flow through a valve, |qa,b| ≤ q̄ [26]. Moreover,
the flows cannot go in the same direction simultaneously,
i.e., they are always of the same sign. Hence, upper bounds
|η0(x, qa, qb)| ≤ η̄0 and |η1(x)| ≤ η̄1 can be defined for (23),
and functions c0(x, qa, qb) and c1(x) in (24) are bounded by
|c0(x, qa, qb)| ≤ c̄0 and |c1(x)| ≤ c̄1, where c̄0 = f̄0 + f1 η̄0
and c̄1 = f1 η̄1.

A practical (experimentally found) bound on the velocity is
|ẋ | ≤ x̄ (1) with x̄ (1) = 1.1 m/s. It follows from (21) that the
acceleration ẍ is bounded by |ẍ | ≤ x̄ (2), where:

x̄ (2) = 1

m
f̄h + f̄0 + f1 x̄ (1).

As the flows qa and qb are bounded, it follows from (22)
that both time derivatives Ṗa and Ṗb are bounded
|Ṗi | ≤ (β/Vi0)(Ai x̄ (2) + q̄), i = a, b. This implies | ḟh | ≤
|Ṗa|Aa + |Ṗb|Ab ≤ c2.

C. Measured and Estimated Signals

The experimental tests are carried out with a real-time plat-
form dSpace 1401 at a sampling interval of 1 (ms) using the
forward Euler integration method. The pressures are measured
with installed pressure transducers that allow us to estimate the
force (20) that later will be used to design the profile L(t).
The position of the telescopic link is measured with a wire-
actuated encoder. The encoder provides 2381 counts for the
range from 0 to 1.55 m and the quantization interval is
Q = 0.651 mm. Such a quantization interval makes it hard to
use a direct difference of the position for velocity estimation as
the resulting velocity quantization interval is inappropriately
high.

The differentiators considered in this paper are designed to
be used online. However, it is obvious that a better velocity
estimation can be achieved with an offline method when
both previous and future values of the position are used.
Based on this idea, we suppose postprocessing the measured
position with an offline velocity estimation method to obtain
an estimation x̂2,off. Further, we evaluate the designed online
differentiators in comparison with this offline estimation.1

To obtain the offline estimation, we use splines. First, the
measured signal x(t) is fitted with a smoothing spline xspl(t).
Next, x̂2,off is obtained as an analytical differentiation of

1We would like to highlight that the obtained offline estimation is not
considered as a real velocity, which is not possible to be measured in this
experiment; the proposed offline estimation is used only as a baseline for
further evaluations. However, multiple studies carried out with a numerical
model of the forestry crane dynamics show that the proposed spline-based
offline velocity estimation gives a good approximation of the real velocity.
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the spline xspl(t). The smoothing spline xspl(t) is found
as a cubic spline that minimizes the following expression
(see [40, p. 194]):

ρ

N
∑

i=1

(x(ti ) − xspl(ti ))
2 + (1 − ρ)

∫ tN

t1
ẍ2

spl dt

where N is the number of measured points and 0 ≤ ρ ≤ 1 is a
smoothing parameter. The smoothing parameter determines a
tradeoff between fitting of the measured data and smoothing.
The value ρ = 0 leads to maximum smoothing, i.e., linear
approximation, and ρ = 1 leads to a classic cubic spline with
exact fitting and without any smoothing. For our purposes,
we tune the smoothing parameter in order to obtain the
smoothest possible estimation, i.e., the smallest ρ, keeping
the fitting error within the quantization error Q.

D. Design of L(t)

In order to use our proposed solution for the problem of
obtaining the velocity of the spool of the cylinder from the
measured position, we need a reliable estimate on the bound
for the acceleration. In the other words, to use the proposed
differentiator (2), we need to design some appropriated time-
varying gain L(t), such that |ẍ | ≤ L(t) and |L̇| ≤ δ1. Besides,
from (24), the following bound is obtained:

|ẍ | ≤ c̄0 + 1

m
| fh | + c̄1| ḟh |. (25)

When the cylinder is moving with a constant velocity,
we have ẍ ≈ 0, which means that a small constant gain L can
be selected. Besides, if the cylinder is moving with varying
velocity, then the acceleration ẍ(t) is not close to zero anymore
and it implies that the gain L should increase proportionally to
the rate of variation of the cylinder velocity. In order to include
both cases, constant and time-varying profiles of velocity, and
motivated by the expressions (24) and (25), we proposed the
next time-varying gain

L(t) = γ0 + γ1| fh | + γ2ζ( fh) (26)

where the parameters γ0, γ1, and γ2 are positive constants, and
ζ( fh) represents an upper bound of the rate of variation of fh ,
particularly, and ζ( fh) is a positive function that depends on
the available pressure measurements. In order to construct such
an upper bound, the exact derivative of fh is not needed, and
either a linear observer or a filter can be used for this purpose.
One of the options, which have been successfully tested and
keep a simple structure, is the following:

ζ( fh) = | fh(t − τ1) − fh(t − τ2)|
τ2 − τ1

where τ2 > τ1 > 0. With this selection, the upper bound of
the derivative L̇ is given by |L̇| ≤ γ1 c2 + (2 γ2 c2/τ2 − τ1).

