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Analysis of Second-Order Sliding-Mode Algorithms
in the Frequency Domain

I. Boiko, L. Fridman, and M. I. Castellanos

Abstract—A frequency domain analysis of the second-order
sliding-mode algorithms, particularly of the twisting algorithm is
carried out in the frequency domain with the use of the describing function
method and Tsypkin’s approach. It is shown that in the presence of an
actuator, the transient process may converge to a periodic motion. Param-
eters of this periodic motion are analyzed. A comparison of the periodic
solutions in the systems with higher order sliding-mode controllers and
the oscillations that occur in classical sliding-mode systems with actuators
is done.

Index Terms—Chattering, relay control, sliding-mode (SM) , variable
structure systems.

I. INTRODUCTION

Higher order sliding modes (SM) have received a lot of attention
from the control research community over the last decade (see the
bibliographies in [1]–[9]). The main advantages of the higher order
sliding-mode algorithms are: A higher accuracy of resulting motions;
the possibility of using continuous control laws (super twisting or
twisting as a filter); the possibility of utilizing the Coulomb friction in
the control algorithm [7]; and finite time convergence for the systems
with arbitrary relative degree.

It is known that the first order SM in systems with actuators of rel-
ative degree two or higher is realized as chattering [2], [9]. For the
same reason, it would be logical to expect a similar behavior from a
second-order SM, as the aforementioned algorithms contain the sign
function. The modes that occur in a relay feedback system with the
plant being the order 1, 2, 3, etc. dynamics were studied in publica-
tions [10], [11]. It has been proven in those works that for the plant of
order 3 and higher the point of the origin cannot be a stable equilib-
rium point. Similar behavior, therefore, can be expected from a system
with a second-order SM algorithm. Thus, the objective of this note is
to analyze the motions that occur in a system with one of the most pop-
ular second-order SM algorithm—the twisting algorithm, to show the
existence of periodic motions, to estimate the parameters of those mo-
tions, and to compare the latter with the parameters of chattering in the
systems with asymptotic second-order relay control [6], [10], [11] and
first-order SM control [12].

Given the objective of the outlined analysis and the fact that the in-
troduction of an actuator increases the order of the system, the analysis
of corresponding Poincare maps becomes complicated. In this case, the
describing function (DF) method [13] seems to be a good choice. The
DF method provides a simple and efficient solution of the problem.
However, the DF method provides only an approximate solution and
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for that reason the Tsypkin’s method [10] modified to accommodate
the analyzed problem is used for the analysis as well. The latter does
not require involvement of the filter hypothesis and provides an exact
solution of the problem of finding the parameters of self-excited oscil-
lations in a relay feedback system. However, the twisting algorithm is
not equivalent to the relay feedback control and some modifications to
the Tsypkin’s method need to be done to accommodate this method to
the analyzed algorithm.
The note is organized as follows. At first the model of the system in-

volving the twisting algorithm suitable for the frequency domain anal-
ysis is obtained. Then, DF model and the model suitable for deriving
the Tsypkin’s locus of the system are built. After that the DF analysis
and the exact analysis of the system with the twisting algorithm are
considered. Finally, a number of examples are considered and a com-
parison is done.

II. TWISTING ALGORITHM AND ITS DF ANALYSIS

The twisting algorithm is one of the simplest and most popular algo-
rithms among the second-order sliding-mode algorithms. There are two
ways to use the twisting algorithm [8]: to apply it to a plant of relative
degree two, or to apply it to a plant of relative degree one and intro-
duce an integrator in series with the plant (twisting-as-a-filter). For the
plants of relative degree two it can be formulated as follows. Let the
plant (or the plant plus actuator) be given by the following differential
equations:

_x =Ax +Bu

y =Cx (1)

where x is an n-dimenaionsl state vector, u is a scalar control,A andB
are matrices of respective dimensions, and yis scalar and can be treated
as either the sliding variable or the output of the plant. Also, let the
control u of the twisting algorithm be given as follows [5], [8]:

u = �c1sign(y)� c2sign( _y) (2)

where c1 and c2 are positive values, c1 > c2. Assume that a peri-
odic motion occurs in the system with the twisting algorithm. Then the
system can be analyzed with the use of the DF method. As normally
accepted in the DF analysis, we assume that the plant has a magnitude
characteristic of a low-pass filter. Find the DF q of the twisting algo-
rithm as the first harmonic of the periodic control signal divided by the
amplitude of y(t)—in accordance with the definition of the DF [13]

q =
!

