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1. Introduction

1.1. Antecedents

Since the 17th century, the synchronization phenomenon on dy-
namical systems has been actively researched, starting with the Huy-
gen's work concerning two coupled pendulum clocks that become
synchronized in phase [1]. From then on, many others natural and
man-made processes and systems have been discovered which ex-
hibit the synchronization phenomenon [2], such as synchronized
lightning of fireflies, adjacent organ pipes, biological and physiologi-
cal systems, synchrony of triode generators and other electronic de-
vices, many rotating mechanical structures, and many classical cases
of synchronization of periodic systems [3]. In such context, themean-
ing of synchronization is understood as an adjustment of rhythms
of oscillating objects due to weak interactions [2].

On the other hand, it is well-known that the chaotic systems are
nonlinear deterministic systems having a complex and unpredictable
behavior. The sensitive dependence on initial conditions and param-
eter variations is a prominent feature of chaotic behavior, whereby,
the synchronization is not trivial in this class of systems. Moreover,
chaos synchronization is an interesting subject because many possi-
ble applications can be foreseen from a proper understanding of the
role of chaotic dynamics in interacting systems [4,5].

In spite of the classical concept of synchrony, varied types of syn-
chronization are known from studies in this field [6–14], which are
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dependent on signal parameters (frequency, phase, amplitude) to be
matched and other technical details. This is very important because
different kinds of synchrony can appear or be desired in process for
a common objective, as either identical or different systems, for in-
stance, robot coordination and cooperation of manipulators or others
electro-mechanical systems [15,16]. Then, some types of synchro-
nization for chaotic systems can be reviewed. On the one hand, the
identical synchronization (IS) implies an actual equality (both am-
plitude and phase) of the corresponding variables of two or more
coupled identical systems [6]. The phase synchronization (PS) is dis-
played if there exists certain relation between the phase of the sys-
tem variables but the amplitudes remain chaotic and uncorrelated
[11]. The generalized synchronization (GS) is a generalization of the
above concepts, in this sense it is said that two unidirectionally cou-
pled different systems are synchronized if a (static) functional rela-
tion exists between the variables of both systems [7]. That is, for a
given master system ẋ= f (x) and a slave system ż= g(z,u(x)), where
x ∈ Rn, z ∈ Rn, and u(x) ≡ u(x1(t, x0), . . . , xn(t, x0)), consider a func-
tional relation or a map z = �(x):Rn → Rn such that (GS) occurs
between x(t) and z(t), i.e., limt→∞‖z(t, z0) − �(x(t, x0))‖ = 0, where
u(t) is the driving function. In this case we say z(t, z0) �-synchronize
with x(t, x0) [17].

On the other hand, the synchronization schemes are different
because of the amount of signals to be synchronized in the systems.
Accordingly, chaotic systems with same order achieve complete syn-
chronization if and only if all their trajectories are synchronized of
some type [10]. In another way, chaotic systems with same order are
partially synchronized if at least one of the trajectories is synchro-
nized and at least one of the trajectories is not synchronized [10,12].
Now, for two unidirectionally coupled systems (called master and
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slave), where the order of the slave system is minor than the master
one, the reduced-order synchronization means that all trajectories
of the slave system are synchronized, in some way, with projections
of the master system [14,18]. Thus, synchronization schemes are
associated to the order of the involved systems.

It is worth mentioning that in unidirectional schemes the mas-
ter system behavior is independent of the slave one. Additionally
the slave system behavior evolves under coupling or control actions
(forced synchronization) in order to be synchronized with the mas-
ter one; unlike the bidirectional schemes, where both systems have
coupling or control actions in order to bemutually synchronized [19].

At last, the GS in reduced-order is the considered problem in
this work, that is, unidirectionally synchronizing a slave system with
projections of amaster system, taking into account that the dynamics
describing the master and slave systems can be different.

1.2. Motivation

Studying synchronization design for the systems of different or-
der is important and interesting and as a matter of fact this phe-
nomenon is displayed in nature, for example: it is observed in the
cardiorespiratory system, remarking that cardiac and respiratory
systems have a synchronous behavior [20]. Although it is presup-
posed that both systems are different by nature, also may have dif-
ferent order. Furthermore, the reduced-order synchronization be-
tween strictly different systems could play an important role inmany
fields [21].

However, synchronization is difficult in the most practical sit-
uations due to external excitations or disturbances, parametric
uncertainties or non-modelled dynamics. Moreover, only partial
information (measured states and nominal parameter values) may
be available for feedback control laws, or perhaps noise could be
added in measurements, and furthermore, the chaotic dynamic is
extremely sensitive to their initial conditions. Then, all these ob-
stacles should be taking into account when an algorithm control
is designed in order to forcing the slave system states to be syn-
chronized with those of the master. Despite this, a feedback control
law is usually expressed in terms of the output function and their
derivatives. The designed controller needs the knowledge of all
states of the system to be implemented. However, they are not al-
ways measurable. In order to avoid this difficulty it is necessary to
reconstruct this information from the output and its derivatives. On
the other hand, the use of differentiators or some observers cause
delay in signals and requirements of filtration [22,23].

The goal of the paper is the synthesis of synchronization for
chaotic systems should be focused from a robust viewpoint [24,25].

1.3. Methodology

To ensure the robust reduced-order synchronization two main
tools are used:

1. A high-order sliding mode-based exact differentiator is a system
ensuring finite-time convergence to the exact value of the deriva-
tives of a function, ensuring a best possible approximation of the
derivatives with respect to the upper bound of the measurements
noise and sampling step [26].

2. Quasi-continuous high-order sliding-mode controllers provide
finite-time stabilization for convergence error [27].

1.4. Main contribution

In this paper, conditions are given providing synchronization for a
class of different chaotic systems with different order, basing on the

concepts of relative degree and disturbance characteristic index. In
addition, the robustness with respect to the presence of certain dis-
turbances and unmodelled dynamics basing on high-order sliding-
mode differentiator and a quasi-continuous control is ensured.

