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pdz/dt =f(t, z, s, x, u(s)) ds/dt = g:1(t, z, 8, x)

dz/dt = g2(t, z, s, ) 1)
) ] o wheres € R, x € R" are variables describing the behavior of the
Singularly Perturbed Analysis of Chattering in plant,z € R™ is vector describing the behavior of the actuaitdk,) =
Relay Control Systems sign(s) is a relay controlf, g, g- are sufficiently smooth functions

of their argumentsy is the actuator time constant. The specific fea-
ture of (1) is the following: the equations for plant’s variables: in
(1) do not contain the relay contraks) but this control is included
Abstract—For sliding-mode control systems withfast actuators, suffi- n e.qua.tlons for the fast varlabke.des.crlblr!g Qctuator.dynamlcs. The
cient conditions for the exponential decreasing of the amplitude of chat- derivative of the fastactuator variablén (1) is big. Thatis why the real
tering and unlimited growth of frequency are found. The connection be- time usage of the second-order sliding-modes control algorithms with
tween the stability of actuators and the stability of the plant on the one the finite time convergence is difficult due to big computational prob-
hand and the stability of the sliding-mode system as the whole on the other g5 [2], [7], [12]. On the other hand, relay systems with second-order
hand is investigated. The algorithm for correction of sliding-mode equa- lidi ! dl ld h infinit ’ ber of switch d the ti
tions is suggested for taking into account the presence of fast actuators. fS' Ing modes cou _ave an intinite number o SW_' c es_ e_m . eume
) N ~intervals between switches tend to zero, but there is no finite time con-
Index Terms—Singularly perturbed systems, sliding-mode control, vari- vergence to the second-order sliding domain. This means that for (1),
able structure systems. it is impossible to use the classical methods of singular perturbations
theory (see [9] and [14]).
|. INTRODUCTION At the same time, ignoring the dynamics of the actuator, i.e., setting
) . ) ) = 0 and expressing, from the equatiornf(zo, s, =, u(s)) = 0
_T_he chattering phenomenon is one of the major problems in mOd‘%@cording to the formula, = (s, «, u(s)), we obtain the reduced
sliding-mode control (see [2], [13], and [12]). The presence of fast ac'é&?stem
ators is one basic reasons for chattering occurring in sliding-mode con-

trol systems. In [3], was shown that the behavior of sliding-mode sys- ds/dt = g,(t, ¢(s, x, u(s)), s, x) = Fi(t, s, =, u(s))
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hold and the dynamics into this mode are described by the equations of allows us to examine only solutions of (1), starting in the neigh-

equivalent control method (see, for example, [13]) borhood of the switching surface with radi¥:), and to prove
; that such solutions of (1) will not leave this neighborhood. With
du/dt = F>(t, 0, 2, ucq(t, 2))  Fi(t, 0, 2, ueq(t, 2)) = 0. (4) this aim we have to introduce the new variable: s/, instead

of variables in (1), characterizing the behavior of (1) in t&%.)

In this note, two problems are considered concerning the convergence . o
P 9 9 neighborhood of the switching surface. Then, (1) takes the form

of the system with fast actuator (1) solutions to the corresponding
sliding equation (4) solutions. pdz/dt = f1(t, =, o, p&, ) + d(t, 2)U(t, z, u(§))

1) _De5|gn the Mathematical Tools for Investigating SPRS20SM pdo [dt = fo(t, =, o, p€, @) + b(t, 2)U(t, 2, u(€))
(Section II):
« Sufficient conditions for the exponential decreasing of the am-
plitude of chattering and the unlimited growth of frequency are 3) Letus eliminate relay control from the first equation of (5). Then,
found (Section II-B). after the variables substitutiogh= z—d(¢, «)o /b(t, x), System
* It is shown that the exponentially stable slow-motions integral (1) takes the canonical form
manifold of a smooth singularly perturbed system, describing the _ _
motion of original SPRS20SM in the second-order sliding do- ~ #*@1/dt =vi(t. 7. 0. p&. . 1)
main, is the exponentially stable slow-motions integral manifold st do/dt =va(t, 7, o, p&, =, p) +b(t, 2)U (1, =, u(€))
of the original SPRS20SM (Section II-C). pdé/dt =0 da/dt = vs(t, 7, o, p€, ). (6)
The reduction principal theorem is proved in which the sufficient - . o
conditions of the equivalence for the stability of slow motions of 1n€ SPecific feature of (6) is that only the second-order sliding mode
plants and the stability of original systems with an actuator af@&" occur in it, and the motion in this mode is determined by
found (Section II-D). pdn/dt =vi(t,7,0,0, z, u) dz/dt =vs(t, 7, 0,0, z, p).