�A1

0

u(t) sin!tdt+ j
!

�A1

0

u(t) cos!tdt

whereA1 is the amplitude of the input to the nonlinearity (of y(t) in our
case) and ! is the frequency of y(t). However, the twisting algorithm
can be analyzed as the parallel connection of two ideal relays where the
input to the first relay is the sliding variable and the input to the second
relay is the derivative of the sliding variable. The DF for those nonlin-
earities are known [13]. For the first relay the DF is: q1 = 4c1=�A1,
and for the second relay it is: q2 = 4c2=�A2, where A2 is the ampli-
tude of dy=dt. Also, take into account the relationship between y and
dy=dt in the Laplace domain, which gives the relationship between the
amplitudes A1 and A2 : A2 = A1
, where 
 is the frequency of the
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Fig. 1. Finding the periodic solution.

oscillation. As a result, taking into account the parallel connection of
those relays, the DF of the twisting algorithm can be given as a sum of
the DF of the first relay and the DF of the second relay multiplied by
the Laplace variable

q = q1 + sq2 =
4c1
�A1

+ j

4c2
�A2

=
4

�A1

(c1 + jc2); s = j
:

(3)
Let us note that the DF of the twisting algorithm depends on the ampli-
tude value only. This suggests the technique of finding the parameters
of the limit cycle—via the solution of the complex equation [13]

�

1

q(A1)
= W (j
) (4)

where W (j!) is the complex frequency response characteristic
(Nyquist plot) of the plant and the function at the left-hand side is
given by: �1=q = �A1(�c1 + jc2)=[4(c

2

1 + c22)]. Equation (4)
is equivalent to the condition of the complex frequency response
characteristic of the open-loop system intersecting the real axis in the
point (�1; j0). The graphical illustration of the technique of solving
(4) is given in Fig. 1.

The function �1=q is a straight line the slope of which depends on
c2=c1 ratio. This line is located in the second quadrant of the complex
plane. The point of the intersection of this function and of the Nyquist
plot W (j!) provides the solution of the periodic problem. This point
gives the frequency of the oscillation 
 and the amplitude A1. There-
fore, if the transfer function of the plant (or plant plus actuator) has
relative degree higher than two a periodic motion may occur in such a
system. For that reason, if an actuator of first or higher order is added
to the plant with relative degree two driven by the twisting controller a
periodic motion may occur in the system.

In [3], [6], [10], and [11], the asymptotic second-order SM relay con-
troller was studied. The simplest scalar example of this controller has
the form: x = �a _x � bx � k sign(x); a > 0; k > 0. It is shown in
those works that this system is exponentially stable (no finite time con-
vergence). In respect to our analysis, from Fig. 1 it also follows that the
frequency of the periodic solution for the twisting algorithm is always
higher than the frequency of the asymptotic second-order sliding-mode
relay controller, because the latter is determined by the point of the in-
tersection of the Nyquist plot and the real axis.

Another modification of the twisting algorithm is its application to a
plant with relative degree onewith the introduction of the integrator [8].
This will be further referred to as the “twisting as a filter” algorithm.
The above reasoning is applicable in this case as well. The introduction
of the integrator in series with the plant makes the relative degree of this
part of the system equal to two. As a result, any actuator introduced in
the loop increases the overall relative degree to at least three. In this
case, there always exists a point of intersection of theNyquist plot of the

Fig. 2. Transformed system with twisting algorithm.

serial connection of the actuator, the plant and the integrator and of the
negative reciprocal of the DF of the twisting algorithm (Fig. 1). Thus,
if an actuator of first or higher order is added to the plant with relative
degree one a periodic motion may occur in the system with the twisting
as a filter algorithm. However, if the actuator is of second or higher
order there is an opportunity for reduction of the amplitude of chat-
tering in the control signal when using twisting as a filter algorithm in
comparison with the first order SM control. This reduction is achieved
due to the falling character of the magnitude characteristic of the inte-
grator introduced between the discontinuous nonlinear element and the
plant. The DF analysis provides a very demonstrative proof of possible
existence of a periodic solution in the system with the twisting algo-
rithm in the case of an actuator introduction. However, the DF method
is an approximate one and a rigorous analysis would be desirable. This
can be provided using Tsypkin’s method [10].