The proposed controller is output based, i.e. it can forces the slave
to follow the master using outputs of the both systems and ensures
their synchronization.

1.5. Structure of the paper

The rest of the paper is organized as follows. The problem de-
scription is presented in Section 2. A synchronization scheme con-
stituted by a high-order sliding-mode differentiator combined with
a quasi-continuous robust controller is presented in Section 3. Fur-
thermore, simulation results are shown in Section 4 in order to
illustrate the GS of the reduced order between two different chaotic
systems. Finally, some conclusions are given.

2. Problem description

Now, we analyze the GS problem between two different chaotic
systems. Besides, in the considered problem is assumed that the
order of the master system is greater than the order of the slave
system. Thus, the complete problem will be called GS in reduced-
order.

Consider a master system given by

�M :
{
ẋM = fM(xM) + gM(xM)uM
yM = hM(xM)

(1)

where xM=[x1,M, x2,M, . . . , xnM,M]T ∈RnM is the state vector, uM ∈R
is an input, and yM ∈ R is an output variable of the master system,
fM and gM are smooth vector fields, and has relative degree rM (see
Appendix A). Next, consider a slave system described by

�s :
{
ẋs = fs(xs) + gs(xs)us
ys = hs(xs)

(2)

where xs = [x1,s, x2,s, . . . , xns,s]
T ∈ Rns is the state vector, us ∈ R is

the control input, and ys an output variable, fs and gs are smooth
vector fields, with relative degree rs.

We assume that the order ns of the slave system is less than or
equal to the order nM of the master system (ns�nM). It is clear
that if ns = nM, then it represents a particular case of reduced-order
synchronization.

Now, the synchronization problem considered can be established
as follows.

The reduced-order GS objective: Given two chaotic system with
different order, find a control to force the states of the slave system
(2) to be synchronized with some projections of state vector of the
master system (1).

In order to attain the above objective, let us define the synchro-
nization error �: xs − �(xM), where � is a functional relation. Then,
the GS is defined as follows:

Definition 1 (Rulkov et al. [7], Kocarev and Partlitz [9], Yang and Duan
[17]). A slave system (2) exhibits GS with the master system (1), if
there exists a functional relation �, such that

lim
t→∞ � = lim

t→∞[xs − �(xM)] = 0 (3)

for all t�0 and any initial condition �(t0) = xs(t0) − �(xM(t0)).

Definition 1 is meaningful because (3) implies xs → �(xM) for
all t�0 and any initial difference �(t0) = xs(t0) − �(xM(t0)), which
is understood as the synchronization of system (2) to a projection
of state vector of system (1). Then, the dynamical synchronization
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error is given by

�� :
{
�̇ = f�(�) + g�(�)us + q(�,�)
y� = h�(�)

(4)

where � ∈ Rns , y� is a function of the synchronization error which
is available for feedback, f� and g� are smooth vector fields and
q(�,�) is a smooth vector field containing terms which depends on
the synchronization error �, the states xs and xM and control uM,
where � := �(xM,uM). The components of such vector field q(�,�) are
considered as perturbations into the system. In addition, the vector
field satisfies q(�, 0)=0, ∀� ∈Rns . It is clear that for �=0, we obtain
the nominal system, i.e. dynamical system without perturbations.

Furthermore, we assume that system (4) has relative degree rs,
and taking into account the presence of the perturbation terms as-
sociated to �, we introduce the following definition, which is impor-
tant for synchronizing both systems.

Definition 2 (Disturbance characteristic index, Marino and Tomei
[28]). The disturbance characteristic index � is defined for system
(4) as the integer such that

LqLif�h�(�) = 0, 0� i�� − 2, ∀e ∈Rn, ∀� ∈ �

LqL�−1
f�

h�(�)�0 for some � ∈ � for some � ∈Rn

We set � = ∞ if

LqLif�h�(�) = 0, i�0, ∀� ∈Rn, ∀� ∈ �

That is, the disturbance characteristic index is the number � of
differentiations of the output ys which are required to show explic-
itly the term �. Thus, the disturbance characteristic index can be in-
terpreted as the dimension of system (4) affected by the function �.

Then, the importance of the relationship between � and rs is
clarified by the following result.

Lemma 1 (Marino and Tomei [28]). Assume that relative degree for
the nominal system is rs�ns. Then there exist ns − rs functions e⊥

i (�),
1� i�ns − rs, such that:

(i) the functions h�(�), . . . , L
rs−1
f�

h�(�), e⊥
1 (�), . . . , e

⊥
ns−rs (�) form a local

diffeomorphism about the origin;
(ii) 〈de⊥

i , q〉 = 0, 1� i�ns − rs.

In local coordinates e = [e, e⊥] = [h�(�), . . . , L
rs−1
f�

h�(�), e⊥
1 (�), . . . ,

e⊥
ns−rs (�)] = �(�) system (4) is expressed as follows:

For the case � > rs:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ėi = ei+1, 1� i� rs − 1

ėrs = Lrsf�
h� + usLg�L

rs−1
f�

h�,

ė⊥
j = Lf�e

⊥
j + Lqe⊥

j , 1� j�ns − rs
ye = e1

(5)

For the case � = rs:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ėi = ei+1, 1� i� rs − 1

ėrs = Lrsf�
h� + usLg�L

rs−1
f�

h�

+LqL
rs−1
f�

h�,

ė⊥
j = Lf�e

⊥
j + Lqe⊥

j , 1� j�ns − rs
ye = e1

(6)

For the case � < rs:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ėi = ei+1, 1� i�� − 1
ėi = ei+1 + LqLi−1

f�
h�, �� i� rs − 1

ėrs = Lrsf�
h� + usLg�L

rs−1
f�

h�

+LqL
rs−1
f�

h�,

ė⊥
j = Lf�e

⊥
j + Lqe⊥

j , 1� j�ns − rs
ye = e1

(7)

There exists a global change of coordinates transforming system (4) into
(5)–(7), if the vector fields

f̃e = f� −
Lrf�

h�

Lg�L
r−1
f�

h�
g�, g̃e = 1

Lg�L
r−1
f�

h�
g�

are complete and the global relative degree is well defined.