2) Chattering Analysis in Sliding-Mode Systems With Fast Actua- )
tors Based on Decomposition Tools Designing in the Sectioritll:
is shown (Section Ill-A) that the definition of the motions in slidingSystem (7) has an asymptotically stable slow-motion integral manifold
mode, according to the equivalent control method, corresponds to thes (¢, x, ) if the following conditions are held [9].
presence of fast actuators in the control system. In Section IlI-B, thel) The equation (¢, 7, 0, 0, , 0) = 0 has an isolated solution
connection between the stability of the actuators and the stability of 7 = hy(t, z) atall(t, #) € R x R".
the plant on the one hand and the stability of the sliding-mode system|) Functions v; (i = 1, 3), ha have second-order contin-
as a whole on the other hand is investigated. The algorithm for cor- uous derivatives in the domai® = {(¢t, 7, =, u) €
recting the sliding-mode equations is suggested in Section llI-C for R x R™™' x R™ x [0, uo]: |7 — ho(t, )| < 6}, where
taking into account the presence of fast actuators. In Section IlI-D, it~ § > 0, |.| is the Euclidean norm.
is shown that whenever the sliding motions of the plant are stable, butll) Re Spec duv(t, ho(t, z), 0, 0, z, u)/07 < —x < 0 for all

pdé/dt =o dv/dt = g:(t, Z, o, pg, x). )

not asymptotically stabldt is obligatory to make a correctioto the (t, z, p) € R € R" x [0, po].
sliding-mode equations taking into account the presence of fast actua- After the substitution of variablegs = 7 — R(t, =, u) and
tors in the system. expansion in the series toward 40 o, £ degrees at the point

(0, 0, 0), (6) takes the form
Il. MATHEMATICAL TOOLS
wdn/dt = Bi1(t, @, p)n+ Bi2(t, x, p)o
+ H‘B13(17 £y H‘)& + Pl(t, 0, H&v £y H‘)
We shall develop the mathematical tools_forthe _case,wh(_en solutions pdodt = Boy(t, x, p)n + Bas(t, , p)o
of the relay control system (1) are determined uniquely. It is true (see B - / N
[4]) for a wide class of such systems in whiglis linearly depending + pBas(t. x, )+ a2t . 0. ps . p)

A. System Transformation Into a Convenient Form for the Analysis

onrelay functionU (¢, x, u(s)) satisfying the inequality +b(t, 2)U(t, z, w(§)) pdéfdt=o0 (8)
Urls| < sU(t, x, u(s)) < Usls|, L>Up >0 da/dt = @s(t, 0, o, pé, x) ©)
where ¢1(t, 7,0,0, 2z, u) = 0 and everywhere in

for all (¢, s, x).

Let us make three substitutions of variables in (1).

1) Here, we consider the case when, in (1), there exists a stable
second-order sliding mode. In such a cage(t, z, s, «) # 0.
We will consider the behavior of (1) in the small neighborhood
of the second-order sliding domain= ds/dt = 0. Thatis B Exponential Stability of Fast Motions
why it is reasonable to considés/dt as the system (1) state
variable. Suppose that, is the last coordinate for the vector
andgi_ (t, z, s, z) # 0. Then we can introduce the variable
o= d;?dt = g1 (t, z, s, ) instead ofz,,, in (1). IV) Baa(t, ,0) < —a < 0,0t a) < —a < 0
It is reasonable to consider sliding-mode control systems witha ~ #2(t. 0, 0, 0, 2, p1)| < al.
stable fast actuator. Then according to the boundary layer method-et us denote ag = (n", o, )", and as(y(t, u), z(t, p)). the
[14], and conditions (3), ensuring the existence of a stable firgtorresponding coordinates of (8) and (9) solution with initial conditions
order sliding-mode in the reduced system (2) (when the actu-
ator is ideal), one can conclude that the solution of (1) starting
far from switching surface = 0 will reach the neighborhood Lemma 1: If conditions I)-IV) are true, there exist constaiifs >
of the switching surface with radiud(y:) after a finite time. It 0, K> > 0, > 0 and¥ some neighborhood of the origin in the state

Q={t,n 2z, 1) € RxR™ T xR" x [0, uol: |n| < 6}
for nonlinear terms the following conditions hold:
w2(t,n, 0, p&y x, ) = @2(t, 0, 0,0, 2, ) + o(lyl),
e1(t,n, o, pgs w, p) = o(lyl) byy = (1. 0. §) — 0.