III. EXACT ANALYSIS OF TWISTING ALGORITHM

The Tsypkin’s method [10] can provide an exact solution of the pe-
riodic problem in a relay feedback system having a plant (1) and the
control given by the hysteresis relay function. The Tsypkin’s locus for
such a system is defined as:�(!) = (1=!) _�(�=!)+j�(�=!), where
�(t) is the error signal, t = �=! is half a period in a periodic motion
that corresponds to the switch of the relay from “+” to “�.” Consid-
ering the identities �(t) = �y(t) and �(0) = ��(�=!) rewrite the
above formula as follows: �(!) = (1=!) _y(0) + jy(0), where time
t = 0 corresponds to the switch of the relay from “�” to “+.” We
shall treat the last formula as the Tsypkin’s locus definition. For prac-
tical computations, the Tsypkin’s locus can be represented via the plant
transfer function as follows [10]:

�(!)=
4c

�

1

k=1

ReW [(2k � 1)!] + j
4c

�

1

k=1

ImW [(2k � 1)!]

2k � 1
:

(5)
With the function �(!) computed, analysis of periodic motions in a
relay feedback system becomes an easy task. The frequency of the pe-
riodic motion 
 can be found from the following equation:

Im �(
) = �b (6)

where b is the hysteresis of the relay (which is zero in our case). How-
ever, to be able to use this method for the twisting algorithm anal-
ysis, we need to transform the original problem into an equivalent one.
Transposition of the second relay into the feedback around the plant
allows us to build the following equivalent system (Fig. 2).
In Fig. 2, we are going to treat the part of the system denoted by the

dashed line as a new plant of the relay system (the equivalent plant).
However, the equivalent plant is nonlinear with the nonlinearity being
the second relay. For that reason, the Tsypkin’s approach needs to be
modified.
According to the definition of the Tsypkin’s locus, the imaginary

part of �(!) can be found as the output of the plant at the switch time
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if a periodic square-wave pulse signal u1 is applied to the plant. Note
also that the signal u2 is also applied to the plant and the output of the
plant y can be considered as a sum of two outputs y1 and y2, each of
them is a response to the control u1 and u2, respectively. Moreover, y2
can be obtained by time shifting and scaling of y1.

Introduce the following function that can be helpful for �(!)
computing. Let L(c; !; �) be the function that denotes a linear plant
output at the instant t = �T (with T being the period) if a periodic
square-wave pulse signal of amplitude c is applied to the plant:
L(c; !; �) = y(t)jt=2��=! , where � 2 [�0:5; 0:5], ! 2 [0;1].
Positive values of � correspond to the time following the switching
instant, negative values—to the time preceding the switching instant.
If we compare this formula with the Tsypkin’s locus definition we
would find that: Im�(!) = L(c; !; 0). Analysis of the Fourier
series of a linear plant response leads to the following expression for
L(!; �):

L(c; !; �) =
4c

�

1

k=1

1

2k � 1

� fsin [(2k�1)2��]�ReW [(2k�1)!]

+ cos [(2k�1)2��]�ImW [(2k�1)!]g : (7)

With the formula of L(c; !; �) available, we can obtain an expression
for Im�(!) of the equivalent plant as a sum of the plant responses to
two square wave signals at the time of the first relay switch from “�”
to “+”)

Im�(!) = L(c1; !; 0) + L(c2; !; �) (8)

In formula (8), the value of time shift � between the switches of the
first and second relays is unknown. It can be found from the following
equation: _y(�) = 0, which is the condition of the second relay switch.
This condition can be expressed via the function L(c; !; �) as follows
(now we consider time t = 0 being the time of the second relay switch
from “�” to “+”):‘

L1(c1; !;��) + L1(c2; !; 0) = 0 (9)

In (9), L1 is the function L(c; !; �) for which the transfer function in
formula (7) is W1(s) = sW (s) (transfer function from the control
to dy=dt). Therefore, the methodology of analysis of the periodic mo-
tions in the system with the twisting algorithm is as follows. At each
frequency from the analyzed range, (9) is solved for the time shift �
(in parts of the period) between the switches of the two relays, where
function L(c; !; �) is computed as per (7). After that the imaginary
part of �(!) is computed as per (8). With the imaginary part avail-
able, the frequency of the oscillations is found from (6). Local sta-
bility of the periodic solution can be analyzed as per [14]. Since we
are not using the real part of Tsypkin’s locus in the analysis, a sim-
plified approach to its computing can be applied. It can be approxi-
mately computed as the first term in the series (5), which represents
the first harmonic approximation and results in the following formula:
Re�(!) � Re[W (j!)=(1+ j! � q2(A2) �W (j!))], where q2 is the
DF of the second relay: q2 = 4c2=(�A2),A2 = 4c1!jW (j!)j=�.

