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A tool for the design of a periodic motion in an underactuated mechanical system via generating a self-excited
oscillation of a desired amplitude and frequency by means of the variable structure control is proposed. First, an
approximate approach based on the describing function method is given, which requires that the mechanical
plant should be a linear low-pass filter – the hypothesis that usually holds when the oscillations are relatively fast.
The method based on the locus of a perturbed relay systems provides an exact model of the oscillations when the
plant is linear. Finally, the Poincaré map’s design provides the value of the controller parameters ensuring the
locally orbitally stable periodic motions for an arbitrary mechanical plant. The proposed approach is shown by
the controller design and experiments on the Furuta pendulum.

Keywords: variable structure systems; underactuated systems; periodic solution; frequency domain methods

1. Introduction

1.1 Overview

In this article, we consider the control of one of the
simplest types of a functional motion: generation of
a periodic motion in underactuated mechanical sys-
tems which could be of non-minimum-phase. Current
representative works on periodic motions in an orbital
stabilisation of underactuated systems involve finding
and using a reference model as a generator of limit
cycles (e.g. Orlov, Riachy, Floquet, and Richard
(2006)), thus considering the problem of obtaining
a periodic motion as a servo problem. Orbital
stabilisation of underactuated systems finds applica-
tions in the coordinated motion of biped robots
(Chevallereau et al. 2003), gymnastic robots and
others (see, e.g., Grizzle, Moog, and Chevallereau
(2005), Shiriaev, Freidovich, Robertsson, and
Sandberg (2007) and references therein).

1.2 Methodology

In this article, underactuated systems are considered as
the systems with internal (unactuated) dynamics with
respect to the actuated variables. It allows us to
propose a method of generating a periodic motion in
an underactuated system where the same behaviour
can be seen via second-order sliding mode (SOSM)

algorithms, i.e. generating self-excited oscillations
using the same mechanism as the one that produces
chattering. However, the generalisation of the SOSM
algorithms and the treatment of the unactuated part of
the plant as additional dynamics result in the oscilla-
tions that may not necessarily be fast and of small
amplitude.

There exist two approaches to analysis of periodic
motions in the sliding mode systems due to the

presence of additional dynamics: the time-domain

approach, which is based on the state-space represen-

tation, and the frequency-domain approach.

The Poincaré maps (Varigonda and Georgiou 2001)

are successfully used to ensure the existence and

stability of periodic motions in the relay control

systems (see Di Bernardo, Johansson, and Vasca

(2001), Fridman (2001) and references therein).

The describing function (DF) method (see, e.g.,

Atherton (1975)) offers finding approximate values of

the frequency and the amplitude of periodic motions

in the systems with linear plants driven by the sliding

mode controllers. The locus of perturbed relay system

(LPRS) method (Boiko 2005) provides an exact

solution of the periodic problem in discontinuous

control systems, including finding exact values of the

amplitude and the frequency of the self-excited

oscillation.
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1.3 Results of this article

The proposed approach is based on the fact that all
SOSM algorithms (Boiko, Fridman, and Castellanos
2004; Boiko, Fridman, Pisano, and Usai 2007) produce
chattering (periodic motions of relatively small
amplitude and high frequency) in the presence of
unmodelled dynamics. In sliding mode control, chatter-
ing is usually considered an undesirable component of
the motion. In this article, we aim to use this property
of SOSM for the purpose of generating a relatively
slow motion with a significantly higher amplitude and
lower frequency than respectively the amplitude and
frequency of chattering.

The twisting algorithm (Levant 1993) originally
created as a SOSM controller – to ensure the finite-
time convergence – is generalised, so that it can
generate self-excited oscillations in the closed-loop
system containing an underactuated plant.
The required frequencies and amplitudes of periodic
motions are produced without tracking of precom-
puted trajectories. It allows for generating a wider
(than the original twisting algorithm with additional
dynamics) range of frequencies and encompassing
a variety of plant dynamics.

A systematic approach is proposed to find the
values of the controller parameters allowing one to
obtain the desired frequencies and the output ampli-
tude, which includes:

. an approximate approach based on the DF
method that requires for the plant to be a low-
pass filter;

. a design methodology based on LPRS that
gives exact values of controller parameters for
the linear plants;

. an algorithm that uses Poincaré maps and
provides the values of the controller para-
meters ensuring the existence of the locally
orbitally stable periodic motions for an
arbitrary mechanical plant.

The theoretical results are validated experimentally
via the tests on the laboratory Furuta pendulum. The
periodic motion is generated around the upright posi-
tion (which gives the non-minimum phase system case).

1.4 Organisation of this article

This article is structured as follows. Section 2
introduces the problem statement. In Section 3, the
idea of the two-relay controller is explained via the
frequency domain methods. In Section 4 the approx-
imate values of controller parameters are computed via
the DF method and stability of the periodic solution
will be provided. In Section 5, the LPRS method is

provided to compute the exact values of the controller
parameters. In Section 6, the Poincaré method will be
used as a design tool. An example is provided in
Section 7 in order to illustrate the design methodolo-
gies given in Sections 4–6. In Section 8, the design
methodology is validated via periodic motion design
for the experimental Furuta pendulum. Section 9
provides final conclusions.

2. Problem statement

Let the underactuated mechanical system, which is
a plant in the system where a periodic motion is
supposed to occur, be given by the Lagrange equation:

MðqÞ €qþHðq, _qÞ ¼ B1u ð1Þ

where q 2 IRm is the vector of joint positions; u 2 IR is
the vector of applied joint torques where m5n;
B1¼ [0(m�1), 1]

T is the input that maps the torque
input to the joint coordinates space; MðqÞ 2 IRm�m is
the symmetric positive-definite inertia matrix; and
Hðq, _qÞ 2 IRm is the vector that contains the Coriolis,
centrifugal, gravity and friction torques. The following
two-relay controller is proposed for the purpose of
exciting a periodic motion:

u ¼ �c1 signð yÞ � c2 signð _yÞ, ð2Þ

where c1 and c2 are parameters designed such that the
scalar output of the system (the position of a selected
link of the plant)

y ¼ hðqÞ ð3Þ

has a steady periodic motion with the desired
frequency and amplitude.