In the sequel, we assume that

Assumption 1. System (4) is assumed to be of minimum phase (see
Appendix A).

Remark 1. It is clear that the case � < rs is not considered because
control cannot be designed in order to reject the disturbance and
guarantee the synchronization error tends to zero. The case � > rs is
trivial because the disturbance does not affect the control objective,
then the synchronization can be achieved. Then, the interesting case
is when � = rs, which is considered in this paper.

Then, taking into account the above remark, we introduce the
following assumption.

Assumption 2. For synchronization error system (4), the disturbance
characteristic index is assumed to be � = rs.

The relative degree rs of system (4) is the lowest order time
derivative of the output ys for which the control us appears explicitly.
Consequently, the relative degree can be interpreted as the dimen-
sion of system (4) that can be linearized by a change of coordinates
and a feedback us.

Thus, the synchronization error system (4) is written as

�e :

⎧⎨
⎩
ė = Ae + Be[	s(e)us + �(e,uM)]
ė⊥ = 
(e, e⊥)
ye = Ce

(8)

with

Ae =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦ , Be =

⎡
⎢⎢⎢⎢⎢⎣

0
0
...
0
1

⎤
⎥⎥⎥⎥⎥⎦

Ce(e) = [1 0 · · · 0 0]

where � := xs − �(xM), e = [e, e⊥], and e = �(�) ∈ Rns is the syn-
chronization error vector, us ∈ R is the forcing input, ye ∈ R is the
output of error system (8), the function �(e,uM) is considered as per-
turbation term. ė⊥ = 
(e, e⊥) represents the internal dynamic which
is assumed to be asymptotically stable, i.e. the system is minimum
phase.

It is clear that for obtaining the above representation is necessary
to know the functional relation �, which usually is unknown. Then,
the following result summarized the conditions which allows to find
a functional relation � and to transform systems (1) and (2) into a
normal form.
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Lemma 2 (Marino and Tomei [28]). Assume that rs�ns for system (2).
Then there exist ns − rs functions zi,s(xs), 1� i�ns − rs, such that:

(i) the functions hs(xs), . . . , L
r−1
fs

hs(xs), z̄⊥1,s(xs), . . . , z̄
⊥
ns−rs,s(xs) form a

local diffeomorphism �s(xs) = [�̄s(xs), �̄
⊥
s (xs)]

T about the origin;
(ii) 〈dz̄⊥i,s, gs〉 = 0, 1� i�ns − rs. In local coordinates [z̄s, z̄⊥s ] =

[hs(xs), . . . , L
rs−1
fs

hs(xs), z̄⊥1,s(xs), . . . , z̄
⊥
ns−rs,s(xs)], i.e.zs=[z̄s, z̄⊥s ]T=

[�̄s(xs), �̄
⊥
s (xs)]

T =�s(xs), system (2) is expressed in normal form

⎧⎪⎪⎨
⎪⎪⎩

˙̄zs = Asz̄s + �s(z̄s, z̄⊥s ,us)
˙̄z⊥s = �s(z̄s, z̄

⊥
s )

ys = Csz̄s

(9)

with

As =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦ , �s(zs,us) =

⎡
⎢⎢⎢⎢⎢⎣

0
0
...
0


s(zs) + 	s(zs)us

⎤
⎥⎥⎥⎥⎥⎦

Cs = [1 0 · · · 0 0]

where 
s(zs) = Lrsfs
hs and 	s(zs) = LgsL

rs−1
fs

hs. If, in addition, the

global relative degree rs is well defined with rs�ns and
(iii) the vector fields

f̃s = fs −
Lrsfs

hs

LgsL
rs−1
fs

hs
gs, g̃s = 1

LgsL
rs−1
fs

hs
gs

are complete, then exists a global diffeomorphism transforming (2)
into the normal form (9).

In this way, consider that:

Lemma 3 (Marino and Tomei [28]). If system (2) has relative degree
rs�ns, then it is locally partially state feedback linearizable with index
rs.

Assumption 3. The slave system has relative degree rs = ns, where
ns is the order of slave system.

Then, it follows that ns − nr = 0, zs = z̄s and

{ ˙̄zs = Asz̄s + �s(z̄s,us)

ys = Csz̄s
(10)

Now, from Lemma 2, the master system (1) can be transformed, by
the diffeomorphism zM = [z̄M, z̄⊥M]T = [�̄M(xM), �̄⊥

M(xM)]T =�M(xM),
into a normal form:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

˙̄zM = AMz̄M + �M(z̄M, z̄⊥M,uM) (11a)

˙̄z⊥M = �M(z̄M, z̄⊥M) (11b)

yM = CMz̄M (11c)

xS

zS

xM
zM

+
e = φS(xS) − φProj°φM (xM)

xS

xM

Φ (xM)

+
ε = xS − Φ (xM)

xS

Φ (·)

φ-1
S (·)φS (·)

φProj (·)φM (·)

φS (·)

Fig. 1. Block diagram illustrating the relationship between original variables and
transformed variables.

with

AM =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦ ,

�M(z̄M, z̄⊥M,uM) =

⎡
⎢⎢⎢⎢⎢⎣

0
0
...
0


M(z̄M, z̄⊥M) + 	M(z̄M, z̄⊥M)uM

⎤
⎥⎥⎥⎥⎥⎦

CM = [1 0 · · · 0 0]

where zM = [z̄M, z̄⊥M]T ∈ RnM, with z̄M ∈ RrM, z̄⊥M ∈ RnM−rM,

M(z̄M, z̄⊥M) and 	M(z̄M, z̄⊥M) are functions of zM.