A qualitative analysis of the periodic solution shows that in (8) the
second addend represents the increment of �(!) (at frequency !)
caused by the introduction of the second relay. Since the switching
signal of the second relay is the derivative of the output, the phase
shift between the two relay switches is close to �=2. The sign of � is
positive because the derivative signal leads with respect to the output,
and both the output and its derivative are inverted. From (7), we
can see that at a frequency close to the frequency of the self-excited
oscillations the following holds: L(c2; !; �) < 0. This means that

Fig. 3. Tsypkin’s locus of the equivalent actuator-plant ! 2 [50 s ;1).

the Tsypkin’s locus of the system with the twisting algorithm is
always located below the corresponding locus of the system with the
asymptotic second-order SM relay controller, which totally confirms
the conclusion of the DF analysis: the frequency of the periodic
solution for the twisting algorithm is always higher than the frequency
of the asymptotic second-order SM relay controller.

IV. EXAMPLES OF ANALYSIS AND COMPARISON OF RESULTS

At first, consider an example of analysis of the system with a relay
feedback control. This will serve as a benchmark for the comparison
with other types of control. Let the plant be given by: _x1 = x2, _x2 =
�x1 � x2 + ua and the actuator by: _ua + ua = u. Carry out analysis
of periodic motions in the systems with the asymptotic second-order
SM relay control and with the twisting control algorithm. Compute the
Tsypkin’s locus of the actuator-plant and in accordance with (6) ob-
tain the frequency of the oscillations: 
 = 9:357 s�1. Now, carry out
analysis of periodic motions in the system with the twisting algorithm.
Suppose the relay amplitudes are c1 = 0:8 and c2 = 0:6 (that provides
the same amplitude of the fundamental frequency of the control signal
as the unity amplitude). Compute and plot �(!) of the equivalent ac-
tuator-plant, which for the range [50 s�1;1) is depicted in Fig. 3. The
frequency of the periodic process found as a solution of (8) with the
use of Tsypkin’s approach is 
 = 77:70 s�1. The simulations of the
system with the given actuator-plant and the relay algorithm as well
as with the twisting algorithm provide a very good match to the exact
analysis.
An analysis of a number of combinations of first/second-order ac-

tuators, first/second relative degree plants, and twisting/twisting-as-a-
filter algorithms was done, and the results are presented in Table I. The
review of the results shows that a good match between the DF analysis,
the Tsypkin’s analysis and the simulations takes place. A periodic mo-
tion occurs if the relative degree of the actuator-plant is higher than two.
The frequency of the periodic solution for the twisting algorithm is al-
ways higher than the frequency for the second-order SM asymptotic
relay control (for the same actuator-plant)—the fact that was predicted
by both: the DF analysis and by the Tsypkin’s locus analysis. Also,
a comparison between the twisting-as-a-filter algorithm and the clas-
sical first order SM control is done (in both cases the plant is of first
order). The frequency of chattering of the twisting as a filter algorithm
is always lower than the frequency of the first order SM control—the
fact, which can also be explained by the above analysis, if the plant is
viewed as the original plant plus an integrator, with the twisting algo-
rithm applied to that combined plant. The amplitudes of the oscillations
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TABLE I
RESULTS OF COMPUTING AND SIMULATIONS

in Table I were obtained only analytically. In all the examples, the ob-
tained amplitude values reflect the relationship between the chattering
frequency and the magnitude of the transfer function at this frequency.

V. CONCLUSION

A second-order SM algorithm known as twisting is analyzed with
the use of the DF and Tsypkin’s methods. It is proved that if the com-
bined relative degree of the actuator and the plant is higher than two a
periodic motion may occur in the system with the twisting algorithm.
An approach to the analysis of the periodic motion is proposed that
involved a modification of Tsypkin’s approach to accommodate the
second relay. The parameters of the periodic motion are obtained ap-
proximately—with the use of the DF method, and exactly—with the
use of the modified Tsypkin’s approach. The performed analysis as
well as the theoretical proof shows that the frequency of the oscilla-
tions grows and the amplitude of chattering decreases due to the use of
the twisting algorithm in comparison with the asymptotic second-order
sliding-mode control algorithm. Also, the frequency of the oscillations
of the twisting-as-a-filter algorithm is always lower than the frequency
of the first order SM control.
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Stability Analysis for Linear Systems
Under State Constraints

Haijun Fang and Zongli Lin

Abstract—This note revisits the problem of stability analysis for linear
systems under state constraints. New and less conservative sufficient con-
ditions are identified under which such systems are globally asymptoti-
cally stable. Based on these sufficient conditions, iterative linear matrix in-
equality (LMI) algorithms are proposed for testing global asymptotic sta-
bility of the system. In addition, these iterative LMI algorithms can be
adapted for the design of globally stabilizing state feedback gains.