Let us assume that the two-relay controller has
two independent parameters c1 2 C1 � IR and c2 2
C2 � IR, so that the changes to those parameters result
in the respective changes of the frequency � 2 W � IR
and the amplitude A1 2 A � IR of the self-excited
oscillations. Then we can note that there exist two
mappings F1 : C1 � C2 �W and F2 : C1 � C2 �A,
which can be rewritten as F : C1 � C2 �W �A � IR2.
Assume that mapping F is unique. Then there exists an
inverse mapping G :W �A�C1 � C2. The objective
is, therefore, (a) to obtain mappingG using a frequency-
domain method for deriving the model of the periodic
process in the system, (b) to prove the uniqueness
of mappings F and G for the selected controller
and (c) to find the ranges of variation of � and A1

that can be achieved by varying parameters c1 and c2.
The analysis and design objectives are formulated as

follows: find the parameter values c1 and c2 in (2) such
that the system (1) has a periodic motion with the
desired frequency � and desired amplitude of the
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output signal A1. Therefore, the main objective of this

research is to find mapping G to be able to tune c1 and

c2 values.

3. The idea of the method

The idea of the method is to provide the mapping from

a set of desired frequencies W � IR and amplitudes

A � IR into a set of gain values C � IR2, that is

G :W �A� C. To achieve the objective, let us start

with the design via the DF method which is a useful

frequency-domain tool for time-invariant linear plants

to predict the existence or absence of limit cycles and

estimate the frequency and amplitude when it exists.

In the scenario introduced in Boiko et al. (2004), the

DF method was used for analysis of chattering for the

closed-loop system with the twisting algorithm where

the inverse of this mapping was derived.

3.1 Some specific features of underactuated systems

To begin with, let us consider the following under-

actuated system called cart-pendulum (Fantoni and

Lozano 2001, p. 26):

Mþm ml cos �

ml cos � ml2

� �
€x

€�

� �
þ

Fv
_� �ml sin � _�2

�mgl sin �

" #
¼

u

0

� �
ð4Þ

where x 2 IR is the linear position of the cart along

the horizontal axis, � 2 IR is the rotational angle

of the pendulum, M¼ 1.035 kg and m¼ 0.165 kg are

the masses of the cart and the inverted pendulum,

respectively; l¼ 0.2425m is the distance from the

centre of gravity of the link to its attachment point,

Fv¼ 1.0Nm s rad�1 is the viscous friction

coefficient, and g¼ 9.81m s�2 is the gravitational

acceleration constant (see Figure 1). Linearising

around the unstable equilibrium point (�¼ 0) and

substituting the value of the parameters, the transfer

function from the angle of the pendulum � to the

input u is

WðsÞ ¼
�ðsÞ

UðsÞ
¼

1

0:1sþ 1
�

1

0:25 s2 þ s� 2887ð Þ
: ð5Þ

Note that the Nyquist plot of the above transfer

function is located in the second quadrant of the

complex plane.

4. DF of the two-relay controller

Let first, the linearised plant be given by:

_x ¼ Axþ Bu

y ¼ Cx
, x 2 IRn, y 2 IR, n ¼ 2m ð6Þ

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
x 10−3

0

1

2

3

4

5

6

7

8
x 10−4

Re W(jw)

Im
W

(jw
)

mg

q

l

M

x

u

Figure 1. The cart-pendulum system and its corresponding Nyquist plot of transfer function from the angle of the pendulum to
the input of the actuator.
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which can be represented in the transfer function form

as follows:

WðsÞ ¼ CðsI� AÞ�1B:

Let us assume that matrix A has no eigenvalues at the

imaginary axis and the relative degree of (6) is greater

than 1.
The DF, N, of the variable structure

controller (2) is the first harmonic of the periodic

control signal divided by the amplitude of y(t)

(Atherton 1975):

N ¼
!

�A1

Z 2�=!

0

uðtÞ sin!t dtþ j
!

�A1

Z 2�=!

0

uðtÞ cos!t dt

ð7Þ

where A1 is the amplitude of the input to the non-

linearity (of y(t) in our case) and ! is the frequency of

y(t). However, the algorithm (2) can be analysed as the

parallel connection of two ideal relays where the input

to the first relay is the output variable and the input to

the second relay is the derivative of the output variable

(Figure 1). For the first relay the DF is:

N1 ¼
4c1
�A1

,

and for the second relay it is (Atherton 1975):

N2 ¼
4c2
�A2

,

where A2 is the amplitude of dy/dt. Also, take into

account the relationship between y and dy/dt in the

Laplace domain, which gives the relationship

between the amplitudes A1 and A2: A2¼A1�,

where � is the frequency of the oscillation. Using

the notation of the algorithm (2) we can rewrite this

equation as follows:

N ¼ N1 þ sN2 ¼
4c1
�A1
þ j�

4c2
�A2
¼

4

�A1
ðc1 þ jc2Þ, ð8Þ

where s¼ j�. Let us note that the DF of the

algorithm (2) depends on the amplitude value only.

This suggests the technique of finding the parameters

of the limit cycle – via the solution of the harmonic

balance equation (Atherton 1975):

Wð j�ÞNðaÞ ¼ �1, ð9Þ

where a is the generic amplitude of the oscillation at

the input to the non-linearity, and W( j!) is the

complex frequency response characteristic (Nyquist

plot) of the plant. Using the notation of the

algorithm (2) and replacing the generic amplitude

with the amplitude of the oscillation of the input to

the first relay this equation can be rewritten as

follows:

Wð j�Þ ¼ �
1

NðA1Þ
, ð10Þ

where the function at the right-hand side is given by:

�
1

NðA1Þ
¼ �A1

�c1 þ jc2

4ðc21 þ c22Þ
:

Equation (9) is equivalent to the condition of the

complex frequency response characteristic of

the open-loop system intersecting the real axis in

the point (�1, j0). The graphical illustration of the

technique of solving (9) is given in Figure 2.

