
E. Fridman
Department of Electrical Engineering,

Tel Aviv University,
Ramat-Aviv,

69978 Tel Aviv, Israel
e-mail: emilia@eng.tau.ac.il

L. Fridman
Chihuahua Institute of Technology,

Av. Technologica 2909,
A.P. 2-1549, Chihuahua,
Chi, C.P. 31160, Mexico

e-mail: lfridman@platon.itch.edu.mx

E. Shustin
School of Mathematical Sciences,

Tel Aviv University,
Ramat-Aviv,

69978 Tel Aviv, Israel
e-mail: shustin@math.tau.ac.il

Steady Modes in Relay Control
Systems With Time Delay and
Periodic Disturbances
We study stability of slow oscillatory motions in first order one- and two-dimensional
systems with delayed relay control element and periodic disturbances, which serve as
models of stabilization of the fingers of an underwater manipulator and of control of fuel
injectors in automobile engines. Various types of stability observed are used to design a
direct adaptive control of relay type with time delay that extinguishes parasite auto-
oscillations in these models. �S0022-0434�00�04004-1�

Keywords: Time Delay Systems, Steady Modes, Adaptive Control

Introduction
Time delay in relay control systems is usually present and must

be taken into account. In practice, time delay is due to:

• Measuring devices having time delay. A controller of an ex-
hausted gas in fuel injector automotive control systems is an
example of such a system �see �1,2��.

• Actuators having time delay. This can be observed, for in-
stance, in a controller for stabilizing the fingers of an under-
water manipulator �see �3��.

Here we will consider a system with time delay in a control
element of relay type

ẋ� t ���sign�x� t�1 ���F�x� t �,t �, t�0 (1)

�F�x ,t ���p�1, F�C1�R2�. (2)

This system was studied in �4,5� with emphasis on the autono-
mous case

F�x ,t ��F�x �. (3)

The main observation made in �4,5� is that only slowly oscillating
solutions, SOS �having a relatively large magnitude�, may be
stable, and in the autonomous or quasi-autonomous case, all SOS
are nonasymptotically stable.

In this paper we focus on the periodic case

F�x ,t�T0��F�x ,t �, T0�const�0. (4)

Such a situation naturally appears in the study of multi-
dimensional systems. For example, in the two-dimensional trian-
gular system

ẋ� t ���sign�x� t�1 ��� f �x� t ��, (5)

ẏ� t ���sign�y� t�����g�x� t �,y� t ��, (6)

��0, � f �x ���p1�1, f �C1�R�,

�g�x ,y ���p2�1, g�C1�R2�,

which describes the behavior of a fuel injector with two relay
	-sensors �see �1,2��, the first equation produces a periodic distur-
bance for the second one, which then turns into a system of type
�1�, �2�, �4�.

Our main result is that the periodic system �1�, �2�, �4� reveals
a dichotomy in the stability of SOS: either all SOS are nonasymp-
totically stable, or all but finitely many are asymptotically stable.
The latter situation reflects the resonant behavior of the system,
when the rotation angle �introduced below� becomes commensu-
rable with T0 , the period of the perturbation F(x ,t), and there
appear periodic �stable and unstable� oscillations, whose period is
a multiple of T0 .

The theoretical conclusions apply to the design of a relay con-
trol algorithm exponentially extinguishing oscillations. It is
adapted to the autonomous and periodic scalar systems, as well as
to system �5�, �6�. It does not require complete information on the
perturbation, is stable with respect to measurement errors, and is
based on the variation in magnitude of the relay control element.
For a concrete application of such an algorithm we refer the
reader to �3�, where it was implemented into the stabilizers of the
fingers of an underwater manipulator.

I Frequency of Oscillations and Steady Modes
Under condition �2� any Cauchy problem

x� t ��
� t �, t���1,0� , 
�C��1,0� , (7)

has a unique continuous solution �see, for example �6��
x
 :��1,�)→R. Its zero set Z
�(x
)�1(0) is nonempty and
unbounded �4,5�, which allows us to define the frequency of
oscillations

�
� t ��card�Z
�� t*�1,t*��, t*�max�Z
��0,t� �, t�0.