The new synchronization error is given by e=z̄s−�proj(z̄M), where

�proj is the projection map fromRrM intoRrs . This synchronization

error can be written in original coordinates as follows: e = �̄s(xs) −
�proj ◦ �̄M(xM). Then, in order to obtain the functional relation �
(see Fig. 1), it is easy to see that

e = �̄s(xs) − �proj ◦ �̄M(xM)

�̄
−1
s (e) = xs − �̄

−1
s ◦ �proj ◦ �̄M(xM)

�̄
−1
s (e) = xs − �(xM)

�̄
−1
s (e) = � (12)

Then, it follows that �(·) = �̄−1
s ◦ �proj ◦ �̄M(·) and

e = �̄s(�) (13)

Finally, using this transformation and Assumption 1, system (8)
is minimum phase, we obtain that

ė = Ae + Be[	s(e)us + �(e,uM)] (14)

Remark 2. The exact synchronization of (10)–(11a) can be solved
by stabilizing the synchronization error system (8) at the origin.

Notice that the synchronization of e= z̄s−�proj(z̄M) is affected by
unknown dynamics or parametric uncertainties present in function
�(e,uM) that can be arisen from both models, and due to that the
complete states xM and xs could not be available for feedback control
laws. Then, in the sequel the term �(e,uM) will be considered as
external disturbances into the system.
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Now, in order to synchronize systems (1) and (2), i.e. the syn-
chronization error e → 0 or equivalently (� → 0), it is necessary
to design a controller to stabilize system (14) under the presence
of external perturbations � and/or parametric uncertainties. Then,
a quasi-continuous high-order sliding-mode controller is designed.
However, this controller requires that the states are available, lim-
iting its implementation. Then, in order to overcome this difficulty,
an exact robust differentiator is proposed for solving the state esti-
mation problem.

3. Synchronization approach

Since synchronization between chaotic systems (10) and (11a)
can be interpreted as a stabilizing problem for error system (14), it
is possible to take advantage of known results for stabilization of
dynamical systems around the origin. Furthermore, from the point
of view of the control theory, the stabilizing problem is equivalent
to analyze the tracking problem of trajectories, i.e. the trajectories of
the slave system track some projections of the master system pro-
vided that the error between both transformed dynamical systems
tends to zero in finite time, which can be seen as a synchronization
problem. Hence, in this section, a stabilization approach constituted
by an exact robust differentiator and a quasi-continuous high-order
sliding-mode controller is considered.

3.1. Quasi-continuous high-order sliding-mode control

Now, we introduce some preliminaries in order to design a quasi-
continuous high-order sliding-mode control. Let us consider the dy-
namical system (8) in the following form:{
ė = ae(t, e) + be(t, e)us
� = �(t, e)

(15)

where e ∈ Rns ; ae, be : Rns × R → Rns , and � : Rns × R → R
are unknown smooth functions, us ∈ R is the input variable. It is
clear that by comparing with system (8), we have ae(t, e) = Aee and
be(t, e) = Be[	s(zs)us + �(e,uM)].

The task is to fulfill the target � ≡ 0 in finite time and to keep
it exactly by some feedback. Consequently, let system (8) be closed
by some possibly dynamical discontinuous feedback and be under-
stood in the Filippov [29] sense. Then, provided that successive to-
tal time derivatives �, �̇, . . . ,�(rs−1) are continuous functions of the
closed-system state-space variables and the manifold defined by the
equations

� = �̇ = · · · = �(rs−1) = 0 (16)

is a non-empty integral set, motion (16) is called rs-sliding (rs-th-
order sliding) mode [26]. The standard sliding mode used in the most
variable structure systems is of the first-order (� is continuous, and
�̇ is discontinuous).

Assuming that the relative degree rs is constant and known (see
[30]). Then, the control appears explicitly at the rs-th total time
derivative of �, which is given by

�(rs) = h(t, e) + g(t, e)u (17)

where h(t, e) = �(rs)|us=0, g(t, e) = (�/�u)�(rs)�0. It is supposed that,
for some Km, KM, C >0, the following inequality holds:

0 <Km�
�
�u

�(rs)�KM, |�(rs)|us=0�C (18)

which is always true at least locally. Trajectories of (15) are assumed
infinitely extendible in time for any Lebesgue-measurable bounded
control us(t, e).

In our case, any continuous control us=U(�, �̇, . . . ,�(rs−1)) provid-
ing for � ≡ 0, would satisfy the equality U(0, 0, . . . , 0)=−h(t, e)/g(t, e),
whenever (16) holds. Since the problem uncertainty prevents it [31],
the control has to be discontinuous at least on the set (16). Hence,
the rs-sliding mode � = 0 is to be established.

Now, we present the control design based on sliding mode. As
follows from (17) and (18)

�(rs) ∈ [−C,C] + [Km,KM]u. (19)

The closed differential inclusion is understood here in the Filippov
[29] sense, which means that the right-hand vector set is enlarged
in a special way [31], in order to satisfy certain convexity and semi-
continuity conditions. This inclusion does not “remember” anything
on system (15) except the constants rs, C, Km, KM. Thus, the finite-
time stabilization of (19) at the origin solves the stated problem si-
multaneously for all systems (15) satisfying (18). Let i=0, 1, . . . , rs−1.
Denote⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

�0,rs = �
N0,rs = |�|
�0,rs = �0,rs /N0,rs = sign�

�i,rs = �(i) + 	iN
(rs−i)/(rs−i+1)
i−1,rs

�i−1,rs

Ni,rs = |�(i)| + 	iN
(rs−i)/(rs−i+1)
i−1,rs

�i,rs = �i,rs /Ni,rs

where 	1, . . . ,	rs−1 are positive numbers.