The function � 1/N is a straight line the slope of

which depends on c2/c1 ratio. The point of intersec-

tion of this function and of the Nyquist plot W( j!)
provides the solution of the periodic problem

(Figure 3).

W(s)

s

f0
c1

c2

y

u2

u1

ẋ=Ax+Bu

←c2

←c1

ṡ

s
y=Cx

+←

Figure 2. Relay feedback system.

ReW

ImW

ψ

W(jω)

− 1
N

Q1Q2

Q3 Q4

Figure 3. Example of a Nyquist plot of the open-loop system
Wð j!Þ with two-relay controller.
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4.1 Tuning the parameters of the controller

Here, we summarise the steps to tune c1 and c2:

(a) Identify the quadrant in the Nyquist plot where
the desired frequency � is located, which falls
into one of the following categories (sets):

Q1 ¼ f! 2 IR : RefWð j!Þg4 0, ImfWð j!Þg � 0g

Q2 ¼ f! 2 IR : RefWð j!Þg � 0, ImfWð j!Þg � 0g

Q3 ¼ f! 2 IR : RefWð j!Þg � 0, ImfWð j!Þg5 0g

Q4 ¼ f! 2 IR : RefWð j!Þg4 0, ImfWð j!Þg5 0g:

(b) The frequency of the oscillations depends only
on the c2/c1 ratio, and it is possible to obtain
the desired frequency � by tuning the �¼ c2/c1
ratio:

� ¼
c2
c1
¼ �

ImfWð j�Þg

RefWð j�Þg
: ð11Þ

Since the amplitude of the oscillations is given by

A1 ¼
4

�
jWð j�Þj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 þ c22

q
, ð12Þ

then the c1 and c2 values can be computed as follows:

c1 ¼

�

4
�

A1

jWð j�Þj
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p� ��1
if � 2 Q2 [Q3

�
�

4
�

A1

jWð j�Þj
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p� ��1
elsewhere

8>><
>>:

ð13Þ

c2 ¼ � � c1: ð14Þ

4.2 Stability of periodic solutions

We shall consider that the harmonic balance condition
still holds for small perturbations of the amplitude and
the frequency with respect of the periodic motion. In
this case the oscillation can be described as a damped
one. If the damping parameter will be negative at
a positive increment of the amplitude and positive at
a negative increment of the amplitude then the
perturbation will vanish, and the limit cycle will be
asymptotically stable.

Theorem 1: Suppose that for the values of the c1 and
c2 given by (13) and (14) there exists a corresponding
periodic solution to the systems (2) and (6). If

Re
d argW

d ln!

����
!¼�

� �
c1c2

c21 þ c22
ð15Þ

then the above-mentioned periodic solutions to the
systems (2) and (6) is orbitally asymptotically stable.

Proof: The proof of this theorem is given in Aguilar,
Boiko, Fridman, and Iriarte (2009). œ

5. Locus of a perturbed relay system design

The LPRS proposed in Boiko (2005) provides an exact
solution of the periodic problem in a relay feedback
system having a plant (6) and the control given by the
hysteretic relay. The LPRS is defined as a characteristic
of the response of a linear part to an unequally spaced
pulse control of variable frequency in a closed-loop
system (Boiko 2005). This method requires
a computational effort but will provide an exact
solution. The LPRS can be computed as follows:

Jð!Þ ¼
X1
k¼1

ð�1Þkþ1RefWðk!Þg

þ j
X1
k¼1

1

2k� 1
Im W½ð2k� 1Þ!�
� 	

: ð16Þ

The frequency of the periodic motion for the algorithm
(2) can be found from the following equation (Boiko
2005) (Figure 4):

Im Jð�Þ ¼ 0

In effect, we are going to consider the plant being
non-linear, with the second relay transposed to the
feedback in this equivalent plant. Introduction of the
following function will be instrumental in finding
a response of the non-linear plant to the periodic
square-wave pulse control.

Lð!, �Þ ¼
X1
k¼1

1

2k� 1
ðsin½ð2k� 1Þ2���RefW½ð2k� 1Þ!�g

þ cos½ð2k� 1Þ2���ImfW½ð2k� 1Þ!�gÞ: ð17Þ

The function L(!, �) denotes a linear plant output
(with a coefficient) at the instant t¼ �T (with T being

J(ω)

πb
4c

1
2K

ω=Ω

Im

Re

n

Figure 4. LPRS and oscillation analysis.
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the period: T¼ 2�/!) if a periodic square-wave pulse
signal of amplitude �/4 is applied to the plant:

Lð!, �Þ ¼
�yðtÞ

4c

����
t¼2��=!

with � 2 ½�0:5, 0:5� and ! 2 ½0,1�, where t¼ 0 corre-
sponds to the control switch from �1 to þ1.

With L(!, �) available, we obtain the following
expression for ImfJð!Þg of the equivalent plant:

ImfJð!Þg ¼ Lð�, 0Þ þ
c2
c1

Lð�, �Þ: ð18Þ

The value of the time shift � between the switching of
the first and second relay can be found from the
following equation:

_yð�Þ ¼ 0:

As a result, the set of equations for finding the
frequency � and the time shift � is as follows:

c1Lð�, 0Þ þ c2Lð�, �Þ ¼ 0

c1L1ð�,� �Þ þ c2L1ð�, 0Þ ¼ 0:
ð19Þ

The amplitude of the oscillations can be found as
follows. The output of the system is:

yðtÞ ¼
4

�

X1
i¼1

�
c1 sin½ð2k� 1Þ�þ ’Lðð2k� 1Þ�Þ�

þ c2 sin½ð2k� 1Þ�tþ ’Lðð2k� 1Þ�Þ

þ ð2k� 1Þ2���
	
ALðð2k� 1Þ�Þ ð20Þ

where ’L(!)¼ argW(!), which is a response of the
plant to the two square pulse-wave signals shifted with
respect to each other by the angle 2��. Therefore, the
amplitude is

A1 ¼ max
t2½0;2�=!�

yðtÞ: ð21Þ

Yet, instead of the true amplitude we can use the
amplitude of the fundamental frequency component
(first harmonic) as a relatively precise estimate. In this
case, we can represent the input as the sum of two
rotating vectors having amplitudes 4c1/� and 4c2/�,
with the angle between the vectors 2��. Therefore, the
amplitude of the control signal (first harmonic) is

Au ¼
4

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 þ c22 þ 2c1c2 cosð2��Þ

q
, ð22Þ

and the amplitude of the output (first harmonic) is

A1 ¼
4

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 þ c22 þ 2c1c2 cosð2��Þ

q
ALð�Þ, ð23Þ

where ALð!Þ ¼ jWð j!Þj. We should note that
despite using approximate value for the amplitude
in (23), the value of the frequency is exact.

