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Singularly perturbed relay control systems with second order sliding modes (SP2SM) are considered for modeling of
sliding mode control systems with inertial sensors. It is shown that the asymptotically stable slow-motion integral
manifold of a smooth singularly perturbed system, describing the motion of an original SP2SM in the second order
sliding domain, is the asymptotically stable slow-motions integral manifold of the original SP2SM. For sliding mode
control systems with inertial sensors sufficient conditions for the exponential decreasing of the amplitude of chattering
and unlimited growth of frequency are found. A formula for asymptotic representation of ‘ideal’ switching surface
oscillations is suggested for sliding mode systems with inertial sensors.

1. Introduction

The chattering phenomenon is one of the current
problem in modern sliding mode control theory. The
presence of inertial sensors is one of the basic reasons
for chattering in sliding mode control systems
(Bondarev et al. 1985, Utkin 1992). In sliding mode
systems with inertial sensors the relay control is switched
on the surface which is designed based on input vari-
ables of the sensor, and the continuous plant output is
transmitted to the input of the sensor. Fridman and
Levant (1996) showed that the behaviour of sliding
mode systems with actuators and inertial sensors is
described by the relay control systems with higher
order sliding modes and the order of sliding is the sum
of relative degrees of plant, actuator and sensor.

Bartolini et al. (1998) suggested suboptimal control
algorithm ensuring the finite time convergence to the
second order sliding domain for chattering elimination
in systems with actuators with relative degree one.
Shkolnikov and Shtessel (2002) have implemented the
second order sliding mode control algorithms on
dynamics sliding manifolds eliminating the chattering
in systems with uncertain actuators.

Sufficient conditions for stability investigation for
sliding mode control systems with fast actuators of rela-
tive degree 1 were found by Fridman (1990). The chat-
tering phenomenon for sliding mode control systems
with fast actuators, whose behaviour is described by
singularly perturbed relay control systems with the
order of sliding three and more, was analysed by
Fridman (2001) from the view point of averaging.

This paper is devoted to the chattering phenomenon
in sliding mode control systems with fast inertial sensors
given by the singularly perturbed relay control systems

with second order sliding modes (SP2SM). The main
specific features of relay systems with the second order
sliding modes are the following:

. the second order sliding modes could be stable,

. the time of input convergence to the second order
sliding mode is infinite, the number of switchings
is infinite too (Anosov 1959, Fridman and Levant
1996) and for such systems the classical methods
of singular perturbations based on the separation
of spectra are not useful.

These specific features of SP2SM determined the
main goals of the paper:

. to show that it is possible to design chattering free
sliding mode control systems with inertial sensors
in the case when the order of sliding in the com-
plete model of the system is 2;

. to obtain the algorithms which take into account
the presence of inertial sensors in sliding mode
control systems;

. to design mathematical tools for the investigation
of SP2SM.

The paper has the following structure. In } 2 the fol-
lowing mathematical tools for investigation of SP2SM
are developed:

. sufficient conditions for the exponential decreasing
of the amplitude of chattering and unlimited
growth of frequency are found;

. it is shown that the asymptotically stable slow-
motions integral manifold of smooth singularly
perturbed system, describing the motion of the
original SP2SM in the second order sliding
domain, is the asymptotically stable slow-motions
integral manifold of the original SP2SM;

. the reduction principle theorem is proved ensur-
ing the equivalence for stability investigating
problems for systems the original SP2SM and the
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reduced system describing dynamics in the slow-
motions manifold.

The properties of chattering in sliding mode systems
with fast inertial sensors are studied in } 3. The algor-
ithm for correcting the sliding mode equations is sug-
gested in } 3.3 taking into account the presence of fast
inertial sensors. A formula for asymptotic representa-
tion of ‘ideal’ switching surface oscillations is given
} 3.4. In } 3.5 it is shown that whenever the sliding
motions of the plant are stable, but not asymptotically
stable, it is obligatory to make a correction to the sliding
mode equations taking into account the presence of sen-
sors in the system.