Four velocity estimation algorithms are tested.
1) The supertwisting differentiator with constant gain:

STA2 [6].

2We consider the STA algorithm in the original form

˙̂x1 = −1.5 L
1
2 |x̂1 − x(t)| 1

2 sign(x̂1 − x(t)) + x̂2
˙̂x2 = −1.1 L sign(x̂1 − x(t)).

Fig. 5. Measured position x (in meters) versus time (in seconds).

2) The STA with time-varying gain: STAV3 [21].
3) The proposed TVD (2).
4) The proposed TVD with a constant gain, the

algorithm (2) with L as a constant: CD (Constant Gain
Differentiator).

E. Selection of the Differentiator Parameters

There are two important elements to be designed:
L(t) and ε. For the design of L(t), we use the proposed time-
varying gain given by (26), with the corresponding parameters:
γ0 = 5, γ1 = 0.0003, γ2 = 0.00035, τ1 = 0.004, and
τ2 = 0.01.

Any profile of acceleration can be covered with this L(t)
(L = 5, L̄ = 70), as can be verified from Figs. 6, 7, and 9.
The design for L(t) is not unique and we can modify the
involved parameters from a comparison with the offline esti-
mation of acceleration.

The measured signal x can be seen as the position signal
with an additive uniform noise with a variance Q2/12, which
implies ‖v‖∞ ≤ 0.001. In this case, the values of ε, κ1 and κ2
can be selected in an optimal way using Figs. 1 and 2 from the
previous Lyapunov analysis. From Figs. 1 and 2, we select the
parameters κ1 = 0.4, κ2 = 0.03, and ε = 0.007. In addition,
for the proposed algorithm, we have fixed κ3 = 1.1.

For evaluation purposes, we compare all the algorithms
with the velocity estimation obtained using postprocessing
of the measured data, i.e., offline velocity estimation (see
Section IV-C). In the experiment, we consider different input
profiles and Fig. 5 shows the measured cylinder position x .
In this experiment, the cylinder was in motion with constant
and varying velocity.

F. Super-Twisting Algorithm: Time-Varying
Versus Constant Gain

In this section, we compared the STA using constant and
time-varying gains. The STAV differentiator is implemented
considering the time-varying gain (26). For the gain L(t), we
take γ0 = 5, γ1 = 0.0003, γ2 = 0.00035, τ1 = 0.004, and
τ2 = 0.01. The sign function is approximated by sign(x) =
(x/|x | + ε), with ε = 0.0014. For comparison purposes,

3The STAV preserves the same structure with a time-varying gain, L = L(t).
4Due to the sampling time and the limited frequency of commutation, an

approximation of the multivalued sign(x) function is needed. In particular, this
approximation has been successfully tested in simulations and experiments.
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Fig. 6. Top: velocity (in meters per second) versus time (in seconds):
STA (L = 15), STA (L = 5), STAV L(t), and offline. Bottom: gains versus
| ¨̂x|-offline.

Fig. 7. Velocity (in meters per second) versus time (in seconds):
CD (L = 15), CD (L = 5), TVD L(t), and offline.

we also test the STA algorithm with constant gain. Two values
were considered: L = 5 and L = 15; increasing this value
resulted in a high amplitude of chattering. Fig. 6 shows the
velocity estimation in the interval of time (13, 16) and the
corresponding differentiator gains, constant and time varying.
In addition, we computed the estimation of the accelera-
tion ẍ using the presented offline method (see Section IV-C).
It is clear that with a constant gain, we cannot compensate for
the acceleration in the whole interval. On the other hand, with
the variable gain, we can cover the acceleration in the whole
region without increasing chattering. The same experiment
was realized with the proposed time-varying gain algorithm,
confirming a better performance and chattering attenuation
with the use of a time-varying gain (see Fig. 7).

G. Comparison of Time-Varying Algorithms

In this section, we present the obtained result with the
proposed time-varying algorithms. Fig. 8 shows the velocity
estimation in the interval of time (13, 16) s. Fig. 9 shows
the velocity estimation in the interval of time (79, 81.6) s
and the corresponding time-varying gain L(t). In this interval,

Fig. 8. Velocity (in meters per second) versus time (in seconds): offline,
STAV, and TVD.