The crucial property of this frequency �observed in similar situ-
ations in �7–12�� is

Proposition 1: ��4,5�� For any 
�C��1,0� , the function �
(t)
is nonincreasing. Consequently, there exists a limit frequency

N
� lim
t→�

�
� t �,

which is either infinite, or an even nonnegative number. This sug-
gests a natural classification of the solutions to �1�, �2� with re-
spect to the limit oscillation frequency: the set of initial functions
C��1,0� splits into the disjoint union of the sets
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Un�
�C��1,0�:N
�2n�, n�0,

U��
�C��1,0�:N
���.

A solution with a constant frequency �
�N
 is called steady
mode. Correspondingly, we introduce the sets of steady modes

U n
sm�
�C��1,0�:�
�2n�, 0�n�� .

Solution and steady modes with any finite even limit frequency do
exist �for the existence of infinite frequency steady modes we
refer the reader to �13–16��:

Proposition 2: ��4,5�� For any nonnegative integer n the set
U n

sm is nonempty. Moreover, for each T�0 there exists a steady
mode gn(t)�U n

sm such that gn(T)�0, ġn(T)�0, which is unique
if n�0. For any x
�Un , there exist a steady mode x(t) and T
�0 such that x
(t)�x(t) as t�T .
The limit oscillation frequency basically determines the stability
properties of solutions to system �1�, �2�, which we discuss next.

II Stability

A Stability and the Limit Oscillation Frequency. We
consider the stable behavior of solutions x
 to �1�, �2� with respect
to variation of the initial function 
 in the space C��1,0�
equipped with the standard sup-norm.

Proposition 1 indicates that the nonzero limit frequency should
be unstable, and the property of zero limit frequency should be
stable �cf. �17,18��. We present here precise statements, which
strengthen similar results in �5�.

Theorem 1: ��5�� The set U0 has a nonempty interior. Moreover,
Int(U0) contains a non-empty set

U0�
�C��1;0�:mes�
�1�0 ���0�.

This implies the stability of the zero limit frequency which
holds under some condition �the necessity of that condition is
demonstrated in an example in �5��.

To formulate results on higher frequencies, we introduce the
functions

�1� t ��max
x
��F

�x
�x ,t ��, �2� t ��max

x
��F

�t
�x ,t ��,

and the quantities

�1
�0 ��

1�p

1�p
lim
t→�

sup �1� t �,

�2
�0 ��

1�p

�1�p �2 lim
t→�

sup �2� t �,

��max� 1

2 � min�1
�0 � ,�2

�0 ��� log
2

1�p � �1

�1 � ,0� .

Theorem 2: �1� The set U� is nowhere dense in C��1,0� . �2� If

lim
t→�

sup�
t

t��1�p �2/2�1 p �
�2���d��1�p , (8)

or

lim
t→�

sup�
t

t��1�p �2/2�1 p �
�1���d��

1�p

1�p
, (9)

then the set �n�0Un is nowhere dense in C��1,0� , and all the
solutions x
 with positive N
 are unstable.

�3� The set ���nUn is nowhere dense in C��1,0� , and all the
solutions x
 with N
�� are unstable.

In particular, all solutions with nonzero limit frequency are un-
stable in the autonomous system �3� and in the quasi-autonomous
system discussed later. Conjecturally, this is always the case.

Proposition 2 and Theorems 1 and 2, in fact, reduce the study of
realistic motions in system �1� to an analysis of the stability of the
zero frequency steady modes, on which we concentrate in the next
section.

B Stability of Zero Frequency Steady Modes. In the au-
tonomous system �3� all the zero frequency steady modes are
periodic and nonasymptotically stable; in fact, they all come from
one steady mode by shifts in t. Moreover, the zero frequency
steady modes are nonasymptotically stable if the system is quasi-
autonomous, i.e., satisfies

�
0

�

�2� t �dt��

�for details see �5��.
Suppose now that the function F(x ,t) does depend on t and is

periodic in t with period T0 . Let S be a circle of length T0 , and let

prT0
:R→S , prT0

� t ��t�T0•� t

T0
	 ,

be a natural projection. By Proposition 2, for an arbitrary T�R
there exists a unique zero frequency steady mode gT(t) such that
gT(T)�0 and ġT(T)�0. Denote by T� the second zero of gT in
the interval (T ,�). Thus, we obtain a smooth map

f̄ :R→R, f̃ �T ��T�.