2. Decomposition theorem

2.1. Problem formulation

Consider the system of the form

� d���=dt ¼ �BB11��� þ �BB12�þ �BB13� þ �BB14x

� d�=dt ¼ �BB21��� þ �BB22�þ �BB23� þ �BB24xþ bUðx; uð�ÞÞ

� d�=dt ¼ �

dx=dt ¼ �BB41��� þ �BB42�þ �BB43� þ �BB44x

9>>>>>=
>>>>>;
ð1Þ

where ��� 2 R
m�1; �; � 2 R; � is the small parameter, the

function Uðx; uÞ is the smooth function of its arguments
satisfying the inequality

U1j�j � �Uðx; uð�ÞÞ � U2j�j; Uð�Þ ¼ sign �

ðU2 > U1 > 0Þ
for all j�j < R; x 2 R

n; �BBij are matrices smoothly
depending on �:

The specific features of the system (1) are:

. solutions of the system (1) (see Filippov 1988) are
determined uniquely;

. only the second order sliding mode can occur, and
the dynamics in this mode is determined by the
equations

� d���=dt ¼ �BB11��� þ �BB14x

dx=dt ¼ �BB41��� þ �BB44x

)
ð2Þ

When �BB11ð0Þ is the Hurwitz matrix, then the system (2),
has the asymptotically stable slow-motions integral
manifold

��� ¼ hðx; �Þ ¼ Hð�Þx ¼ ð� �BB�1
11 ð0Þ �BB14ð0Þ þOð�ÞÞx ð3Þ

System (2) dynamics on this manifold is described by
equations

dx=dt ¼ ð �BB41Hð�Þ þ �BB44Þx ð4Þ

In this section the sufficient conditions are found ensur-
ing that the manifold (3) is the slow-motions integral
manifold of the original SP2SM (1) and reductions prin-
ciple theorem ensuring the equivalence for stability
investigating problems for systems (1) and (4) is proved.

2.2. SP2SM in the small vicinity of the slow-motions
manifold

After the substitution of the variables � ¼ ��� � hðx; �Þ
the system (1) takes the form

� d�=dt ¼ B11� þ B12�þ B13�

�d�=dt ¼ B21� þ B22�þ B23� þ B24xþ bUðx; uð�ÞÞ

� d�=dt ¼ �

dx=dt ¼ B41� þ B42�þ B43� þ B44x

9>>>>>=
>>>>>;
ð5Þ

where matrices Bij depend on �. It is necessary to
remark that B1jð0Þ ¼ �BB1jð0Þ, j ¼ 1; 2; 3, B22ð0Þ ¼ �BB22ð0Þ:

2.3. Exponential stability of fast motions

Considering the system (5) let us denote as y ¼
ð�T; �; sÞT, jyj
 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�j2 þ j�j2 þ j�j

p
, ðyðt; �Þ, xðt; �ÞÞ

system (5) solution with initial conditions

yðt0; �Þ ¼ y0; xðt0; �Þ ¼ x0

Lemma 1: Suppose that:

(18) �BB11ð0Þ is Hurwitz matrix,
(28) �BB22ð0Þ < 0;

(38) bð0Þ < 0:

Then there exist constants K1 > 0, 
 > 0 and W, which is
some neighbourhood of the origin in the state space of
variables y ¼ ð�T; �; �ÞT; such that for all ðt0; y0; x0Þ 2
O0 ¼ Rþ �W � Rn and � 2 ð0; �0
 the following inequal-
ity holds

jyðt; �Þj
 � K e�
ðt�t0Þ=� ð6Þ

2.4. Decomposition theorem

Consider only a solution of (5) starting in O0: Then
the xðt; �Þ coordinate of the solution (5) will be a sol-
ution of the initial problem

dx=dt ¼ Fðyðt; �Þ; x; �Þ; x ¼ x0

Fðyðt; �Þ; x; �Þ ¼ B41� þ B42ð�Þ�þ B43ð�Þ� þ B44ð�Þx

Let us represent xðt; �Þ as xðt; �Þ ¼ �xxðt; �Þ þ �xðt; �Þ
such that �xxðt; �Þ; �xðt; �Þ are solutions of equations

d�xx=dt ¼ Fðt; 0; �xx; �Þ; �xxðt0Þ ¼ �xx0 ð7Þ
d�x=dt ¼ Fðt; yðt; �Þ; �xxþ �x; �Þ � Fðt; 0; x; �Þ ð8Þ