Expressions (19) and (23) if considered as equations
for � and A1 provide one with mapping F. This
mapping is depicted in Figure 5 as curves of equal
values of � and A1 in the coordinates (c1, c2). From
(19) one can see that the frequency of the oscillations
depends only on the ratio c2/c1¼ �. Therefore, � is
invariant with respect to c2/c1: �(�c1, �c2)¼�(c1, c2). It
also follows from (23) that there is the following
invariance for the amplitude: A1(�c1, �c2)¼ �A1(c1, c2).
Therefore, � and A1 can be manipulated independently
in accordance with mapping G considered below.

Mapping G (inverse of F) can be derived from (19)
and (23) if c1, c2 and � are considered unknown
parameters in those equations. For any given �, from
Equation (19) the ratio c2/c1¼ � can be found (as well
as �). Therefore, we can find first �¼ c2/c1¼ h(�),
where h(�) is an implicit function that corresponds
to (19). After that c1 and c2 can be computed as per the
following formulas:

c1 ¼
�

4

A1

ALð�Þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2� cosð2��Þ þ �2

p ð24Þ

c2 ¼
�

4

A1

ALð�Þ

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2� cosð2��Þ þ �2

p : ð25Þ

6. Poincaré design

Poincaré map is a recognised tool for analysis of the
existence of limit cycles for non-linear systems.
Therefore, this tool is appropriate to satisfy the goal
defined in Section 2. To begin with, let us consider that
the actuated degrees of freedom are represented by the
elements of � ¼ ð�1, �2Þ 2 IR2 and the unactuated

0 200 400 600 800 1000 1200
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c 2
=

ξc
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a2

a4

a8

a10
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Figure 5. Plot of c1 vs c2 for arbitrary frequencies
�1 5�5�5 and amplitudes a1 5A1 5 a10.
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degrees of freedom are represented by the elements of

� ¼ ð�1, �2Þ 2 IR2m�2. Let us define the output y¼ �1
The Lagrange equation (1) can be represented in the

state-space form by:

_�1

_�2

_�1

_�2

2
6664

3
7775 ¼

�2

��1m fM22ð�1, �1Þ½u�N1ð�, �Þ�

þM12ð�1, �1ÞN2ð�, �Þg


 �
�2

��1m f�M12ð�1, �1Þ½u�N1ð�, �Þ�

�M11ð�1, �1ÞN2ð�, �Þg


 �

2
66666664

3
77777775

¼

�2

f1ð�, �, uÞ

�2

f2ð�, �, uÞ

2
6664

3
7775 ð26Þ

where u is given in (2), and �m¼M11(�1, �1)�
M22(�1, �1)�M12(�1, �1)M12(�1, �1). Control law (2)

switches on the surface �1¼ 0 and �2¼ 0. Consider

the sets (Figure 6):

S1 ¼ fð�1, �2, �1, �2Þ : �1 4 0, �2 ¼ 0g

S2 ¼ fð�1, �2, �1, �2Þ : �1 ¼ 0, �2 5 0g

S3 ¼ fð�1, �2, �1, �2Þ : �1 5 0, �2 ¼ 0g

S4 ¼ fð�1, �2, �1, �2Þ : �1 ¼ 0, �2 4 0g:

ð27Þ

The space IRn is divided by Si, into four regions

i¼ 1, . . . , 4, namely

R1 ¼ fð�1, �2, �1, �2Þ : �1 4 0, �2 4 0g,

R2 ¼ fð�1, �2, �1, �2Þ : �1 4 0, �2 5 0g,

R3 ¼ fð�1, �2, �1, �2Þ : �1 5 0, �2 5 0g,

R4 ¼ fð�1, �2, �1, �2Þ : �1 5 0, �2 4 0g:

ð28Þ

with f150 for all �1, �2, �2R1[R2; and f140 for all
�1, �2, �2R3[R4. Assume that f1 and f2 are differenti-
able in the set Ri, i¼ 1, . . . , 4. Moreover, suppose that
the values of the functions of fk, k¼ 1, 2 in the sets Ri

could be smoothly extended till their closures �Ri.
Considering (�1, �2), let us derive the Poincaré map
from ’1(�)¼ (�1, 0), where �140, into ’2(�)¼ (0, �2),
where �250 (see region R2 in Figure 6). Let �01 4 0 and
denote as