Remark 3. Recall that according to the Filippov definition values of
the control on any set of the zero Lebesgue measure do not affect
the solutions.

The following proposition is easily proved by induction.

Proposition 1. Let i=0, 1, . . . , rs−1. Ni,rs is positive definite, i.e. Ni,rs=0
if and only if � = �̇ = · · · = �(i) = 0. The inequality |�i,rs |�1 holds
whenever Ni,rs >0. The function �i,rs (�, �̇, . . . ,�(i−1)) is continuous ev-
erywhere (i.e., can be redefined by continuity) except the point � = �̇ =
· · · = �(i) = 0.

Theorem 1 (Levant [27]). The controller

us = −k�rs−1,rs (�, �̇, . . . ,�
(rs−1)) (20)

is rs-sliding homogeneous and under proper choice of parameters
	1, . . . ,	rs−1 and k >0 provides for the finite-time stability of (19) and
(20). The finite-time stable rs-sliding mode � ≡ 0 is established in
system (15) and (20).

The proof is given in Levant [27]. It follows from Proposition 1 that
control (20) is continuous everywhere except the rs-sliding mode
� = �̇ = · · · = �(rs−1) = 0.

Each choice of parameters 	1, . . . ,	rs−1 determines a controller
family applicable to all systems (15) with relative degree rs. The pa-
rameter k is chosen specially for any fixed C, Km, KM, most conve-
niently by computer simulation, avoiding redundantly large estima-
tions of C, Km, KM. Obviously, k is to be negative with (�/�u)�(rs) <0.

Controller (20) is a continuous function of time everywhere ex-
cept the rs-sliding set (16). It may have infinite derivatives when
certain surfaces are crossed. However, controller (20) requires the
real-exact calculation or direct measurement of output function �
and their derivatives �̇, �̈, . . . ,�(rs−1). Furthermore, it is assumed that
all states are not available, and system (15) has uncertainties. Then,
in what follows, we present a technique allowing to reconstruct the
missing information of the state.
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3.2. High-order sliding mode exact robust differentiator

It is clear that in order to implement a control, it requires full in-
formation on the state thatmay limit its practical utility. Indeed, even
if all state measurements are available they are possibly corrupted
by noise. Furthermore, the relative degree of the model with respect
to the known outputs dependent on the accuracy of the mathemat-
ical model. Then, the use of state observers appears to be useful in
the reconstruction of the information of the state.

The main restriction for observer design: the observer should be
robust with respect to external perturbations (noise and uncertain-
ties).

In this section, we present a robust exact differentiator, which
is designed to ensure the finite-time convergence to the values of
the corresponding derivatives, using a high order sliding mode tech-
niques, and allows avoiding the differentiation of the signals which
are contaminated by noise.

Furthermore, the main advantages of this high-order sliding-
mode differentiator are:

(i) Finite-time convergence is provided.
(ii) Keeping robustness with respect to disturbances and measure-

ment noise.
(iii) Diminishing the dangerous chattering effect.

However, it is noticed that the suggested algorithm is only locally
effective.

Now, in order to build a differentiator for computing the real-
time derivatives of output function, it is necessary that the following
inequality �(rs)�C + �KM holds, which allows a real-time robust
(rs − 1)-th-order differentiation of � (see for more details [26,31]).
Then, the rs-th order differentiator is given by the following recursive
scheme:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂e1 = −�1|ê1 − e1|rs/(rs+1)sign(ê1 − e1) + ê2 = v1˙̂e2 = −�2|ê1 − e1|(rs−1)/rs sign(ê2 − v1) + ê3 = v2
...
˙̂ers = −�rs |êrs − vrs−1|1/2 sign(êrs − vrs−1) + êrs = vrs
˙̂ers+1 = −�rs+1 sign(êrs+1 − vrs )

(21)

The convergence of the above rs-th order differentiator is estab-
lished in the following theorem.

Theorem 2 (Levant [26]). The parameters �i, for i = 1, 2, . . . , rs + 1;
being properly chosen, the following equalities are true in the absence
of input noises after a finite time of a transient process: ê1 = e1(t);

êi = vi = e(i)1 (t), i = 1, 2, . . . , rs + 1.

Furthermore, the corresponding solutions of the dynamic systems
are Lyapunov stable, i.e. finite-time stable.

The above theorem means that the equalities êi = e(i)1 are kept

in 2-sliding mode, i = 1, . . . , rs. The proof of this theorem is given
in Levant [26]. Furthermore, the constants �i are chosen recursively
sufficiently large, and they can be chosen as in [26].

Since the rs-th order differentiator used in this paper allows to
reconstruct the derivatives ė1, ë1, . . . , e

(rs)
1 from the output function

measurement � = e1 with finite-time convergence. Furthermore, in
this case the separation principle theorem is trivial, and hence the rs-
th order differentiator can be designed separately from the controller.

Then, the solution of synchronization problem for two systems
with different relative degree is established in the following theorem.

Theorem 3. Consider the uncertain system (15) satisfying the in-
equality (18) and Assumptions A1–A3. The uncertain system (15) in

closed-loop with the control

us = −k�rs−1,rs (�, �̇, . . . ,�
(rs−1)) (22)

using an exact robust differentiator (21) is such that the synchronization
error e, equivalently (�), tends to zero in finite time.

The proof is a straightforward consequence of applications of the
above results.

4. Cases of study

Now, we present three cases of study for illustrating the imple-
mentation of the proposed scheme. Let us consider the following
cases:

In the 1st case, the trajectories of a 3rd order Rössler system, rep-
resenting the slave system, track some projections of a generalized
Lorenz system, which is a chaotic system of 4th order without exter-
nal forcing signals and is used as a master system. Similarly, in the
2nd case, we consider a 3rd order Rössler system which will track
the projections of the 4th order hyperchaotic Rössler system.