�xð0Þ ¼ �0x; �xx0 þ �0x ¼ x0 ð9Þ
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To define the solutions of the problems (7) and (9) it is
necessary to choose ðx0; �0xÞ: The following theorem
shows that ðx0; �0xÞ can be chosen in such a way that
function �xðt; �Þ exponentially decreases. For M ¼
sup�2½0;�0
fjjB4ijj; i ¼ 1; 2; 3; 4g one has

jFðt; y; xÞ � Fðt; �yy; �xxÞj <Mðjy� �yyj þ jx� �xxjÞ
Theorem 1: Suppose that for all ðt; y; xÞ; ðt; �yy; �xxÞ 2 O0

conditions ð18ÞNð38Þ hold, and
�M=
 < 1; KM=ð
 � �MÞ < C ð10Þ

Then for any initial points ðt0; y0; x0Þ 2 O0 the solutions of
the system ð5Þ can be represented as a combination of the
slow and fast parts in the form

ðyðt; �Þ; xðt; �ÞÞ ¼ ð0; �xxðt; �ÞÞ þ ð�yðt; �Þ; �xðt; �ÞÞ
so �xxðt; �Þ is the solution of equation ð7Þ with initial con-
ditions �xxð0Þ ¼ �xx0 while x0 ¼ �xx0 þOð�Þ: The fast part of
this solution f�yðt; �Þ; �xðt; �Þg satisfies the inequality

�j�yðt; �Þj þ j�xðt; �Þj < �ðC þ KÞ e�
ðt�t0Þ=�

2.5. Reduction principle

Theorem 1 and exponential increase of

�j�yðt; �Þj þ j�xðt; �Þj
yield the following reduction principle theorem.

Theorem 2: If under the conditions of Theorem 1 the
function �xxðtÞ is the solution of the system ð7Þ then
ð0; 0; 0; xðt; �ÞÞ is the solution of the system ð5Þ and this
solution will be stable (unstable, asymptotically stable)
if and only if �xxðtÞ is stable (unstable, asymptotically
stable).

3. Influence of inertial sensors dynamics on behaviour

of sliding mode control systems

3.1. Problem statement

Suppose that the regular form (see, e.g. Utkin 1992)
of the sliding mode control system has the form

ds=dt ¼ A1sþ A2xþ bUðx; uðsÞÞ

dx=dt ¼ A3sþ A4x

)
ð11Þ

where s 2 R; x 2 Rn; s is the output of (11), and the relay
control function uðsÞ ¼ signðsÞ which ensures the pres-
ence of stable first order sliding mode on the surface
s ¼ 0 with a finite input time, is designed. The sliding
mode dynamics in system (11) is described by system

d�xx=dt ¼ A4�xx ð12Þ
We suppose that the behaviour of the switching sur-

face s ¼ 0 (input) is measured by an inertial sensor. The
behaviour of the inertial sensor is described by equation

� dz=dt ¼ NzþHsþ Gx ð13Þ
where z 2 Rm is the inertial sensor output vector, � is the
small parameter determining the time constant of meas-
urement. This means that the switching surface of relay
control in the system (11) and (13) is the surface S ¼ Cz,
but not the surface s ¼ 0: Consequently, the dynamics of
the sliding mode system (11) with inertial sensor (13) is
described by the system

�dz=dt ¼ NzþHsþ Gx

ds=dt ¼ A1sþ A2xþ bUðx; uðSÞÞ

dx=dt ¼ A3sþ A4x

9>>=
>>; ð14Þ

Computing the derivatives of switching surface S
according to (14) we obtain

� dS=dt ¼ CðNzþHsþ GxÞ

�2 d2S=dt2 ¼ CðNðNzþHsþ GxÞ

þ �HðA1sþ A2xþ bUðx; uðSÞÞÞ

þ �GðA3sþ A4xÞÞ

Consequently under condition CHb 6¼ 0 in the system
(14) only the second order sliding modes can occur.