Clearly, it factors through prT0
and gives us a diffeomorphism

f :S→S,

which is determined by the function F(x ,t).
We note that the stability of gT(t) is equivalent to the stability

of the trajectory T , f (T), f ( f (T)), . . . , f n(T), . . . of point T.
We introduce the parameter

�� f �� lim
n→�

f n� t �

n
,

which is called the rotation angle of f. This parameter does not
depend on t �see �19��.

Finite �or, periodic� orbits of f are called cycles. As stated
above, cycles can occur only when �( f )/�T0 is rational. A cycle
T�T1 ,T2 , . . . ,Tn� such that T2� f (T1), . . . , Tn� f (Tn�1),
T1� f (Tn), is called nondegenerate if

��T���
i�1

n

f ��Ti��1.

A nondegenerate cycle T is asymptotically stable if �(T)�1, and
is unstable if �(T)�1. The well-known properties of iterates of a
circle diffeomorphism �see �19�� translate into the corresponding
properties of steady modes:

Theorem 3: �1� If �( f )/T0 is irrational then the diffeomor-
phism f is topologically conjugate to a rotation by angle �( f )/T0 ,
and all the zero frequency steady modes are nonasymptotically
stable.

�2� If �( f )/T0 is rational, then f has periodic orbits �cycles�. If,
in addition, all the cycles of f are nondegenerate, then there is an
even number 2k of cycles of the same length, k of them asymp-
totically stable and k unstable, with the remaining orbits of f being
infinite. In the latter situation, system �1� has 2k periodic zero
frequency steady modes of the same period multiple of T0 , k of
them asymptotically stable and k unstable. The other zero fre-
quency steady modes are aperiodic, asymptotically stable and ap-
proach the stable periodic steady modes.

Remark 1: According to �19�, in a generic one-parametric fam-
ily of T0-periodic functions F(x ,t), the set of functions with ra-
tional �( f )/T0 and nondegenerate cycles of f is open dense and
the set of functions with irrational �( f )/T0 is nowhere dense,
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but of positive measure. Lastly, the set of functions with rational
�( f )/T0 and degenerate cycles is nowhere dense and has zero
measure.

III Design of Relay Type Controllers With Time Delay

A. Statement of the Adaptive Control Problem. Consider
the system

ẋ� t ��F�x ,t ��u� t �, u� t ����� t �•sign�x� t�1 �� . (10)

A real controller operates with unavoidable time delay. Here we
develop a direct adaptive delay control of relay type u(t)
���•sign�x(t�1)� with a step function � depending on the
only information on the time interval (�1;t�1), giving an
exponential decay of oscillations even in the presence of
disturbances.

Note that for small � we lose restriction �2�, and the solutions
to system �10� can be unbounded and inextensible to the infinite
interval. On the other hand, there are steady modes with suffi-
ciently large frequency and small magnitude. It turns out that the
existence of stable zero frequency steady modes implies the exis-
tence of a wide class of bounded solutions. Namely,

Proposition 3: Let ��const�0 and

F�0,t ��0 (11)

F�x ,t �

x
�k�log 2, x�0, t�R. (12)

Then all the solutions of the equation

ẋ� t ��F�x ,t ���•sign�x� t�1 �� (13)

with initial condition �7� where

�x�0 ����
�0 ����
2e�k�1

k
, (14)

are extensible to the interval ��1; �� and satisfy the inequalities

�x
� t ���
�

k
�ek�1 �, � ẋ
� t ����ek. (15)

B. Scalar System With Known Perturbation. Let F(x ,t)
satisfy �12�. Assume that we know the function F(x ,t) and have
an observer, which indicates zeros of x(t) and signs of x(t) with
delay 1. We design the desired control by means of the following
algorithm.

Let �14� hold for some constant ���0 . Put �(t)��0 , t�0,
and consider the equation

ẋ� t ����0•sign�x� t�1 ���F�x� t �,t �, t�0.