And finally, an additional case is included, where we show the
synchronization of two identical systems represented by a 3rd order
Rössler system.

4.1. Case 1

A 3rd order Rössler system, representing the slave system, whose
trajectories will track some projections of a master system repre-
sented by generalized Lorenz system of 4th order.

Then, consider the following the master system, represented by
a generalized Lorenz system [32]:

⎧⎪⎪⎨
⎪⎪⎩
ẋ1,M = −aMx1,M + aMx2,M + cMx4,M
ẋ2,M = hMx1,M − x2,M − x1,Mx3,M
ẋ3,M = −bMx3,M + x1,Mx2,M
ẋ4,M = −x1,M − aMx4,M

(23)

where aM, bM, cM, and hM are constant coefficients. The slave system,
represented by Rössler system, is given by

⎧⎨
⎩
ẋ1,s = −x2,s − x3,s
ẋ2,s = x1,s + aSx2,s
ẋ3,s = x3,s(x1,s − cs) + bs + us

(24)

where as, bs, and cs are constant coefficients. Systems (23) and (24)
are chaotic and have different order and topology. Furthermore, they
are not synchronized in any sense (see Figs. 2 and 3).

The objective is that the trajectories of the slave system (24) track
some projections of master system (23) taking into account that the
master order is greater than the slave one (nM = 4, ns = 3, rM = ∞,
rs = 3). Then, in what follows the tracking problem of trajectories
will be analyzed.

Let be yM := x1,M and ys := x2,s the outputs of master and slave
systems, respectively. Consider the map zM = �M(xM)

⎡
⎢⎢⎣
z̄1,M
z̄2,M
z̄3,M
z̄4,M

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

x1,M
−aMx1,M + aMx2,M + cMx4,M
(a2M − cM + aMhM)x1,M − aM(aM + 1)x2,M

−aMx1,Mx3,M − 2aMcMx4,M
�̄4(xM)

⎤
⎥⎥⎥⎥⎦

where �̄4(xM) = −aM(a2M + hM − cM + 2aMhM + 1)x1,M + aM(a2M +
aMhM + aM − cM + 1)x2,M + (2a2McM − a2M + aMhMcM + cM)x4,M +
aM(2aM + bM + 1)x1,Mx3,M − a2Mx2,Mx3,M − aMcMx3,Mx4,M−
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Fig. 2. Case 1. Attractor of generalized Lorenz (master) system.
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Fig. 3. Case 1. Attractor of Rössler (slave) system.

aMx21,Mx2,M, and following the proposed procedure, then system (23)
can be transformed into the normal form, as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

˙̄z1,M = z̄2,M
˙̄z2,M = z̄3,M
˙̄z3,M = z̄4,M
˙̄z4,M = 
M(z̄M)

(25)

Furthermore, defining a smooth map zs = �s(xs)

⎡
⎣ z̄1,s
z̄2,s
z̄3,s

⎤
⎦ =

⎡
⎣ x2,s

x1,s + asx2,s
(a2s − 1)x2,s − x3,s + asx1,s

⎤
⎦

which transform the slave system (24) into the following canonical
form:⎧⎨
⎩

˙̄z1,s = z̄2,s
˙̄z2,s = z̄3,s
˙̄z3,s = 
s(z̄s) + 	s(z̄s)us

(26)

Now, due to the different order it is necessary to look for the map in
order to project the trajectories into the suitable space. Thus, trajec-
tories [x1,s; x2,s; x3,s]

T must track the trajectories of master system

obtained from the map � :R4 →R3,

�(xM) = �̄
−1
s ◦ �proj ◦ �̄M(xM) = [�1(xM),�2(xM),�3(xM)]T

=

⎡
⎢⎢⎣

−(aM + as)x1,M + aMx2,M + cMx4,M
x1,M
(cM − aM(as + aM + hM) − 1)x1,M + aM(1 + aM + as)x2,M

+cM(2aM + as)x4,M + aMx1,Mx3,M

⎤
⎥⎥⎦
(27)

Figs. 3 and 4 show the evolution of x1,s, x2,s, x3,s and �1(xM),
�2(xM),�3(xM), respectively, without control action. Note that the
trajectories are not exactly tracked. Thus, the synchronization error
dynamics is given by⎧⎨
⎩
ė1 = e2
ė2 = e3
ė3 = �1(e, xM, t) + us

(28)

In this way, the tracking problem of trajectories between (23) and
(24) systems can be viewed as the stabilization of system (28) around
origin. Then, in order to determine the stabilizing control, the output
signal of the synchronization error system is defined as � := e1 with
�̇ = ė1 = e2 and �̈ = ė2 = e3. Then, the stabilizing control for the
synchronization error system (28) is

us = −k
[e3 + 2(|e2| + |e1|2/3)−1/2(e2 + |e1|2/3 sign(e1))]

[|e3| + 2(|e2| + |e1|2/3)1/2]
(29)
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The choice of the sliding surface as � := e1 = 0, �̇ := e2 = 0 and
�̈ := e3=0 allows to stabilize (28) around origin, which yields x1,s →
�1(xM), x2,s → �2(xM) and x3,s → �3(xM) in finite time.

However, the above controller requires direct measurement of e1,
e2 and e3, but we have assumed that e1=x2,s−x1,M is only available.
Then, for implementation purposes and in order to overcome this
difficulty, the rs-th order differentiator (21)⎧⎪⎪⎨
⎪⎪⎩

˙̂e1 = −�1|ê1 − e1|3/4 sign(ê1 − e1) + ê2 = v1˙̂e2 = −�2|ê2 − v1|2/3 sign(ê2 − v1) + ê3 = v2˙̂e3 = −�3|ê3 − v2|1/2 sign(ê3 − v2) + ê3 = v3˙̂e4 = −�4 sign(ê4 − v3)

(30)

is used to estimate e1, e2 and e3 in the stabilizing control (29).
Next, some simulations are shown in order to illustrate the proposed
methodology. The following parameters have been used.