Suppose that the ‘static condition’

CN�1G ¼ 0

is satisfied. This means that, when the sensor is ideal
(� ¼ 0), the system (14) coincides with system (11).

3.2. Choice of initial conditions

It is reasonable to consider the systems with stable
sensors. Suppose that matrix N is stable and therefore
non-singular. This means that a solution of the system
(14) for the time oð�Þ reaches the neighbourhood of the
manifold z0 ¼ �N�1ðHsþ GxÞ: Due to this fact we shall
examine only the system with the initial conditions

I1. zðt0Þ ¼ �N�1ðHsðt0Þ þ Gxðt0ÞÞ ¼ Oð�Þ

The relay control function Uðx; uðsÞÞ ensures exist-
ence of a stable first order sliding mode in (11).
Therefore, solutions of (11) reach the surface s ¼ 0 in
a finite time. Consequently, before the first switching
moment system (14) is smooth. Then according to the
boundary layer method (see, e.g. Vasil’eva et al. 1995)
the solutions of the system (14) reach the Oð�Þ neigh-
bourhood of the surfaces s ¼ 0 and S ¼ 0 in a finite
time. It allows to examine only solutions of the system
(14) with initial conditions

I2. sðt0Þ ¼ Oð�Þ

I3. Sðt0Þ ¼ Oð�Þ

Below we will show that system (11) solutions satis-
fying the initial conditions I1– I3 will not leave the small
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neighbourhoods of the ideal and real switching surfaces
and will describe the oscillations of the ideal switching
surface.

3.3. Decomposition algorithm for sliding mode systems
with inertial sensors

To use the results of } 2 for investigation of systems
(11) and (13) the following four-step decomposition
algorithm is useful:

1. To study oscillations in the direction orthogonal
to the switching surface and its derivative it is
necessary to single out variable S as one of the
system’s (11) coordinate. Let us suppose that the
last coordinate of the vector C is non-degenerate.
Then we can substitute the variable S instead of
the last coordinate of the vector z in the system
(13). Then the system (13) takes the form

� d�zz=dt ¼ N11�zzþN12S þH1sþ G1x

� dS=dt ¼ N21�zzþN22S þH2sþ G2x

)
ð15Þ

where the vector �zz consists of the ðm� 1Þ first
coordinates of the vector z.

2. Let us eliminate the variable s from the first equa-
tion of (15). For this purpose we make the vari-
able replacement

ẑz ¼ �zz�H1H
�1
2 S

in the system (15). Then the system (15) takes the
form

� dẑz=dt ¼ D11ẑzþD12S þ G3x

� dS=dt ¼ D21ẑzþD22S þH2sþ G4x

)
ð16Þ

3. Taking into account conditions I1–I3, consider
only system (16) solutions for which the right-
hand sides of equation (16), and the variables s
and S are small. It allows the introduction of
variables ���, � and � instead of ẑz, S and s in system
(16) according to formulae

���� ¼ ẑzþD�1
11 ðD12S þ G3xÞ; �� ¼ S

�� ¼ � dS=dt ¼ D21ẑzþD22S þH2sþ G4x

Then system (14) takes the form

� d���=dt ¼M11��� þM12�þM13� þM14x

� d�=dt ¼M21��� þM22�þM23� þM24x

þ dUðx; uð�ÞÞ

� d�=dt ¼ �

9>>>>>=
>>>>>;