�þ1 ðt, �
0
1, �

0, c1, c2Þ, �þ2 ðt, �
0
1, �

0, c1, c2Þ

�þ1 ðt, �
0
1, �

0, c1, c2Þ, �þ2 ðt, �
0
1, �

0, c1, c2Þ
ð29Þ

the solution of the system (26) with the initial
conditions

�þ1 ð0, �
0
1, �

0, c1, c2Þ ¼ �
0
1, �þ2 ð0, �

0
1, �

0, c1, c2Þ ¼ 0,

�þð0, �1, �
0, c1, c2Þ ¼ �

0: ð30Þ

Let Tsw(�, �, c1, c2) be the smallest positive root of the
equation

�þ1 ðTsw, �
0
1, �

0, c1, c2Þ ¼ 0 ð31Þ

and such that ðd�þ1 =dtÞðTsw, �
0
1, �

0, c1, c2Þ ¼
�þ2 ðTsw, �

0
1, �

0, c1, c2Þ5 0, i.e. the functions

Tswð�
0
1, �

0, c1, c2Þ, �þ1 ðTsw, �
0
1, �

0, c1, c2Þ,

�þ2 ðTsw, �
0
1, �

0, c1, c2Þ, �þðTsw, �
0
1, �

0, c1, c2Þ,

smoothly depend on their arguments.
Now, let us derive the Poincaré map from the

sets ’2ð�Þ ¼ ð0, �2, �
0
1Þ, where �250, into the sets

’3ð�Þ ¼ ð�1, 0, �
0
1Þ where �150 (see region R3 in

Figure 6). To this end, denote as

�þ1pðt,�
0
1,�

0,c1,c2Þ, �
þ
2pðt,�

0
1,�

0,c1,c2Þ, �
þ
p ðt,�

0
1,�

0,c1,c2Þ,

ð32Þ

Figure 6. Partitioning of the state space and the Poincaré map.
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the solution of the system (26) with the initial

conditions

�þ1pðT
þ
swð�

0
1, �

0, c1, c2Þ, �
0, �0, c1, c2Þ ¼ 0,

�þ2pðT
þ
swð�

0
1, �

0, c1, c2Þ, �
0, �0, c1, c2Þ

¼ �þ2 ðT
þ
swð�

0
1, �

0, c1, c2Þ, �
0
1, �

0, c1, c2Þ,

�þp ðT
þ
swð�

0
1, �

0, c1, c2Þ, �
0, �0, c1, c2Þ

¼ �þ1 ðT
þ
swð�

0
1, �

0, c1, c2Þ, �
0
1, �

0, c1, c2Þ,

ð33Þ

Let Tþp ð�, �, c1, c2Þ be the smallest root satisfying the

restrictions Tþp 4Tþsw 4 0 of the equation

�þ2pðT
þ
p , �

0
1, �

0, c1, c2Þ ¼ 0 ð34Þ

and such that ðd�þ2 =dtÞðT
þ
p Þ ¼ f1ðT

þ
p , �1, �2,

�, c1, c2Þ5 0, i.e. the functions

Tpð�
0
1, �

0, c1, c2Þ, �þ1 ðTp, �
0
1, �

0, c1, c2Þ,

�þ2 ðTp, �
0
1, �

0, c1, c2Þ, �þ1 ðTp, �
0
1, �

0, c1, c2Þ,

�þ2 ðTp, �
0
1, �

0, c1, c2Þ

smoothly depend on their arguments. Therefore, we

have designed the map

�þð�01, �
0, c1, c2Þ ¼

�þ1 ðT
þ
p ð�

0
1, �

0, c1, c2Þ, �
0
1, �

0, c1, c2Þ

�þðTþp ð�
0
1, �

0, c1, c2Þ, �
0
1, �

0, c1, c2Þ

" #

ð35Þ

The map ��ð�01, �
0, c1, c2Þ of ’3(�)¼ (�1, 0, �

0), �150

starting at the point �þð�01, �
0, c1, c2Þ into ’1(�)¼ (�1, 0),

�140 together with the time constant Tþp 5T�sw 5T�p
can be defined by the similar procedure.

Therefore the desired periodic solution corresponds

to the fixed point of the Poincaré map (Figure 7)

�?1
�?

� �
���ðT�p , �

?
1, �

?, c1, c2Þ ¼ 0: ð36Þ

Finally, to complete the design of periodic solution

with desired period T�p ¼ 2�=� and amplitude �?1 ¼ A1

the set of algebraic equations needs to be solved with

respect to c1, c2, and �
0:

A1

�?

� �
���ð2�=�,A1, �

?, c1, c2Þ ¼ 0,

��2pð2�=�,A1, �
?, c1, c2Þ ¼ 0,

ð37Þ

where c1 and c2, are unknown parameters.

Theorem 2: Suppose that for the given value of

amplitude A1 and value of frequency � there exist c1

and c2 such the Poincaré map �ð�01, �
0, c1, c2Þ has a fixed

point ½�?1, �
?� such that T�p¼ 2�/�, �?1 ¼ A1,

@��ð�1, �, c1, c2Þ

@ð�1, �Þ ðA1,�?Þ

�����
�����5 1 ð38Þ

holds. Then, the system (26) has an orbitally asympto-

tically stable limit cycle with a desired period 2�/� and

amplitude A1.

7. Illustrative example

Let us consider the transfer function

WðsÞ ¼
1

ðJsþ 1Þðs2 þ Fvs� a2Þ
, J4 0 ð39Þ

and its corresponding linear state-space representation

d�1
dt
¼ �2

d�2
dt
¼ �

d�

dt
¼ J�1 a2�1�ðFv� Ja2Þ�2�ð1þ JFvÞ�þ u

 �
ð40Þ

where J¼ 4/3, Fv¼ 1/4, a ¼ 1=
ffiffiffi
8
p

, and

u ¼ �c1 signð�1Þ � c2 signð�2Þ ð41Þ

is the two-relay controller which forces the output

y¼ �1 to have a periodic motion. In the example, we set

�¼ 1 rad s�1 and A1¼ 0.7.

–1
–0.5 0 0.5 1 –1

0

1

–1

–0.5

0

0.5

1

η2

η 3

η1

Figure 7. Evolution of the states �, � of the closed-loop
system.
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7.1 DF and LPRS

First, we compute the value of c1 and c2 through DF by

using the set of equations:

c1 ¼

�

4
�

A1

jWð j�Þj
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p� ��1
if � 2 Q2 [Q3

�
�

4
�

A1

jWð j�Þj
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p� ��1
elsewhere

8>><
>>:

c2 ¼ � � c1:

where �¼ c2/c1, obtaining c1¼ 0.8018 and c2¼ 0.78.
To check if the periodic solution is stable find the

derivative of the phase characteristic of the plant with

respect to the frequency

dargW

d ln!

����
!¼�

¼�
darctanðJ!Þ

d ln!