• The parameters of generalized Lorenz system (master) were aM =
1.0, bM =0.7, cM =1.5 and hM =26. Initial conditions were chosen
at xM(0) = (1, 0,−1, 1)T.
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Fig. 5. Case 1. Estimation errors: (a) ẽ1 = e1 − ê1, (b) ẽ2 = e2 − ê2, (c) ẽ3 = e3 − ê3.

• The parameters of Rössler system (slave) were taken as as = 0.2,
bs = 0.2, and cs = 5.7, with initial conditions given by xs(0) =
(−1, 2, 2)T.

• Differentiator's parameters were chosen according to Section 3.2:
�1 = 3.0M1/4, �2 = 2.0M1/3, �3 = 1.5M1/2, and �4 = 1.1M; with
M = 500, and the initial conditions ê(0) = [0, 0, 0, 0]T.

• The controller parameter was chosen as k = 100.

In Fig. 5 is shown that estimation errors ẽ1 := e1 − ê1, ẽ2 := e2 − ê2
and ẽ3 := e3 − ê3 converge to the origin in finite time.

Furthermore, the actual states are replaced in the control law (29)
by the corresponding estimated values ê1, ê2 and ê3 obtained from
differentiator (30), i.e.

us = −k
[ê3 + 2(|ê2| + |ê1|2/3)−1/2(ê2 + |ê1|2/3 sign(ê1))]

[|ê3| + 2(|ê2| + |ê1|2/3)1/2]
. (31)

is the control law designed to stabilize the synchronization errors
e1, e2 and e3 around the origin.

Thus, the rs-th differentiator-based control scheme (30) and (31)
ensures the trajectory tracking between the Rössler system (slave)
(24) and the generalized Lorenz system (master) (23), by means of
the map �(xM), in spite of differences between the systems. In Fig.
6, the convergence of (a) x1,s to �1(xM), (b) x2,s to �2(xM) and (c)
x3,s to �3(xM) are plotted on time-domain, respectively, where the
trajectory tracking is achieved in finite time under the control action.
Furthermore, the control signal us obtained from (31) and applied
to the slave system (24) is shown in Fig. 7.

4.2. Case 2

Now, consider the following master system, now represented by
a hyperchaotic Rössler system:⎧⎪⎪⎨
⎪⎪⎩
ẋ1,M = −x2,M − x3,M
ẋ2,M = x1,M + aMx2,M + x4,M
ẋ3,M = bM + x1,Mx3,M
ẋ4,M = −hMx3,M + dMx4,M

(32)



956 A. Rodríguez et al. / International Journal of Non-Linear Mechanics 43 (2008) 948 -- 961

0 10 20 30
−20

−10

0

10

time

Control off
Φ1 (xM)
x1, S

Φ2 (xM)
x2, S

Φ3 (xM)
x3, S

0 10 20 30

−10

−5

0

5

time

Control off 

0 10 20 30

−50

0

50

100

time

Control off Control on

Control on

Control on

Fig. 6. Case 1. Tracking of xs to �(xM).

0 10 20 30
−1000

−800

−600

−400

−200

0

200

400

600

800

1000 Control off

time

u S
 (t

)

Control on

Fig. 7. Case 1. Control signal us.

where aM, bM, dM and hM are constant coefficients and whose
dynamics are plotted in Fig. 8. The slave system is represented by
a Rössler system given in (24), whose dynamics are plotted in
Fig. 3. Furthermore, set yM := x2,M and ys := x2,s the outputs of mas-
ter and slave systems, respectively. Following the same procedure

presented in case 1, using the smooth map zM = �M(xM)

⎡
⎢⎢⎢⎣
z̄1,M
z̄2,M

z̄3,M

z̄4,M

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x2,M

x1,M + aMx2,M + x4,M

(a2M − 1)x2,M − (hM + 1)x3,M

+aMx1,M + (aM + dM)x4,M

�̄4(xM)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

where �̄4(xM) = (a2M − 1)(x1,M + aMx2,M + cMx4) − (hM + 1)(bM +
x1,Mx3,M) + aM(−x2,M − x3,M) + (aM + dM)(dMx4,M − hMx3,M), the
master system (32) is transformed into the following system:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

˙̄z1,M = z̄2,M

˙̄z2,M = z̄3,M

˙̄z3,M = z̄4,M

˙̄z4,M = 
M(z̄M)

(33)

Furthermore, using the same transformation given in case 1 for
slave system (24), slave system is transformed into the canonical
form (26).

Thus, taking the same projection map that case 1, the trajectories

[x1,s; x2,s; x3,s]
T track the trajectories ofmaster system obtained from
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the map � :R4 →R3,

�(xM) = �̄
−1
s ◦ �proj ◦ �̄M(xM) = [�1(xM),�2(xM),�3(xM)]T

�(xM) =

⎡
⎢⎢⎣

1 (aM − as) 0 1

0 1 0 0

as − aM asaM − a2M 1 + hM as − aM − dM

⎤
⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎣
x1,M

x2,M
x3,M

x4,M

⎤
⎥⎥⎥⎥⎦ (34)

Figs. 3 and 9 show the evolution without control action of the states
x1,s, x2,s, x3,s and the projections �1(xM), �2(xM), �3(xM), respec-
tively.