ð17Þ

dx=dt ¼M21��� þM22�þM23� þM24x ð18Þ

Only the second order sliding modes can occur in
system (17) and (18) for d 6¼ 0: Dynamics in this
mode are described by equations

� d���=dt ¼M11��� þM14x

dx=dt ¼M41��� þM44x

)
ð19Þ

4. Let us find the slow motions integral manifold for
system (19) in the form

��� ¼ Hð�Þx ¼ �M�1
11 ðM14 þ �M�1

11M14

� ðM44 �M41M
�1
11M14Þ þ � � �Þx

where Hð�Þ is derived from the system

M11Hð�Þ þM14 ¼ �ðM41Hð�Þ þM44Þ
Motions in this manifold are described by the
equations

d�xx=dt ¼ ðM�1
11 Hð�Þ þM14Þ�xx ð20Þ

For � ¼ 0 system (20) coincides with system (12)
describing the sliding motions for the reduced
system. For � > 0 system (20) allows to take
into account the presence of the fast sensors in
sliding mode system, and describes the slow
dynamics in (17) and (18) up to the fast decreas-
ing exponent. Moreover, the following theorem is
true.

Theorem 3: Assume:

(i) M11-stable matrix.

(ii) M22 < 0; d < 0:

Then the slow-motions integral manifold of the system
ð19Þ describing the behaviour of the system in the domain
of second order sliding is a stable integral manifold of slow
motions for system ð17Þ and ð18Þ. The coordinates ���ðt; �Þ,
�ðt; �Þ, �ðt; �Þ and xðt; �Þ of solution ð17Þ and ð18Þ may be
represented as a sum

ð���ðt; �Þ; �ðt; �Þ; �ðt; �Þ; xðt; �ÞÞ

¼ ðHð�Þ�xxðt; �Þ; 0; 0; �xxðt; �ÞÞ

þ ð��ðt; �Þ; �ðt; �Þ; �ðt; �Þ; �xðt; �ÞÞ

where xðt; �Þ is the solution of ð20Þ with the initial con-
dition

�xxðt0Þ ¼ x0 þOð�Þ
In this case, for some L; 
 > 0 and for all t > t0 the fol-
lowing inequality is true

�jð��ðt; �Þ; �ðt; �Þ; �ðt; �ÞÞj þ j�xðt; �ÞÞj < �L e�
ðt�t0Þ=�

3.4. Formula for ideal switching surface deviations

From Theorem 3 it follows that oscillations in the
direction orthogonal to the switching surface decrease
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exponentially fast and oscillations of the ideal switching
surface s may be found from the formula

s ¼ ��H�1
2 D21Hð�Þ

with an accuracy up to a fast decreasing exponent.

3.5. Example

Let us suppose that in the control system

dx1=dt ¼ x3 � uðsÞ; dx2=dt ¼ x1 þ x2

dx3=dt ¼ x2

)
ð21Þ

the relay control uðsÞ ¼ signðsÞ, s ¼ x1 þ x2 þ x3 is
designed. Substituting in (21) the variable s instead of
variable x2 we will have

ds=dt ¼ sþ x2 � sign s; dx2=dt ¼ s� x3

dx3=dt ¼ x2

)
ð22Þ

Motions in sliding mode occurring in (22) are described
by the system

dx2=dt ¼ �x3; dx3=dt ¼ x2 ð23Þ

The zero solution of the system (23) is stable but not
asymptotically. Now let us suppose that the behaviour
of variables x1, x2 and x3 is measured with the help of a
fast inertial sensor whose behaviour is determined by the
equations