Suppose that for alk, =) € R x R", conditions I)-Ill) are satisfied
and, moreover

2

~

y(0, 1) =yo (0, p) = wo.
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space of variableg such that for allyo, 20) € Q' = Rt x W x R" 14
andp € (0, po] the following inequality holds:

ly(t, p)l« < K |yo|*6"/t/“ < Koe™7/n H
lyl« =V Il +lo|* + [¢]. (10) 0.6-“%
Lemma 1 was proved in [1] and [5] with the help of Lyapunov function 041

E= 77'T577 +o° - E[20(t, 2)U(t, 2, u(E))
+ 2992(15& n, 0, :U/g: R ﬂ) + Bazo + 2TIVTAS-BlZ + 2B217/]

where S(t, @, p) is positive definite solution of equation
SB11 + B%;S = —In_1.

C. Decomposition Theorem

Consider a solution of (8) and (9), only starting@. Then, the i
z(t, 1) coordinate of the solution of (8) and (9) will be a solution of §
the initial problem S S f

%,

de/dt =®(t, y(t. p), x, ), 2(0) =0
B(t, y(t, @), v, p) = @s(t, n(t, ), o(t, p), p&t, p), x(t, p)).

Let us represent(t, ) asz(t, u) = =(¢, p) + Ma(t, 1), such that

Fig. 1. Exponential decreasing of

dz/dt =®(t, 0, 7, 1), 7(0) = Ty (11) 0.16]
dllz/dt = ®(¢, y(t, p), T+ e, p) — ®(¢, 0, 2, u), (12) 0.14:
Hl(o) :HOJJ./ To + Ho.’E = To. (13) U 12_
To define the solutions of (11)—(13), it is necessary to choose 01
(.l’(), Hox) -]
Theorem 2: Suppose that for allt, y, z), (t, 7, ) € Q' condi- 0.06]
tions -1V are true, inequality®(¢, y, ) — ®(t, 7. 7)| < M(|ly — '
y| + |z — =) is satisfied and 0.06]
uM/y <1, KM/(v—uM)<C. (14) 004t

Then, for any initial points(yo, zo) € € the solutions of (8)
and (9) can be represented as slow and fast parts in the fornr 0.02

(y(ta H)v ZL’(t, ,U/)) = (Uv j(t? N‘)) + (Hy(t, ﬂ)> H‘17(t7 H‘))' So
z(t, p) is the solution of (11) with initial conditions(0) = =, while 1}
xo = To + O(p). The fast part of this solutiofIly(¢, x), Mz(t, )} 0.0

satisfies the inequality

plMy(t, )] + [Ma(t, )] < p(C+ K)e™ ™ asy 004

The proof of this theorem is given in the Appendix. Fig. 2. Exponential decreasing of

D. Reduction Principle Theorem ] ) o
unique. For example, on one hand, extension definition of (16) solu-

Theorem 2 and (15) yield the foI_I(_)wing reduction principle theor_erq-rons into the sliding mode according to [4] takes the faknfdt = =
~ Theorem 3:1f, under the conditions of Theorem 2, the functionyit an ynstable zero solution. On the other hand, extension of the def-
#(t, p) is the solution of (11), theqn), 0, 0, (¢, 1)) is the solution inision of (16) into the sliding mode according to the equivalent control

of (8) and (9), and this solution will be stable (unstable, asymptoticalljathod takes the formhz /dt = —x with an asymptotically stable zero
stable) if and only ife(¢, 1) is stable (unstable, asymptotically stable)gqution.

Suppose that a relay control is transmitted to the plant via a fast

lll. ANALYSIS OF CHATTERING IN SLIDING actuator and a complete model of a system, taking into account the
MODE SYSTEMS WITH FAST ACTUATORS presence of a fast actuator, has the form
A. Systems Containing Relay Control Nonlinearly pdzjdt = —z —u ds)dt == defdt = (252 = 1)x (17)

Consider the control system . . .
4 wherez € R isthe actuator variable ands the actuator time constant.

ds/dt = —u dzx/dt = (uz -z =z, s€R u(s) = sign(s) For (17), Theorems 2 and 3 are true. This means that the fast variables
(16) = sare exponentially decreasing (in Figs. 1 and 2 0.2, z2(0) = 1,
5(0) = 0.1), equationdz/dt = —z of the equivalent control method
containing the relay contral(s) nonlinearly. There is a stable slidingis approximately described by the slow motions in (17), and the zero
mode in (16). Defining solutions in the sliding domain (16) are natolution of (17) is asymptotically stable.