Index Terms—Nonlinear systems, stability, state constraints, state satu-
ration.

I. INTRODUCTION AND PROBLEM STATEMENT

In this note, we will investigate stability analysis of two classes of
linear systems under state constraints, which were recently studied in
[4], [6]–[8], and [10]. The first class of systems are defined as follows:

_x = h(Ax) (1)

where x 2 Dn = fx = (x1; x2; . . . ; xn)
T 2 Rn : �1 � xi� 1; i 2

[1; n]g, A = [aij ] 2 Rn�n, and

h(Ax) =

h1
n

j=1
a1jxj

h2
n

j=1
a2jxj

...
hn

n

j=1
anjxj

with, for each i 2 [1; n]

hi

n

j=1

aijxj

=
0; if jxij = 1 and n

j=1
aijxj xi > 0

n

j=1
aijxj ; otherwise.
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Such systems are defined on a closed hypercube as all state variables
are constrained to the unit hypercube Dn. For this reason, system
(1) is sometimes referred to as a linear system subject to state
saturation. Clearly, saturation occurs in the state xi if jxij = 1 and
( n

j=1
aijxj)xi > 0.

The other class of systems are systems with partial state constraints
and are described as

_x = Ax +By

_y = h(Cx+Ey)
(2)

where x 2 Rn�m with n � m, y 2 f(y1; y2; . . . ; ym)T : �1 �
yi � 1; i 2 [1; m]g, A, B, C , and E are real matrices of appropriate
dimensions, and

h(Cx+ Ey) =

h1
n�m

j=1
c1jxj +

m

k=1
e1kyk

h2
n�m

j=1
c2jxj +

m

k=1
e2kyk

...

hm
n�m

j=1
cmjxj +

m

k=1
emkyk

(3)

with, for each i 2 [1;m], (4), as shown at the bottom of the next age,
holds.
We note that the class of (2) reduces to the class of (1) if m = n.

These two classes of systems are encountered in a variety of applica-
tions, including signal processing, recurrent neural networks and con-
trol systems, and have been studied extensively (see, e.g., [3]–[6], [8],
[12], and the references therein). In this note, we revisit the problem of
stability analysis for these two classes of systems. In particular, we are
interested in conditions under which such systems are globally asymp-
totically stable at the origin. Here, by global asymptotic stability of the
origin we mean that the origin is locally asymptotically stable within
D
n (orRn�m �Dm), rather than the usualRn, being the domain of

attraction.
Global asymptotic stability of these systems has been studied in [4],

[8], and [10]. For second order systems in the form of (1), necessary
and sufficient conditions for global asymptotic stability were estab-
lished in [4] and [10]. For higher order systems in the form of either (1)
or (2), various sufficient conditions for the global asymptotic stability
were identified. Under the sufficient condition of [8], any system tra-
jectory starting from insideDn will never reach the boundary ofDn,
i.e., the state never saturates. This saturation avoidance sufficient con-
dition leads to a degree of conservatism. Using a Lyapunov function
V : Dn ! R that satisfies

@V

@x
(x) h(Ax) �

@V

@x
(x) Ax (5)

[4] arrives at a sufficient condition that is less conservative than that of
[8].
Motivated by the observation that the hypothesis (5)might be a source

of conservatism, we will in this note re-examine global asymptotic sta-
bility of such systems by exploring the special property of the function
h. The sufficient conditions we thus arrive at are given in terms of ma-
trix inequalities, which are shown to be less conservative than those of
[8] and [4].Basedon these newsufficient conditions, iterativeLMIalgo-
rithms are proposed for testing global asymptotic stability. In addition to
the stability analysis, the proposed sufficient conditions and the iterative
LMIalgorithmscanbe readilyadapted fordesigningglobally stabilizing
feedback gains for the following systems:

_x = h(Ax+Bu) u = Fx (6)

where x 2 Rn and u 2 Rm.
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