We fix a time moment t1�1, when the observer indicates the first
zero t1 of x(t) greater than 1. Using the distribution of zeros and
signs of x(t) on the segment �0;t1� , we extrapolate x(t) on the
interval t�t1 and compute the first zero t2 of x(t) greater than
t1�1. Now in the ideal situation we can put

�� t ��� , t�t2 ,

where �1 is an arbitrary small positive constant, and, according to
�15�, we obtain a solution x(t) which lies in a prescribed neigh-
borhood of zero.

Assume now that we compute the zero t2 with error �. Let �
satisfy the condition

��
def ek��1

2e�k�1
�1⇔��

ln 2

k
�1. (16)

Notice that if T is a zero of some solution x(t) of �13�, and
�T*�T��� , then

�x�T*�����ek��1 �/k .

From this it follows immediately that the considered solution sat-
isfies �14� at point t2 with constant ���0� . Now we put �(t)
��0� , t�t2 and repeat our algorithm from the beginning. After
m steps we get from �15�

�x� t ���
ek�1

k
�0�

m. (17)

The left-hand side of �17� tends to zero as m→� .

C. Scalar System With Unknown Perturbation. Having
error �0 of the observer and property �12� as the only information
on F(x ,t), we still can apply the previous algorithm, provided, we
know how to construct the zero sequence on an interval (t;�)
having a zero sequence on (�1;t�1).

1� In the autonomous case Theorems 1 and 2 state that almost
all bounded solutions of the equation

ẋ� t ����•sign�x� t�1 ���F�x� t ��

turn into zero frequency steady modes. Assume that by the time
moment t2n�1 our observer indicated successive zeros
t0 ,t1 , . . . ,t2n such that t i�1�t i�1 , i�0¯2n�1. According to
the periodicity of steady modes �see Proposition 2�, the following
zero equals t2n�1�t2n�1�(t2n�t0)/n�t2n�1 with error �
��0(1�2/n). If � satisfies �16�, by repeating such steps, we sta-
bilize the zero solution as above.

2� In the periodic case �4�, by Theorem 2 almost any bounded
solution of �13� turns into some zero frequency steady mode for
every ��0, as far as

sup��F

�t
�x ,t �•x�1��2�2e�k�1 �2.

For further estimates we use the following simple consequence
of inequality �12�

Lemma 1: Let F(x ,t) satisfy �2�, �11�, �12�. If g1 , g2 are zero
frequency steady modes such that

g1� t1��g1� t2��0, g1� t ��0, t�� t1 ;t2�,

g2� t1���g2� t2���0, g2� t ��0, t�� t1� ;t2��

then

�t2��t2���t1��t1�•��p ,k �,

��p ,k ��1��� 2

��p
�

2��2p

���p �2 ek� •exp� k
��p

��p � .

In our situation by �11�, �12�, �15�

�F�x ,t ���sup��F

�x �•sup�x����ek�1 �.

Hence we have p��(ek�1) and, by Lemma 1,

����p ,k ��1�2e�k�3�ek�•exp� kek

2�ek� .

Let us fix some integer n�0. Suppose that the observer gave us
two successive zeros t0 ,t1 of x(t) such that t0�1�t1 . That
means x(t) coincides with some zero frequency steady mode for
t�t0 . We consider the projections t̃ 0 , t̃ 1 , . . . of t0 ,t1 and the
following zeros of x(t) on circle S of length T0 �see Section II�. It
is easy to see that there are r�s�n such that

� t̃ 2s� t̃ 2r��
T0

n
.

According to the periodicity of F(x ,t) and Lemma 1 we obtain
the following zero t2r�1�t2r�t2s�1�t2s�t2r�1 with error

���0�
T0

n
•� .
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If � satisfies �16� we can perform our algorithm by iterating the
step described above.

D. Two-Dimensional Triangular System. The above con-
trol algorithm applies to quench oscillations in system �5�, �6�,
provided

f �0 ��g�0,0��0,
f �x �

x
�log 2,

g�0,y �

y
�

log 2

�
.

By means of control elements ��(t)sign�x(t�1)� and
��(t)sign�y(t��)� in the right-hand side of �5�, �6�, first, we
quench oscillations in Eq. �5� using the process described in Sec-
tions III-B, III-C, second, we quench oscillations in Eq. �6� which
then becomes close to an autonomous with respect to y.