2082 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 12, DECEMBER 2002

B. Stability of Actuators and Absence of Chattering The stability of the fast actuator (21) and of the second-order sliding
In this section, we investigate the correlation between the natuF3Pde (24) still does not guarantee the absence of chatteriig.if >

conditions of stability of fast actuators in sliding-mode control systents Consider the system

and the existence of the stable first-order sliding mode for a reduced |, dz Jdt = 214 20+n+Dix  pdz/dt = 22049+ Dax
system, describing the behavior of the plant without actuator on the dn/dt =242, — 605 — 9y + Dy + ksign s

one hand, and sufficient conditions for exponential decreasing of fast pan/ot =22 - ! ? ©
oscillations (absence of chattering) in the original system on the other ~ ds/dt =n dx/dt = F(z1, 2, 1, 5, x)

hand. erez, z», 1, s are scalarsy < 0. Itis easy to check that the spec-
Consider the simplest case, when the behavior of the plant is qﬁjm of the matrix is{—1, —2. —31}, and condition (24) hold for this
scribed by system. On the other hand motions in the second-order sliding mode
dz/dt = Az + Bu, r € R" u =sign(s), s=CreR. aredescribed by
(18) pdz/dt =z1 4+ 22 + Dix pdze/dt = 229 + Dax

Suppose that the relay controlensures the stable first-order sliding defdt =F(z1, 22,0, 0, @).

mode on the switching surface = 0, and consequentl’ B < 0.  The fast dynamics in this system are unstable and the absence of chat-
Consider the case when relay control is transmitted to the plant viqeamg in the original system cannot be guaranteed.
fast actuator, with behavior described by

- C. Algorithm for Correction of Equivalent Control Method
pdz/dt = Dz + Fx + bu(s), ze€R (19) ) ) ) )
According to Theorem 2, the slow motions in system with fast actu-

wherey is the actuator time constant. This means that the system modgdr (1) are described by equations for the motions on the slow-motions
taking into account the presence of a fast actuator has the form  integral manifold of a smooth singularly perturbed system describing
(1) dynamics into the second-order sliding domain. It allows for the
pdz/dt = Dz+ Fr+bu(s) de/dt= Ar+ BRK=. (20)  formulation of the following algorithm.
Step 1. Design of Algebraic—Differential Equations for Description
of Motions in (1) in the Second-Order Sliding Mod&uppose that the
stable second-order sliding mode exists in (1). Then, motions in this

It is natural to suppose the following.
* The actuator is stable, which means that

ReSpec D < 0. (21) mode are determined by equations of the equivalent control method
» System (20), fop: = 0, turn to (18) and consequently pdzfdt = f(t, 2,0, 2, Ueq(t, 2, 2, p)) = (. 2, v, p)
da/dt = g2(t, 2, 0, x) (25)
KD 'p= -1, —CBKD 'h=CB<0. (22)
ds/dt =gi(t, 2, 0, ) =0 (26)

Transform (20) to the canonical form (see Section II-A) ) .
where the equivalent contral., (¢, =, x, ;) for second-order sliding

v dz /(H' =Di1z1 + Disoc + Fi15+ Firax one can find from
22 d(T/(H' = D2121 =+ D22(T + Fns + Flgfl?l + flu(s) (lzs/(ltz(t. - () x, ch, ”)
db’/dt =0 (liL’l/dt = B1121 + B120' + 4-/1335 + 443441/’1 (23) — g1 f/H _|_ 91 g1 _|_ g] gZ|(t 0, u = = (. (27)
T, Ueq,

21 €R™7H e € R"7, 0 € R. For (23), the conditions of stability  Step 2. Design of Differential Equations for the Description of Mo-
of the second-order sliding mode are tions in (1) in the Second-Order Sliding Modé-et us express one of

d<0 Doy < 0 (24) the vector: coordinates from (26) to _reduce_ the alge_braic—diff_erential

’ - ’ system (25)—(27) to the system of differential equations. Let it be, for

InequalityRe Spec D11 < 0 ensures exponential decreasing of actiexample, its last coordlnaten, and the corresponding expression has

ator variables in the second-order sliding domain. The following prop#e formz.., = p(t, =, x), wherez € R™~" is the vector consisting

sition is obvious. of the first(m — 1) coordinates of the vectar. Then, (25) may be rep-
Proposition 4: When the actuator is the single-input—single-outpuiesented in the form

system {» = 1, = € R) and the condition of stability of fast actuator pdz)dt = F(t, %, 0, p)  de/dt = Go(t, % ) (28)