� dz1=dt ¼ �z1 þ x1; � dz2=dt ¼ �z2 þ x2

� dz3=dt ¼ �aðz3 � x3Þ

)
ð24Þ

Then the real switching surface is

S ¼ z1 þ z2 þ z3
Let us introduce a new variable ��� ¼ ðz3 � x3Þ=�. In

this case we have the following equations for S and ���

�dS=dt ¼ �S þ sþ ð1 � aÞðz3 � x3Þ

� d���=dt ¼ �a��� � x2

This means that we may describe the oscillations of
‘ideal’ switching surface with precision up to the fast
decreasing exponent with the help of the formula

s ¼ �ð1 � aÞx2=a ð25Þ

The slow motions in (21) and (24) are described by the
equations

dx2=dt ¼ �x3 þ �ð1 � aÞx2=aþ � � �

dx3=dt ¼ x2

)
ð26Þ

The zero solution of the systems (26), and (21) and
(24) is asymptotically stable for a > 1 and unstable
for 0 < a < 1. Following this approach, in a critical
case, when the linear part of the sliding mode equations
has a critical spectrum, it is necessary to correct the

equations of sliding, taking into account the presence
of inertial sensors in the system. The presence of such
sensors may change the behaviour of the system from
stability to asymptotic stability or instability. The results
of simulations for solutions of system (21) behaviour
with initial conditions z1ð0Þ ¼ �1, z2ð0Þ ¼ 0, z3ð0Þ ¼ 1,
x1ð0Þ ¼ �1, x2ð0Þ ¼ 0, x3ð0Þ ¼ 1 and � ¼ 0:2 are shown
in figures 1–4.

4. Conclusions

The problem of chattering in sliding mode control
systems with inertial sensors is analysed. The behaviour
of such systems is described by singularly perturbed
systems with higher order sliding modes. For the sliding
mode control systems with inertial sensors whose behav-
iour is described by SP2SM:

910 L. M. Fridman

Figure 1. Exponential decreasing of the real switching sur-
face S.

Figure 2. Deviation of the ideal switching surface s.



a. The concept of slow-motions integral manifolds is

revised.

b. The sufficient conditions are found ensuring the

following structure of dynamics:

. the oscillations developed in the direction

orthogonal to the switching surface designed

according to the measuring results. The am-

plitude of these oscillations exponentially

decreases, time intervals between switches

vanish and the frequency of such oscillations is

infinitely increasing;

. the oscillations in the second order sliding

mode, which are described by smooth singu-

larly perturbed system of differential equations:

the slow-motions integral manifold of this sys-

tem is the stable slow-motions integral mani-
fold of the original system.

c. The formula for asymptotic analysis of oscilla-
tions of the ideal switching surface is derived.

d. The algorithm for correction of the sliding mode
equation is proposed. In the case when the linear
part of sliding mode equations has a critical spec-
trum, it is obligatory to correct the equations of
sliding motions in order to take into account the
presence of fast inertial sensors in the system,
because the presence of such devices may cause
a change of the system behaviour from stability to
asymptotic stability or instability.

It can be concluded that:

(1) By designing the sliding mode control systems
with fast inertial sensors it is possible practically
to avoid chattering (the amplitude of chattering
is decreasing exponentially fast). For this pur-
pose it is necessary to ensure that the complete
model of the sliding mode system taking into
account the actuators and sensors has the rela-
tive degree two.

(2) Unfortunately in the case when the complete
model of system is of relative degree more than
two chattering occurs. To analyse this phenom-
enon a corresponding revision of the averaging
technique (Fridman 2001) is needed.

Appendix

A.1. Proof of decomposition theorem

To prove Lemma 1 consider the Lyapunov function

E ¼ �TS� þ �2 � �½2bUðx; uð�ÞÞ þ B22�þ 2B23�

þ 2�TSB12 þ 2B21�


where the matrix Sð�Þ; � 2 ½0; �0
 is the positive definite
solution to the matrix equation STB11 þ B11S ¼ Q; Q is
the positive definite matrix. Then there are some con-
stants �2 > �1 > 0 such that the inequality

�1j�j2 � �
S� � �2j�j2 ð27Þ
is true uniformly for � 2 ½0; �0
: Taking into account
conditions ð18ÞNð38Þ and inequality (27) one can conclude
the following estimation for the Lyapunov function

�3jyj2
 � Eðt; y; x; �Þ � �4jyj2
 ð�4 > �3 > 0Þ ð28Þ
which is true for ðt; y; x; �Þ 2 R

þ � R
n � U1 � ð0; �0Þ;

where U1 is some neighbourhood of zero in the state
space of variables y ¼ ð�; �; �Þ: In this case

dE=d
 ¼ �j�j2 þ B22�
2 � �B22½bUðx; uð�ÞÞþ

þB22�þ 2�
SB12 þ 2B21�
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Figure 4. Instability of x2; x3 for a ¼ 0:5.