Conclusions
1. The steady modes studied in this paper have similar proper-

ties to those of sliding modes �20�:

• the set of switches for any steady mode is unbounded and
thus, a steady mode is not equivalent to any solution of one of
the continuous parts of the given equation;

• for any solution there exists a finite time input into a steady
mode;

• the shift operator is not invertible;
• the previous three properties are invariant with respect to

bounded perturbations which satisfy conditions �2�.

2. The instability of steady modes with non-zero frequency is
established for a wide class of systems �1�.

3. Two types of stability in periodic systems �1� are observed.
4. A direct adaptive control of relay type with time delay that

extinguishes parasite auto-oscillations is designed.

IV Appendix. Proofs
Proof of Theorem 2. We shall show that the set U0 is dense,

and, thus, by Theorem 1 we obtain the nowhere density of
�0�n��Un in C��1,0� .

Fix even N�0. Put

���a0 , . . . ,aN��RN�1:a0�0, . . . ,aN�0

a0� . . . �aN�1�.

Let Z
��T;��) be locally finite, and

T�t1�t2�t3� . . .

be all zeros of x
(t) in �T;��). We define the operators of ‘‘step
forward’’ and ‘‘step backward.’’ Assume that �
(tk)��
(tk�1)
�N . Define the following vectors of sign changes: ā
�(a0 , . . . ,aN), b̄�(b0 , . . . ,bN)�� , where

a0�tk�tk�1, a1�tk�1�tk�2 , . . . ,

aN�1�tk�N�1�tk�N , aN�tk�N�� tk�1 �

b0�tk�1�tk ,b1�tk�tk�1 , . . . ,bN�1�tk�N�2�tk�N�1 ,

bN�tk�N�1�� tk�1�1 �.

Thus we obtain a correspondence

�:� ā ,� ,��→� b̄ ,� ,���,

where ��tk , ��tk�1 , ��sign ẋ
(tk).
Lemma 2: For a fixed �, the correspondence inverse to �, is a

smooth map

M � :��R→��R .

Proof. Denote by x�(t0 ,x0 ,a), ���1, the solution of the
Cauchy problem

dx

da
���F�x ,t0�a �,x�0 ��x0 .

Define functions T�	�(t ,a), ���1, by the equations

x��� t�a ,x�� t ,0,a �,b ��0, T�t�a�b . (18)

It is easy to see that for a fixed t0 , the function 	�(t0 ,a) strongly
increases, and 	�(t0 ,a)�a if a�0. Therefore, for a fixed t0 , we
can define positive functions of b�0:

• ��(t0 ,b) inverse to b�	�(t0 ,��);
• ��(t0 ,b)�b���(t0 ,b).

Hence ( ā ,�)�M �( b̄ ,�) can be defined as

a0�b1 , a1�b2 , . . . ,aN�2�bN�1 ,

aN�1�bN������b0 ,b0�, aN������b0 ,b0�, (19)

����b0 .

Lemma 2 defines the operator of step backward with a constant
frequency �in fact, independently of the initial assumption
�
(tk)��
(tk�1)�N).

We shall also use the following two auxiliary claims.
Lemma 3: If

a��1�p �/2 (20)

and either �8�, or �9� is fulfilled, then

�	�1

�a
� t ,a ��q , q�const�1 (21)

for sufficiently large t.
Proof. We start with the formula

�	�

�a
� t ,a ��1��1��F�0,T ���1 exp� �

t�a

T �F

�x
�x�� ,t �dt �

�� 1��F�x�� t ,0,t�a �,t�a �

���
t�a

T �F

�t
�x�� ,t �dt � ,

where T�	�(t ,a). Since 1�p�� ẋ����1�p , we have
�x��(t ,0,t�a)��a(1�p)�(1�p)2/2. Hence

T�� t�a ��
�1�p �2

2�1�p �
, (22)

and by �8�

� �
t�a

T �F

�t
�x�� ,t �dt��1�p�c1

where c1�const�0, as t�0. Therefore

1��F�x�� t ,0,t�a �,t�a ����
t�a

T �F

�t
�x�� ,t �dt�c1�0.