����
!¼�

þ

darctanð
Fv!

!2þa2
Þ

d ln!

�������
!¼�

¼�
J�

J2�2þ1
þ

Fv�ða
2��2Þ

F2
v�

2þða2þ�2Þ
2
: ð42Þ

The stability condition (15) for the system becomes:

�
J�

J2�2 þ 1
þ

Fv�ða
2 ��2Þ

F2
v�

2 þ ða2 þ�2Þ
2
� �

�

�2 þ 1
: ð43Þ

Notice that the left-hand side of (40) is �0.6447 and

the right-hand side is �0.4998. Therefore, the system is

orbitally asymptotically stable.
Now, let us compute the exact values of c1 and c2

through LPRS by using the following formulas:

c1 ¼
�

4

A1

ALð�Þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2� cosð2��Þ þ �2

p ,

c2 ¼
�

4

A1

ALð�Þ

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2� cosð2��Þ þ �2

p ,

obtaining c1¼ 0.7017 and c2¼ 0.6015, with simulation

results given in Figure 8.

7.2 Poincaré map design

Let us begin with the mapping from ’1 into the set ’2
(region R2) where the system (40) takes the form:

d�1
dt
¼ �2,

d�2
dt
¼ �,

d�

dt
¼

3

32
�1�

1

16
�2� ��

3

4
c1þ

3

4
c2:

ð44Þ

The solution of (44) on the time interval [0,Tsw] subject

to the initial condition:

�þ1 ð�
0
1, �

0, c1, c2Þ ¼ �
0
1 4 0, �þ2 ð�

0
1, �

0, c1, c2Þ ¼ 0,

�þð�01, �
0, c1, c2Þ ¼ �

0
1

results in

�þ1 ¼ 8c1 � 8c2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
�1

þ 8c2 � 8c1 þ �
0
1 �

16

3
�01

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�2ð�
0
1
,�0,c1,c2Þ

e�t=2

þ 4c2 � 4c1 þ
1

2
�01 þ

4

3
�01

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�3ð�
0
1
,�0,c1,c2Þ

et=4 ð45Þ

þ 4c1 � 4c2 �
1

2
�01 þ 4�01

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�4ð�
0
1
,�0,c1,c2Þ

e�3t=4 ð46Þ

�þ2 ¼ �
1

2
�2ð�

0
1, �

0, c1, c2Þe
�t=2 þ

1

4
�3ð�

0
1, �

0, c1, c2Þe
t=4

�
3

4
�4ð�

0
1, �

0, c1, c2Þe
�3t=4 ð47Þ

�þ ¼
1

4
�2ð�

0
1, �

0, c1, c2Þe
�t=2 þ

1

16
�3ð�

0
1, �

0, c1, c2Þe
t=4

þ
9

16
�4ð�

0
1, �

0, c1, c2Þe
�3t=4, ð48Þ

where

Tswð�
0
1, �

0, c1, c2Þ ¼ 4 ln z, z ¼ et=4 ð49Þ

0 20 40 60 80 100
–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

Time (s)

x 1
 (

ra
d)

Figure 8. Simulation results for the systems (2) and (40)
under c1 and c2 computed through LPRS method.
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is obtained as the smallest positive root of

�þ1 ðTsw, �
0
1, �

0, c1, c2Þ ¼ �3z
4 þ �1z

3 þ �2zþ �4 ¼ 0,

ð50Þ

where �1 ¼ �1ð�
0
1, �

0, c1, c2Þ, �2 ¼ �2ð�
0
1, �

0, c1, c2Þ, and
�3 ¼ �3ð�

0
1, �

0, c1, c2Þ. Let us proceed with the mapping
from ’2 into ’3 (region R3) where the system (39) takes
the form:

d�1
dt
¼ �2,

d�2
dt
¼ �,

d�

dt
¼

3

32
�1�

1

16
�2� �þ

3

4
c1þ

3

4
c2:

ð51Þ

The solution of (51) on the time interval [Tsw,Tp]
subject to the initial condition:

�þ1sw ¼ �
þ
1pðTsw, �

0
1, c1, c2Þ ¼ 0,

�þ2sw ¼ �
þ
2pðTsw, �

0
1, c1, c2Þ ¼ �

1

2
�2e
�Tsw=2 þ

1

4
�3e

Tsw=4

�
3

4
�4e
�3Tsw=4

results in

�þ1p ¼ �8c1 � 8c2 þ 8 c1 þ c2 �
1

3
�þ2sw

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�1pð�
0
1
, �0, c1, c2Þ

e�ðt�TswÞ=2

� 4 c1 þ c2 �
1

4
�þ2sw

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�2pð�
0
1
, �0, c1, c2Þ

e�3ðt�TswÞ=4

þ 4 c1 þ c2 þ
5

12
�þ2sw

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�3pð�
0
1
, �0, c1, c2Þ

eðt�TswÞ=4 ð52Þ

�þ2p ¼ �4�1pe
�ðt�TswÞ=2 þ 3�2pe

�3ðt�TswÞ=4 þ �3pe
ðt�TswÞ=4

ð53Þ

�þ3p ¼ 2�1pe
�ðt�TswÞ=2 �

9

4
�2pe

�3ðt�TswÞ=4 þ
1

4
�3pe

ðt�TswÞ=4

ð54Þ

where �1p ¼ �1pð�
0
1, �

0, c1, c2Þ, �2p ¼ �2pð�
0
1, �

0, c1, c2Þ,
�3p ¼ �3pð�

0
1, �

0, c1, c2Þ and

Tpð�
0
1, �

0, c1, c2Þ ¼ 4 ln zp þ Tsw, zp ¼ eðt�TswÞ=4 ð55Þ

results from the the smallest positive root of

�þ2pðTp, �
0
1, �

0, c1, c2Þ ¼ �3pz
4
p � 4�1pzp þ 3�2p ¼ 0:

ð56Þ

Then, the Poincaré map is

�þ1 ðTpð�
0
1, �

0, c1, c2Þ, �
0
1, �

0, c1, c2Þ

¼
�1 þ �2e

�Tp=2 þ �3e
Tp=4 þ �4e

�3Tp=4

1
4 �2e

�Tp=2 þ 1
16 �3e

Tp=4 þ 9
16 �4e

�3Tp=4

" #
ð57Þ

and the fixed point that is the solution of

�
�01
�0

� �
¼ �þ1 ðTpð�

0
1, �

0, c1, c2Þ, �
0, �0, c1, c2Þ

which results in

�01
� �?