Fig. 9. Top: velocity (in meters per second) versus time (in seconds): offline,
STAV L(t), and TVD. Bottom: L(t) versus | ¨̂x|-offline.

a sequence of acceleration and deceleration inputs was
included in the experiment, producing abrupt changes in
velocity. In this case, we cannot use a constant gain, since
the gain to select should be L = 70, increasing at the same
time the chattering effect.

H. Computation of Errors

Considering the offline estimation as the true value of
velocity ẋ , in this section, the second and first norms of the
error are computed for the considered intervals of time. For
this purpose, we define ei = ˙̂xi − ẋ , where ẋ is the true
velocity (offline estimation) and ˙̂xi is the online estimation for
i = STA, STAV, TVD, and CD. Table II shows the normalized
error, ||ei ||/||eTVD||, during intervals of time that correspond
to Figs. 7–9, with ||ei || = ((1/t f − t0)

∫ t f
t0

|ei (τ )|2dτ )1/2.
In addition, Table III shows the normalized error
||ei ||1/||eTVD||1, where ||ei ||1 = max

t0≤t≤t f
|ei |. In general,

the TVD algorithm gives a very good performance and this is
the reason to choose eTVD for the normalization. It means that
if the value in Table III is below 1, then the corresponding
algorithm performs better, then TVD, and vice versa. In the
interval of almost constant velocity, (13, 14), the difference in
performance is not considerable, except in the case of L = 15,
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TABLE II

||ei ||2 / ||eTVD ||2

TABLE III

||ei ||∞ / ||eTVD ||∞

where the increase in chattering is evident. The reason for
this is that during this interval, the acceleration ẍ decreases to
the smallest values, and the amplitude of acceleration can be
covered with a relatively small constant gain L = 5. Besides,
if abrupt changes in acceleration are present, we cannot cover
the acceleration amplitude choosing a constant gain. As it
can be seen from the columns (14, 14.2) and (79, 81.6) of
Tables II and III, the STA algorithm with the constant gain
L = 5 significantly degrades in performance. Thus, the use
of the algorithm with constant gain for the whole operation
region results in increase in differentiation errors either for
the constant velocity range or for the abrupt acceleration
range. However, time-varying algorithms efficiently perform
for both profiles of acceleration and provide small errors for
the whole operation region.

V. CONCLUSION

The problem of first-order differentiation under the pres-
ence of noise has being studied in this paper. Motivated
by applications to mobile hydraulic systems, we look at the
situation where certain signals are a priori bounded, while
a rough estimate for the second derivative can be computed
online based on the measurements of pressures. We verify
that using a time-varying gain is a better option, instead
of using a global constant bound for the whole operation
region. The design of differentiators with time-varying gains is
presented. Besides, a novel TVD formed by merging the high-
gain and second-order sliding mode algorithms is proposed in
this paper. A Lyapunov-based analysis has being provided,
in order to demonstrate the stability and convergence proper-
ties for both algorithms. In addition, the ultimate bounds of
the differentiator errors provide a criterion for the enhancement
of differentiator parameters. We have tested and validated the
proposed scheme on a standard industrial platform of a mobile
hydraulic system for forestry, obtaining very good results.

The proposed methodologies have shown an increase in perfor-
mance with respect to the constant gain algorithm, including
chattering attenuation. The TVD differentiator allows a good
trade-off between the high-gain and the second-order sliding
mode, compromising a transient performance and chattering
effect. Extensions of this algorithm applied to a more general
class of mechanical systems are considered for future work.

APPENDIX

A. Lyapunov Analysis

Consider the system

ẋ = f(t, x) (27)

where x and f are n-D vectors, particularly the vector func-
tion f is piecewise continuous. The precise meaning of a solu-
tion of a differential equation (27) with a piecewise continuous
right-hand side is understood in the Filippov sense [35], [38].
To analyze asymptotic stability of the origin, it is sufficient
to find a continuous positive definite function V (·) such
that for any solution x(t), the function V is monotonically
decreasing. The case where the function V (·) is continuously
differentiable has been widely studied, see e.g. [41]. Recently,
in the surveys [37] and [38], some results concerning the case
when V (·) is discontinuous have been pointed out. Next, we
are going to summarize some of these results. We refer the
reader to [37] and [38] for a more complete study.

B. Derivative Numbers and Monotonicity

In the analysis of discontinuous Lyapunov functions,
the theory of contingent derivatives plays an important
role [36], [38]. Let K be a set of all sequences of real numbers
converging to zero and let a real-valued function ϕ be defined
on some interval I.

Definition 1: A number D{hn }ϕ(t) = limn→+∞
(ϕ(t + hn) − ϕ(t))/hn, {hn} ∈ K : t + hn ∈ I, is called the
derivative number of the function ϕ at a point t ∈ I if finite
or infinite limit exists. The set of all derivative numbers of the
function ϕ at the point t ∈ I is called contingent derivative

DKϕ(t) =
⋃

{hn }∈K

{D{hn }ϕ(t)} ⊆ R̄

where R̄ = R ∪ {−∞} ∪ {+∞}.
If a function ϕ(t) is differentiable at a point t ∈ I, then

DKϕ(t) = {ϕ̇(t)}. The contingent derivative helps to prove
monotonicity of a nondifferentiable or discontinuous function.