In view of

dF�x� ,t �

dt
�

�F�x� ,t �

�t
�

�F�x� ,t �

�x
ẋ�

and �8�, �22� we have for t�0,
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�
t�a

T �F

�x
�x�� ,t �dt��

t�a

T � dF

dt
�

�F

�t � •� ẋ� �
�1dt

��
t�a

T dF/dt

���F�x�� ,t �
dt

��
t�a

T �F/�t

���F�x�� ,t �
dt

��log
1�p

1�p
�

1

1�p �t�a

T �F

�t
dt

��log
1�p

1�p
�1.

This altogether implies �21�.
Similarly, assuming �9�, one derives for t�0 that

� �
t�a

T �F

�x
• ẋ��dt��1�p�c2 ,

where c2�const�0. Hence

1��F�x�� t ,0,t�a �,t�a ����
t�a

T �F

�t
�x�� ,t �dt

�1��F�x�� t ,0,t�a �,t�a �

���
t�a

T dF

dt
dt���

t�a

T �F

�x
• ẋ��dt

�1��•F�0,T ���1�p�c2��c2�0,

in view of �8� and �22�, which as before gives �21�.
Lemma 4: Under the conditions of Theorem 2 the measure of

the set !�!0�!1�!2� . . . , where

!0���R , !n�1��M ��M ���!n�,n�0,

is zero.
Proof. First we show that any ā�(a0 , . . . ,aN)�M �( b̄), b̄

�� , satisfies aN�(1�p)/2. Indeed, we have aN�aN�1(1
�p)/(1�p), which implies the above inequality.

By �19� the Jacobian �M ��� of the map M � is equal to

���

�b
� t ,b ��

t�� ,b�b0

�� �	�

�a
� t ,a ��

t�� ,a�aN

� �1

�
1

q
�1

according to Lemma 3. Then

��M ��M �����q�2�1. (23)

Fix A�R and T�A . Then

!�������;A� �� �
k�n

�M ��M ��k����T;T�1� �,

where n might be chosen large enough, because T�A is arbitrary.
Thus, we obtain from �23�

mes�!�������;A� ���q�2�n�1 �
mes���

q2�1
→

n→�

0,

which completes the proof.
Now we can finish the proof of Theorem 2. Fix 
�Un and a

neighborhood V of 
 in C��1;0� . Introduce the following dense
subset in C��1;0�:

F�
�C�0,1�:card�
�1�0 �����.

Put

m�mink:F�Uk�V���.

Assume m�1, and "�F�Um�V . Then there exists ��Um
sm such

that x(t)��(t), t�T , �(T)�0. Let 2k be the number of sign
changes of " in ��1; 0�, and let ā��k�R2k�1 be a vector of the
sign changes of ", constructed as above, and b̄��m�R2m�1 be a
vector of the sign changes of � in (T�1;T). Suppose c̄�� t , d̄
��s are vectors of the sign changes of x(t) in the intervals (tn
�1;tn) and (tn�1�1;tn�1), respectively. If r�s then, according
to Lemma 2, Eq. �1� generates a diffeomorphism of neighbor-
hoods of ( c̄ ,tn),( d̄ ,tn�1) in �r�R . If r�s , it is possible to de-
duce, following arguments from the proof of Lemma 2, that

c0�d1 , . . . ,c2s�1�d2s , c2r�#�d0 ,c2s , . . . ,c2r�2 ,tn�1�,

c2r�1�1�c0� . . . �c2r�2�c2r , tn�tn�1�d0 ,

where # is some smooth function. Hence an inverse image of
( d̄ ,tn�1) in a neighborhood of ( c̄ ,tn) in �r�R has codimension
2s�1. This implies that the measure of the inverse image of
!�(�m�R) in �k�R is zero. Therefore, after a suitable small
variation of ( ā ,0) in �k�R , the image of ( ā ,0) in �m�R leaves
!, i.e., the limit frequency of the changed solution is less than
2m , which contradicts the definition of m, and hence our assump-
tion m�0.

Thus, we get that U0�F is dense in F, and also in C��1;0� ,
because F is dense in C��1;0� . According to Theorem 1, this
means that U���

k�1
Uk is nowhere dense in C��1;0� .