(21) and conditions of existence of stable first-order sliding mode for _ R
the reduced system (18) are held, the amplitude of chattering in (20)ikeref consists of the firstm — 1) coordinates of functiorf at the

exponentially decreasing. point (¢, z, p(t, z, x), x, p).
However, itis not true just fam = 2. Condition (22) for (23) means  Step 3. Design of Corrected Equations of the Equivalent Control
that Method: System (28) is a smooth singularly perturbed system. If in
0 det(Dy1) such systems the fast variables are uniformly exponentially stable, then
(01)D~! < ) =d——>7->0. there exists the slow-motions integral manifold in the following form:
d det D = = h(t, x, u). Motion on that manifold is described by
Now, from condition (21), follows thadet D > 0. Conditions (21), dz/dt = Go(t, h(t, T p1), T) == hit, 7 p). (29)

(22) mean thatl anddet(D,) have the same sign. This means that,

for m = 2, (21) and (22) do not ensure exponential decreasing bf Theorem 2 (Section Il), the sufficient conditions are found ensuring

chattering. that ther coordinate of the solutions of (1) will differ from the solutions
Proposition 5: Let m = 2. If (21), (22), andD,, < 0 ord < of (29) up to the fast decreasing exponent. In this sense, slow motion

0 are held, then the amplitude of chattering in (20) is exponentialig (28) is precisely described by (29), and we will call (29) precise

decreasing. equations of the equivalent control method. Functi¢h =, ) could
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be expressed as an asymptotic sefiféls «, p) = Y o° wFhe(t, @) IV. CONCLUSION

from 1) The sufficient conditions under which the oscillations in the

sliding-mode control systems, with fast actuators, whose behavior
are described by SPRS20SM, have the following structure.

* The oscillations in the second-order sliding mode, which are
described by a smooth singularly perturbed system of differ-
ential equations, and the slow-motion integral manifold of this
system is the stable slow-motion integral manifold of the orig-
inal system.

* The oscillations in the second-order sliding mode, which are
described by a smooth singularly perturbed system of differ-
ential equations, and the slow-motion integral manifold of this
system is the stable slow-motion integral manifold of the orig-

plhy + Rhga(t, h(t, z, p), ©)] = f(t, hit, z, p), z, p). (30)

Functionhq (¢, x) is determined byf (¢, ho, 2, 0) = 0. This means

that forpy = 0, (29) coincides with the equivalent control method equa-
tion (4). With p = 0, (29) differs from (4) only in the terms, which
correspond to the presence of fast actuators in the original system (1).
From Theorem 3, it follows that the problems of investigating the sta-
bility for the zero solution of (1) and (29) are equivalent.

D. When Is Correction of the Equivalent Control Method Obligatory?

Consider the sliding-mode control system inal system.
Due to this fact, it was shown that it is possible to design chat-
ds/dt =—u(s) dwi/dt =22 daz/dt =u(s)—a; tering-free sliding-mode control systems with fast actuators in the case
u(s) = —sign(s). (31) when the order of sliding in a complete model is 2.

2) Itis provedthatinthe general case, when the plant contains the relay
There exists a stable first-order sliding mode for (31). Then, the control nonlinearly, the equations of the equivalent control method

sliding-mode dynamics are described by for the sliding motions of the plant are approximately describing
the slow motion in the original SPRS20SM and correspond to the
day[dt = w2 daa/dt = —ax. (32) presence of fast actuators in a sliding-mode control system.

3) The connection between the stability of the actuators and the sta-
Itis obvious that the solutions of this system are stable but not asymp- bility of the plant on one hand and the stability of the sliding-mode
totically stable. Suppose that the relay contro!) is transmitted to the system as a whole on the other hand is investigated.
plant with the help of a fast actuator, whose behavior is described 3y The algorithm for the correction of the sliding-mode equation is
variablesz;, z2. The complete mathematical model of control system proposed. In the case when the linear part of the sliding-mode equa-