Proposition 5: If a function ϕ : R → R is defined on I and
the inequality DKϕ(t) ≤ 0 holds for all t ∈ I, then ϕ(t) is a
decreasing function on I and differentiable almost everywhere
on I.

Observe that Proposition 5 does not require the continuity
of the function ϕ or the finiteness of its derivative numbers.
It gives us a background for the discontinuous Lyapunov
function method. The generalized derivatives presented above
are closely related to the well-known Dini derivatives.

1) The right-hand upper Dini derivative

D+ϕ(t) = lim sup
h→0+

ϕ(t + h) − ϕ(t)

h
.
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2) The right-hand lower Dini derivative

D+ϕ(t) = lim inf
h→0+

ϕ(t + h) − ϕ(t)

h
.

3) The left-hand upper Dini derivative

D−ϕ(t) = lim sup
h→0−

ϕ(t + h) − ϕ(t)

h
.

4) The left-hand lower Dini derivative

D−ϕ(t) = lim inf
h→0−

ϕ(t + h) − ϕ(t)

h
.

One can observe that D+ϕ(t) ≤ D+ϕ(t) and D−ϕ(t) ≤
D−ϕ(t). In addition, all Dini derivatives belong to the set
DKϕ(t) and

DKϕ(t) ≤ 0 ⇐⇒
{

D−ϕ(t) ≤ 0

D+ϕ(t) ≤ 0

DKϕ(t) ≥ 0 ⇐⇒
{

D−ϕ(t) ≥ 0

D+ϕ(t) ≥ 0.

It is worth mentioning that all results for contingent derivative
can be rewritten in terms of Dini derivatives.

Theorem 1: If ϕ : R → R is a function defined on an
interval I, then for almost all t ∈ I, Dini derivatives of ϕ(t)
satisfy one of the following four conditions.

1) ϕ(t) has a finite derivative.
2) D+ϕ(t) = D−ϕ(t) is finite, D−ϕ(t) = +∞, and

D+ϕ(t) = −∞.
3) D−ϕ(t) = D+ϕ(t) is finite, D+ϕ(t) = +∞, and

D−ϕ(t) = −∞.
4) D−ϕ(t) = D+ϕ(t) = +∞ and D−ϕ(t) =

D+ϕ(t) = −∞.
Corollary 1: If ϕ : R → R is a function defined on an

interval I, then the equality DKϕ(t) = −∞ (DKϕ(t) = +∞)
may hold only on a subset of measure zero.

C. Generalized Directional Derivatives

If a Lyapunov function is not differentiable, the concept of
generalized directional derivatives can be used for the stability
analysis. Let M(d) be a set of all sequences of real vectors
converging to d ∈ R

n , i.e., {vn} ∈ M(d) ⇐⇒ vn → d,
vn ∈ R

n . Let a function V : R
n → R be defined on an open

nonempty set � ⊆ R
n and d ∈ R

n .
Definition 2: A number

D{hn },{vn}V (x, d) = lim sup
n→∞

V (x + hn vn) − V (x)

hn

{hn} ∈ K, {vn} ∈ M(d) : x + hn vn ∈ �

is called the directional derivative number of the
function V (x) at the point x ∈ � on the direction d ∈ R

n

if finite or infinite limit exists. The set of all directional
derivative numbers of the function V (x) at the point x ∈ � on
the direction d ∈ R

n is called directional contingent derivative

DK,M(d)V (x) =
⋃

{hn }∈K, {vn}∈M(d)

{D{hn },{vn}V (x, d)}.

D. Discontinuous Lyapunov Functions

Some basic results concerning discontinuous Lyapunov
functions are presented in this section, see [37] and [38] for
a complete study.

Definition 3: A function V : R
n → R is said to be proper

on an open nonempty set � ⊆ R
n : 0 ∈ int(�) if it satisfies

the following conditions.

1) It is defined on � and continuous at the origin.
2) There exists a continuous positive definite function V

such that V (x) ≤ V (x) for x ∈ �.

If � = R
n , V is globally proper.

Theorem 2: Let a function V : R
n → R be proper on an

open nonempty set � ⊆ R
n : 0 ∈ int(�), satisfying

α0W (‖x‖) ≤ V (x) ≤ α1W (‖x‖)
DF(t,x)V (x) ≤ −β0V (x)

then the origin of the system is exponentially stable, where
W (‖x‖) > 0 and

DF(t,x)V (x) =
⋃

d∈F(t,x)

DK,M(d)V (x).

If � = R
n , the origin is globally exponentially stable.
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