¼ �

�1 þ ½8c2 � 8c1 �
16
3 �

0
1�e
�Tp=2 þ ½4c2 � 4c1

þ 4
3 �

0
1�e

Tp=4 þ ½4c1 � 4c2 þ 4�01�e
�3Tp=4

( )

1þ e��T=2 þ 1
2 e

�T=4 � 1
2 e
�3�T=4

�01
� �?

¼

1
4 8c2 � 8c1 þ �

0
1

 �
e�Tp=2 þ 1

16 ½4c2 � 4c1

þ 1
2 �

0
1�e

Tp=4 þ 9
16 4c1 � 4c2 þ

1
2 �

0
1

 �
e�3Tp=4

( )
4
3 e
�Tp=2 � 1

12 e
Tp=4 � 9

4 e
�3Tp=4

where �T¼Tp�Tsw. To complete the design it

remains to provide the set of equations to find c1 and

c2 in terms of the known parameters Tp and �01.
Towards this end, we obtain from above equations that

c1 and c2 are solution of the following set of equations:

c2� c1 ¼
1

4
�

�½1þ e�Tp=2þ 1
2e

Tp=4� 1
4e
�3Tp=4�ð�01Þ

?

��1þð
16
3 e
�Tp=2� 4

3e
Tp=4� 4e�3Tp=4Þ�01

( )
2e�Tp=2þ eTp=4� e�3Tp=4

ð58Þ

c2þ c1 ¼

4
3e
�Tp=2� 1

12e
Tp=4� 9

4e
�3Tp=4

 �
ð�0Þ?

� 1
4e
�Tp=2þ 1

32e
Tp=4þ 9

32e
�3Tp=4

 �
�01

( )

2e�Tp=2þ 1
4e

Tp=4� 9
4e
�3Tp=4

: ð59Þ

Then, for a given frequency T1þT2¼ 2�/� and

amplitude �01 ¼ A1 we obtain that c1¼ 0.7017 and

c2¼ 0.6027. Finally, we need to check the stability, i.e.

@�þ1 ðð�
0
1Þ
?, ð�0Þ?, c1, c2Þ

@ð�01, �
0Þ

����
ð�0

1
Þ
?,ð�0Þ?

�����
�����

¼

@�þ11ðð�
0
1Þ
?, ð�0Þ?, c1, c2Þ

@�01

����
ð�0

1
Þ
?,ð�0Þ?

@�þ11ðð�
0
1Þ
?, ð�0Þ?, c1, c2Þ

@�0

����
ð�0

1
Þ
?,ð�0Þ?

@�þ21ðð�
0
1Þ
?, ð�0Þ?, c1, c2Þ

@�01

����
ð�0

1
Þ
?,ð�0Þ?

@�þ21ðð�
0
1Þ
?, ð�0Þ?, c1, c2Þ

@�0

����
ð�0

1
Þ
?,ð�0Þ?

2
666664

3
777775

�����������

�����������
5 1, ð60Þ
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where

@�þ11ð�
0
1, �

0, c1, c2Þ

@�01

¼ � �
1

2
�2e
�Tp=2 þ

1

4
�3e

Tp=4 �
3

4
�4e
�3Tp=4

� �
@Tp

@�01

þ e�Tp=2 þ
1

2
eTp=4 �

1

2
e�3Tp=4 ’ �0:4416 ð61Þ

@�þ11ð�
0
1, �

0, c1, c2Þ

@�0

¼ � �
1

2
�2e
�Tp=2 þ

1

4
�3e

Tp=4 �
3

4
�4e
�3Tp=4

� �
@Tp

@�0

�
16

3
e�Tp=2 þ

3

4
eTp=4 þ 4e�3Tp=4 ’ 0:1745 ð62Þ

@�þ21ð�
0
1, �

0, c1, c2Þ

@�01

¼ � �
1

8
�2e
�Tp=2 þ

1

64
�3e

Tp=4 �
27

64
�4e
�3Tp=4

� �
@Tp

@�01

þ
1

4
e�Tp=2 þ

1

16
eTp=4 þ

9

16
e�3Tp=4 ’ 0:2088 ð63Þ

@�þ21ð�
0
1, �

0, c1, c2Þ

@�0

¼ � �
1

8
�2e
�Tp=2 þ

1

64
�3e

Tp=4 �
27

64
�4e
�3Tp=4

� �
@Tp

@�0

�
4

3
e�Tp=2 þ

1

12
eTp=4 þ

9

4
e�3Tp=4 ’ 0:1042, ð64Þ

@Tsw

@�01
¼ 4 �

1
2 z
�4 � z�3 þ 1

2 z
�1 þ 1� 1

2 z
3

�4�3z3 � 3�1z2 � �2 þ �3 � 2�2z�3 � 3�4z�4

’ �0:6399,

@Tsw

@�0
¼ 4 �

4z�4 � 16
3 z
�3 � 4z�1 þ 20

3 �
4
3 z

3

4�3z3 þ 3�1z2 þ �2 � �3 þ 2�2z�3 þ 3�4z�4

’ 1:4989,

@Tp

@�01
¼

4

zp
�

@�þ
2p

@�0
1

� 5
12 z

4
p þ

4
3 zp �

3
4

h i
@�þ

2sw

@�0
1

4�3pz3p � 4�1p
þ
@Tsw

@�01

’ �2:4002,

@Tp

@�0
¼

4

zp
�

@�þ
2p

@�0
� 5

12 z
4
p þ

4
3 zp �

3
4

h i
@�þ

2sw

@�0

4�3pz3p � 4�1p
þ
@Tsw

@�0

’ �1:0468,

@�þ2p=@�
0
1 ’ �9:8782, and @�þ2p=@�

0 ’ �1:5876.
Using (60), we have

@�þ1 ð�
0
1, �

0, c1, c2Þ

@ð�01, �
0Þ

����
ð�0

1
Þ
?,ð�0Þ?