The first two statements of Theorem 2 are done.
For the third statement of Theorem 2 we modify the previous

argument as follows.
Lemma 5: The function 	�(t ,a), defined above, satisfies

�	�

�a
�

2

1�p
exp��a•min�1

�0 � ;�2
�0 �� �.

The Proof is based on the following well-known formula: If
w(z ,w0 ,z0) is the solution of the Cauchy problem

dw

dz
�$�w ,z �, w�z0��w0 ,

where

��$�w��� ,

then

�w�z ,w0 ,z0�

�w0
�exp���•�z�z0��. (24)

Now from �24� and �2� it is not difficult to derive that

�	�� t0 ,a �

�a
�

2

1�p
• �w�0,a�t0 ,x��a ,0,t0��

�w0
, (25)

where w�w(x ,w0 ,x0) is the solution of the Cauchy problem

dw

dx
�

1

���F�x ,w �
w�x0��w0 ,

and then, using �24� and the inequality

�x��a ,0,t0���a�1�p �,

we obtain from �25� that

�	�

�a
�

2

1�p
exp��a�2

�0 ��.

On the other hand, �24� and �2� imply that
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�	�

�a
�

2

1�p

�x��� t0�	� ,x��a ,0,t0�,t0�a �

�x0

�
2

1�p
exp� �sup��F

�x �•�	��a� �
�

2

1�p
•exp��a�1

�0 �� .

Lemma 6: Under the conditions of Theorem 2�3�, if n�% , then
the Jacobian M � of the map M�(M ��M �)N�1, N�2n , defined
above, satisfies the inequality

�M ���q�1, q�const. (26)

Proof. Let ā�(a0 , . . . ,aN)�M �( b̄), b̄�� . Then

�M ����
���

�b
� t ,b ��

t��0 ,b�b0

�� �	�

�a
� t ,a ��

t��0 ,a�aN

� �1

�
1�p

2
exp�aN•min�1

�0 � ;�2
�0 �� �.

(27)

Hence

���M ��M ��n�M ����� �	�

�a
� t ,a ��

t��0 ,a�aN

� �1

��
i�0

N�1 � �	�

�a
� t ,a ��

t�t i ,a�a
i�
� �1

,

where 0�ai��ai , i�0, . . . ,N�1. Finally, this implies, accord-
ing to �27�, that

���M ��M ��n�M ������ 1�p

2 � 2n�1

exp��aN�aN�1�¯�a0�

•min�1
�0 � ;�2

�0 �� �

�� 1�p

2 � N�1

exp�min�1
�0 � ;�2

�0 �� �,

�M ���� 1�p

2 � 2N�2

exp�2 min�1
�0 � ;�2

�0 �� ��q�1,

since the last inequality is equivalent to n�% .
Lemma 7: Under the conditions of Theorem 2�3�, if n�% , then

the measure of the set !, defined in Lemma 4, is zero.
Proof. Fix A�R and T�A . Then

!�������;A� �� �
k�s

M k����T;T�1� �,

where s can be chosen large enough, because T�A is arbitrary.
Thus, we obtain from �26� that

mes�!����;A� �)�
qs

1�q
•mes���→0

as s→� , which completes the proof of the Lemma.
Now one can finish the proof of the third statement of Theorem

2 as was done above for the second statement.

Proof of Proposition 3. Condition �12� means that if x(t) is a
solution of �1� then, for x(T)�0,x(t)��(t),t�T , where �(t)
�(��kx(T))exp(k(t�T))��)/k is the solution of the Cauchy
problem,

�̇� t ����k�� t �, ��T ��x�T �,

and, for x(T)�0,x(t)��(t),t�T , where �(t)�(��
�kx(T))exp(k(t�T))��)/k is the solution of the Cauchy prob-
lem,

�̇� t �����k�� t �, t�T .

These inequalities and �12� imply that �F(x ,t),t)��� as t
��0,1� , and x(0)�
(0) satisfies �14�, and that x(t) satisfies �15�
as t��T ,T�1� ,x(T)�0. Hence x(t) does not leave the strip �x�
��(ek�1)/k for t�T .
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�� f (x(t�1)),’’ J. Math. Anal. Appl., 79, pp. 127–140.

�18� Walther, H.-O., 1991, ‘‘An Invariant Manifold of Slowly Oscillating Solutions
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