has the form tions has a critical spectrum, it is obligatory to correct the equations
of the sliding motion in order to take into account the presence of
pdzifdt =—z — 2 pdzo/dt = —zp — sign(s) fast actuators in the system, because the presence of such devices
ds/dt =z duy[dt = 19 may cause change to the system behavior from stability to asymp-
totic stability or instability.
des/dt =(a+1)z1 — 29 + ar (33) Y y
whereu is the scalar parameter determining actuator/plant connection. APPENDIX
It is easy to see that, for (33), Theorems 2 and 3 are true and slow PROOF OFDECOMPOSITIONTHEOREM

dynamics for (33) with precision level ;) are described by (32). On  Consider the (11) and (12). Let us design an integral manifold of
the other hand, for dynamics in the second-order sliding mode for (38)1) and (12) in the forn$ = {(t, 2, Ie) € RT x R" x R™: Ila =

one has H(t, =, 1)}, where the functior{ (¢, =, ) is continuous o™ x
R" x [0, no] and the following inequality is true:

sup | exp(vt/p)H(t, x, p)| < pd (¢, 2) € R x R". (37)

The constantl > 0 in (37) will be defined later. Denote d¢ the
Then, the slow motion integral manifold of (33) and (34) takes the formetric space of continuous functioRs" x R" x [0, uo] — R™, satis-
21 = pr(p)er +p2(p)xs, wherep;; (i) = pio+pip+---+pap®+  fying (37) with the metrigx(H, H) = sup | exp(yt/p)(H(t, v, 1) —
.+, i =1, 2. The functiong;; (1) can be found from H(t, x, )], for (¢, x, p) € RT x R™ x [0, po]. The spacé/ is
a complete metric space. The functiin = H(t, =, p) € U is the

p(p1 p2) ((a i 1> (p1p2) + <2 é)) = —(p1p2)— (10) solution of
(35)

pdz /dt =—z —x  dry/dt = xo
das/dt =(a+ 1)z + axy. (34)

H=P(H)

p(H)(t, ‘i"'/ H‘) == / [(I)(ea y(97 /1)7 (,b(ea :u)
and, consequentlypio p20) = (=1 0), (p11 p21) = (0 1). This Jt
means that the slow motion in (33) is described by + RO, (8, 1), p)s 1)

— D6, 0, 60, p), W]ds (38)

where ¢(8, n) is the solution of Cauchy problemdo/df =
®(8, 0, ¢, u), o(t) = z. Let us show that operatd? from (38)
transformg/ into itself. Taking into account (37) and (38), one can
conclude that

dzy [dt = o dxo/dt = —x1 + pla + 1)z +()(;L2). (36)

From Theorems 2 and 3, it follows that variablesndds /dt = z, are

asymptotically decreasing, but fer> —1, the zero solution of (33) is

unstable and for the < —1 this solution is asymptotically stable.
This means that in the case when the spectrum of sliding-mode equa- | exp(~yt/p)P(H)(t, &, )]

tions is critical, the presence of fast actuators can change the behavior o ,

of a system from stability to instability or asymptotic stability. One can <M eXp(""t/“)/l R, &0, ), ) + |y (8. w)ll b

conclude that for the investigation of stability in the critical case, the M

correction of sliding-mode equations is obligatory. < 2 [11d + Clyol].
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Now it is possible to choose sudtthat for anyy, € W the inequality Two-Channel Decentralized Integral-Action
(M/[pd + Clyol«] < dis true. This means that operatBrtrans- Controller Design
forms the spac# into itself. Similarly

exp(rt/w)[P(H)(L, &, p) = PR, &, )

A. N. Giindesand A. B. Ozgiiler

<exprt/) [ 106, 606, 1)+ Ho y(6, ). 1)
t
— &, 6(6, p) +H, y(8, p), )| dé
= — M —
<exp(yt/p) / M|H ~H|d8 < jp — p(H. H)
. 14

t

Abstract—We propose a systematic controller design method that pro-
vides integral-action in linear time-invariant two-channel decentralized
control systems. Each channel of the plant is single-input—single-output,
with any number of poles at the origin but no other poles in the insta-
bility region. An explicit parametrization of all decentralized stabilizing
controllers incorporating the integral-action requirement is provided

which means that operat@t is a contraction operator @i. Then, the for this special case of plants. The main result is a design methodology
operatorP has the unique fixed point corresponding to the functiofpat constructs simple low-order controllers in the cascaded form of

Mz = H(t, &, p). Moreover, from (37), one can conclude that th

@roportional-integral and first-order blocks.

inequality|H(t, &, u))| < pdexp(—~t/p) holds for all(¢, &, n) € Index Terms—Decentralized control, integral-action, stability.
R™ x R™ x (0, po).
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