�����
����� ¼

�0:4416 0:1745

0:2088 0:1042

" #�����
�����

’ 0:5030

where kAk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�maxfA

T
Ag

p
; therefore, it is verified that

the orbit is asymptotically stable.

8. Experimental study: the Furuta pendulum

8.1 Experimental setup

In this section, we present experimental results using

the laboratory Furuta pendulum, produced by

Quanser Consulting Inc., depicted in Figure 9. It

consists of a 24V DC motor that is coupled with an

encoder and is mounted vertically in the metal

chamber. The L-shaped arm, or hub, is connected

to the motor shaft and pivots between 	180 degrees.

At the end, a suspended pendulum is attached.

The pendulum angle is measured by the encoder. As

described in Figure 9, the arm rotates about z-axis

and its angle is denoted by q1 while the pendulum

attached to the arm rotates about its pivot and its

angle is called q2. The experimental setup includes

a PC equipped with an NI-M series data

acquisition card connected to the Educational

Laboratory Virtual Instrumentation Suite

(NI-ELVIS) workstation from National Instrument.

The controller was implemented using Labview

programming language allowing debugging, virtual

oscilloscope, automation functions, and data storage

during the experiments. The sampling frequency

for control implementation has been set to 400Hz.

Appendix A gives the dynamic model of the Furuta

pendulum.

8.2 Experimental results

Experiments were carried out to achieve the orbital

stabilisation of the unactuated link (the pendulum)

y¼ q2 around the equilibrium point q?¼ (�, 0).
The equation of motion of the Furuta pendulum

(13) is linearised around q? 2 IR2 and by virtue of

the instability of the linearised open-loop system,

a state-feedback controller uf¼�Kx and

x ¼ ðq� q?, _qÞT 2 IR4, is designed such that the

compensated system has an overshoot of 8 and

gain crossover frequency at 10 rad s�1 (see Bode

diagram in Figure 10 for the open-loop system).

Thus, the matrices A, B, and C of the linear
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system (6) are

A ¼

0 0 1 0

0 0 0 1

�6:591 125:685 �6:262 25:525

3:031 �112:408 2:879 �11:737

2
6664

3
7775,

B ¼

0

0

56:389

�25:930

2
6664

3
7775, C ¼

0

1

0

0

2
6664

3
7775

T

:

For the experiments, we set initial conditions
sufficiently close to the equilibrium point q? 2 IR2.
The output y¼ q2 is driven to a periodic motion
for several desired frequencies and amplitudes.
The frequencies (�) and amplitudes (A1) obtained
from experiments by using the values of c1 and c2
computed by means of the DF and LPRS are given in
Tables 1 and 2, respectively. Inequality (27) holds for
the chosen frequencies and amplitudes, thus asympto-
tical stability of the periodic orbit was established by
Theorem 1.

In Figure 11, experimental oscillations for the
output y, for fast (�1¼ 25 rad s�1) and slow motion
(�2¼ 10 rad s�1) are displayed. Note that certain
imperfections appear in the slow motion graphics in
Figure 11, which are attributed to the Coulomb

friction forces and the dead zone. Also, in some

modes natural frequencies of the pendulum mechanical

structure are excited, and manifested as higher-
frequency vibrations.

9. Conclusions

The key feature of the proposed method is that the

underactuated system can be considered as a system

z

q1

y

r

x

h q2

Lp

Figure 9. The experimental Furuta pendulum system.
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Figure 10. Bode plot of the open-loop system.
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with unactuated dynamics with respect to actuated

variables. For generation of self-excited oscillations

with desired output amplitude and frequencies, a two-

relay controller is proposed. The systematic approach

for two-relay controller parameter adjustment is

proposed. The DF method provides approximate

values of controller parameters for the plants with

the low-pass filter properties. The LPRS gives exact

values of the controller parameters for the linear

plants. The Poincaré maps provides the values of

the controller parameters ensuring the existence of the

locally orbitally stable periodic motions for an

arbitrary mechanical plant. The effectiveness of the

proposed design procedures is supported by experi-

ments carried out on the Furuta pendulum from

Quanser.
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Appendix A. Dynamic model of Furuta pendulum

The equation motion of Furuta pendulum, described by (1),
was specified by applying the Euler–Lagrange formulation
(Craig 1989), where

MðqÞ ¼
M11ðqÞ M12ðqÞ

M12ðqÞ M22ðqÞ

� �
, Hðq, _qÞ ¼

H1ðq, _qÞ

H2ðq, _qÞ

� �

with

M11ðqÞ ¼ JeqþMpr
2 cos2ðq1Þ,

M12ðqÞ ¼�
1

2
Mprlp cosðq1Þcosðq2Þ,

M22ðqÞ ¼ JpþMpl
2
p,

H1ðq, _qÞ ¼�2Mpr
2 cosðq1Þsinðq1Þ _q

2
1þ

1

4
Mprlp cosðq1Þsinðq2Þ _q

2
2

H2ðq, _qÞ ¼
1

2
Mprlp sinðq1Þcosðq2Þ _q

2
1þMpglp sinðq2Þ

where Mp¼ 0.027Kg is mass of the pendulum, lp¼ 0.153m
is the length of pendulum centre of mass from pivot,
Lp¼ 0.191m is the total length of pendulum, r¼ 0.0826m
is the length of arm pivot to pendulum pivot,
g¼ 9.810m s�2 is the gravitational acceleration constant,
Jp¼ 1.23� 10�4Kgm�2 is the pendulum moment of
inertia about its pivot axis, and Jeq¼ 1.10� 10�4Kgm�2

is the equivalent moment of inertia about motor shaft
pivot axis.
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