Thus, the synchronization error dynamics is of the form

⎧⎨
⎩
ė1 = e2
ė2 = e3
ė3 = �2(e, xM, t) + us

(35)

with e1=ys−yM=x2,s−x2,M. To design the controller stabilizing the
synchronization error system, the output signal is defined as � := e1
with �̇=ė1=e2 and �̈=ė2=e3. Then, the controller stabilizing system
(35) is of form (29). The choice of the sliding surface as � := e1 = 0,
�̇ := e2 = 0 and �̈ := e3 = 0 allows to stabilize (35) around origin,
which induces the convergence of x1,s → �1(xM), x2,s → �2(xM)
and x3,s → �3(xM) in finite time. In order to implement the above
controller, the differentiator (30) is used to estimate the errors e1,
e2, e3 and e4. The parameters used for simulation were selected as
follows:

• The parameters of hyperchaotic Rössler system (master) were aM=
0.25, bM = 3.0, dM = 0.5 and hM = 0.05. Initial conditions were
chosen at xM(0) = (−20, 0, 0, 15)T.

• The parameters of Rössler system (slave) were taken as as = 0.2,
bs = 0.2, and cs = 5.7, with initial conditions given by xs(0) =
(−1, 1, 2)T.

• Differentiator's parameters were chosen according to Section 3.2:
�1 = 3.0M1/4, �2 = 2.0M1/3, �3 = 1.5M1/2, and �4 = 1.1M; with
M = 100, and the initial conditions ê(0) = [0, 0, 0, 0]T.

• The controller parameter was chosen as k = 120.

In Fig. 10 is shown that estimation errors ẽ1 := e1 − ê1, ẽ2 := e2 − ê2
and ẽ3 := e3 − ê3, which converge to the origin in finite time. Fur-
thermore, replacing the actual states by the corresponding estimated
values ê1, ê2 and ê3 given by the differentiator (30) in the control law
(31), then the errors e1, e2 and e3 are stabilized around the origin. In
Fig. 11, the convergence of (a) x1,s towards the projection �1(xM),
(b) x2,s towards the projection �2(xM) and (c) x3,s towards the pro-
jection �3(xM) are illustrated on time-domain, respectively. Then,
trajectory tracking is achieved under the control action us which is
plotted in Fig. 12.
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−40

−20

0

20

40

Control off

Φ1 (xM)
x1, S

Φ2 (xM)
x2, S

Φ3(xM)
x3, S

−40

−20

0

20
Control off

0 10 20 30 40 50 60

0

20

40

60

80

time

Control off

Control on

Control on

Control on

Fig. 11. Case 2. Tracking of xs to �(xM).

4.3. Case 3

Now, we consider the trajectory tracking (synchronization)
between two identical Rössler system, which are represented
by (24). Following the same procedure and using the following

parameters:

• The parameters of Rössler system (master) were aM = 0.3,
bM = 0.3 and cM = 5.1. Initial conditions were chosen at xM(0) =
(1,−1, 1)T.
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• The parameters of Rössler system (slave) were taken as as = 0.3,
bs = 0.3, and cs = 5.1, with initial conditions given by xs(0) =
(−1, 1,−2)T.

• Differentiator's parameters were chosen according to Section 3.2:
�1 = 3.0M1/4, �2 = 2.0M1/3, �3 = 1.5M1/2, and �4 = 1.1M; with
M = 20, and the initial conditions ê(0) = [0, 0, 0, 0]T.

• The controller parameter was chosen as k = 10.

Fig. 13 shows the estimation errors ẽ1 := e1 − ê1, ẽ2 := e2 − ê2 and
ẽ3 := e3 − ê3, which converge to the origin in finite time.

In Fig. 14, the convergence of (a) x1,s to x1,M, (b) x2,s to x2,M and
(c) x3,s to x3,M are illustrated on time-domain, respectively; where
� is the identity map.

Furthermore, the control signal us is shown in Fig. 15.
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Fig. 12. Case 2. Control signal us.
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Fig. 13. Case 3. Estimation errors: (a) ẽ1 = e1 − ê1, (b) ẽ2 = e2 − ê2, (c) ẽ3 = e3 − ê3.

5. Conclusions

In this paper, the reduced-order synchronization problem for a
class of chaotic systems has been studied as a tracking problem of
trajectories. Using higher-order sliding-mode techniques, a scheme
for synchronizing chaotic systems of different order has been pro-
posed. It is concluded that generalized synchronization in reduced-
order, which can be viewed as a tracking problem of trajectories,
can be ensured if the disturbance characteristic index � is greater or
equal than relative degree rs for the synchronization error system
(4). Furthermore, a stabilizing control algorithm, based on quasi-
continuous high-order sliding mode, has been designed. In order to
implement that controller, the time derivatives of the output have
been computed by means of a high-order sliding-mode robust exact
differentiator. The simulations are given illustrating the performance
of controller.
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Appendix A. Concepts and definitions

Now, we introduced the following. Consider the following non-
linear system:

� :

{
ẋ = f (x) + g(x)u

y = h(x)
(36)
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where x= [x1, x2, . . . , xn]
T ∈Rn is the state vector, u ∈R is an input,

and y ∈ R is an output variable of the system, f and g are smooth
vector fields.

A vector field is said to be complete if the solutions to the differ-
ential equation ẋ = f (x) may be defined for all t ∈R [28].

Definition 3 (Global relative degree, Marino and Tomei [28]). The
global relative degree r of (36) is defined as the integer such that

LgLif h(x) = 0, ∀x ∈Rn, 0� i� r − 2

LgLr−1
f hs(x)�0, ∀x ∈Rn.

If

LgLif hs(x) = 0, ∀x ∈Rn, ∀i�0

we say that r = ∞.

Now, we introduce the following definition

Definition 4 (Minimum phase, Marino and Tomei [28]). Systems
(5)–(7), with rs�ns are said to be minimum phase if the origin
ē⊥ = 0 is an asymptotically stable equilibrium point for the zero
dynamics. A system which is not minimum phase is said to be
non-minimum phase.
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