This means that

�5jyj2
 � �dE=d
 � �6jyj2
 ð�6 > �5 > 0Þ ð29Þ
which is true at some neighbourhood U2 of the origin in
the state space of y:

From (28) and (29) one can conclude that there are
some constants �8 > �7 > 0; in the neighbourhood of
the origin W ¼ U1 \ U2 such that for any � 2 ½0; �0

the following inequality

�7E � �dE=d
 � �8E ð30Þ
is true. Lemma 1 follows from inequality (30).

A.2. Proof of decomposition theorem

Consider the system (7) and (8). Let us design an
integral manifold of the system (7) and (8) in the
form S ¼ fðt;x; �xÞ 2 R

þ � R
n � R

n: �x ¼ Fðt; x; �Þg;
where the function Fðt; x; �Þ is continuous on
R

þ � R
n � ½0; �0
 and the following inequality is true

supjexpð
t=�ÞFðt; x; �Þj < �d; ðt; xÞ 2 R� R
n

ð31Þ
The constant d > 0 in (31) will be defined later. Denote
as U the metric space of continuous functions
R

þ � R
n � ½0; �0
 ! R

n; satisfying the inequality (31)
with the metric �ðF ; �FFÞ ¼ supjexpð
t=�ÞðFðt; x; �Þ�
�FFðt; x; �ÞÞj; for ðt; x; �Þ 2 R

þ � R
n � ½0; �0
: The space

U is a complete metric space. The function �x ¼
Fðt; x; �Þ 2 U is the solution of the equation

F ¼ PðFÞ ð32Þ

PðFÞðt; x̂x; �Þ ¼ �
ð1
t

½Fðyð�; �Þ; �ð�; �Þ

þ Fð�; �ð�; �Þ; �Þ; �Þ

� Fð0; �ð�; �Þ; �Þ
d�;

where �ð�; �Þ is the solution of Cauchy problem
d�=d� ¼ Fð0; �; �Þ; �ðtÞ ¼ x̂x: Let us show that operator
P from (32) transforms U into itself. Taking into
account (31) and (32), one can conclude that

jexpð
t=�ÞPðFÞðt; x̂x; �Þj

�M expð
t=�Þ
ð1
t

½jFð�; �ð�; �Þ; �Þj þ jyð�; �Þj
 d�

<
M



½�d þ Cjy0j



Now it is possible to choose such d that for any y0 2W
the inequality ðM=
Þ½�d þ Cjy0j

 � d is true. This
means that operator P transforms the space U into itself.
Similarly,

expð
t=�ÞjPðFÞðt; x̂x; �Þ � Pð �FFÞðt; x̂x; �Þj

� expð
t=�Þ
ð1
t

jFð�ð�; �Þ þ F ; yð�; �Þ; �Þ

� Fð�ð�; �Þ þ �FF ; yð�; �Þ; �Þj d�

� expð
t=�Þ
ð1
t

MjF � �FFj d� � �
M



�ðF ; �FFÞ

which means that the operator P is a contraction opera-
tor on U: Then, the operator P has the unique fixed
point corresponding to the function �x ¼ Fðt; x̂x; �Þ:
Moreover, from (31) one can conclude that the inequal-
ity

jFðt; x̂x; �ÞÞj < � d expð�
t=�Þ

holds for all ðt; x̂x; �Þ 2 R
þ � R

n � ½0; �0
:
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