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Abstract—A diagnostic scheme for actuator and sensor faults
which can occur on a robot manipulator using a model-based
fault diagnosis (FD) technique is addressed. With the proposed
FD scheme, it is possible to detect a fault, which can occur on
a specific component of the system. To detect actuator faults,
higher order sliding-mode unknown input observers are proposed
to provide the necessary analytical redundancy. The detection of
sensor faults, instead, is made by relying on a generalized observer
scheme. The observer input laws are designed according to two
well-known second-order sliding-mode approaches: the so-called
supertwisting and the suboptimal one. Both typologies of input
laws allow to perform a satisfactory FD. The peculiarities of each
input law of the observers are discussed. To make possible fault
isolation, it is required that a single fault acts only on one com-
ponent of the system at a time. If one knows that faults occurred
only on actuators, then it is possible to isolate multiple simulta-
neous faults on actuators. The proposed approach is verified in
simulation and experimentally on a COMAU SMART3-S2 robot
manipulator.

Index Terms—Fault diagnosis, fault location, generalized
observer scheme, manipulators, robots, robustness, variable
structure systems.

I. INTRODUCTION

INDUSTRIAL plants and consumer devices often have cru-
cial applications in everyday life. The increasing possibility

of reducing the efforts needed by the people to manage and
to monitor them is an important challenge. To comply with
this challenge, the controllers of these plants should be able to
operate also in critical conditions, i.e., when the behavior of
some components of the systems is significantly different from
the expected behavior. Faults can be caused by particular envi-
ronmental conditions and by plant conditions itself. They can
occur in an unpredictable way on a particular component of the
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system. Some kinds of faults can cause critical injuries to the
plant operators and to the plant itself. Then, it is fundamental
to include in the controller a block dedicated to diagnose the
system. This block should have the capability to make a prompt
detection of the fault events [1], [5], [6].

The presence of a fault can be modeled as an unexpected
change in the dynamics of the system, in the system parameters,
or as the presence of unknown signals in the plant. In a robot
manipulator, a fault can occur on a specific actuator, on a
specific sensor, or on a mechanical component of the system.
The occurrence of actuator and sensor faults is more frequent
because of the presence of electrical devices, which may be
subject to many possible critical situations.

Diagnostic devices are introduced to generate online di-
agnostic signals which are useful to detect and isolate the
fault. The diagnostic signals useful to detect the presence of
a fault are usually called residual signals. These signals are
obtained from the applied system inputs and the measurements.
Residual generators are typically based on observers (see, for
instance, [2], [7]–[10]). However, noise and uncertainties can
reduce the performances of the observers. Particular techniques
are adopted in order to overcome this drawback, such as the
use of linear filters [9], generalized momenta, see [11], or
Kalman filters [12]. These techniques, in the presence of the
uncertainties typical of practical applications, cannot guarantee
an exact convergence of the observer state to the system state.
To reduce this problem, sliding-mode-based techniques are also
frequently adopted to accomplish the state observation [13],
[14] because of their design simplicity and robust features.
Usually, the fault diagnosis (FD) can be dealt with by combin-
ing multiple sliding-mode observers as discussed in [9], [15]–
[18]. Stochastic-based observers can be considered to obtain
the residual signals (see [19]). These have proved capabilities
to compensate for the effects of noise and are particularly
robust for FD in a networked environment. Moreover, stochastic
observers succeed more accurate estimation and exhibit the
smoother variations of the estimation error.

In this paper, an FD scheme to deal with actuator faults or
with sensor faults in robot manipulators is considered. It is
based on unknown input observers (UIOs) (see [3], [13], [20]–
[24]) to detect actuator faults and on a generalized observer
scheme (GOS) to detect sensor faults. While the UIO approach
is specifically designed to obtain a suitable estimation of an
unknown signal present on the inputs of the system, which can
be produced by a fault, the detection of unknown signals which
affect the outputs of the system is more difficult because of
the lack of the observability properties typical of the robotic
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Fig. 1. Proposed FD scheme for actuator and sensor faults.

systems, see [18]. The adopted GOS allows to improve the
observability properties.

The objective of this paper is to study the performance in
terms of the robustness and diagnostic capabilities of two possi-
ble sliding-mode input laws for the observers. In particular, two
second-order sliding mode (SOSM) laws, the supertwisting law
[21] and the suboptimal one [25], are considered. The reason
why an SOSM input law turns out to be an effective choice
to solve the problem under concern is due to the necessity
of coming up with continuous observer input laws, so that
such laws can be used as signals upon which the diagnostic
procedure is directly based. The diagnostic scheme proposed in
this paper proves to be able to detect nonsimultaneous sensor
and actuator faults and, in some cases, also provides good
isolation and identification capabilities independent from the
specific SOSM input law which is adopted.

The analysis of both approaches confirms the good features
of both algorithms, as well as their suitability to be applied
in the FD context. Moreover, it also puts into evidence some
peculiarities of the two, which can help the user to select
between them depending on the specific needs of the considered
case. Experimental results are presented in this paper for an
industrial manipulator.

II. CONSIDERED FAULT SCENARIOS

In this paper, the case of faults occurring on the inputs or
on the outputs of a robot manipulator is considered. In the
first case, the real torque applied by the actuators is unknown.
That is, τ ∈ R

n being the nominal torque calculated by the
robot controller while Δτ ∈ R

n being the input fault, the actual
torque vector which is the input of the robotic system can be
expressed as τ(t) + Δτ(t) (see Fig. 1). In the case of sensor
faults, the control system cannot determine the exact angular
displacements of the joints. Let q ∈ R

n be the true but unknown
output (i.e., the joint displacements) while Δq ∈ R

n be the
vector of the fault signals acting on it. Then, q̄ ∈ R

n represents
the value that the control system receives, i.e., q̄(t) = q(t) +
Δq(t) (see Fig. 1).

III. MANIPULATOR MODEL

In the absence of faults, the dynamics of an n-joint robot
manipulator can be written in the joint space, by using the
Lagrangian approach, as

τ = B(q)q̈ + C(q, q̇)q̇ + g(q) + Fv q̇ = B(q)q̈ + n(q, q̇) (1)

where q ∈ R
n is the generalized coordinate vector, B(q) ∈

Rn×n is the inertia matrix, C(q, q̇)q̇ ∈ R
n represents cen-

tripetal and Coriolis torques, Fv ∈ R
n×n is the viscous friction

diagonal matrix, and g(q) ∈ R
n is the vector of gravitational

torques. In this paper, it is assumed that the term n(q, q̇) can be
identified, while the term B(q) is regarded as known.

Now, introducing the variables χ1(t) = q(t) and χ2(t) =
q̇(t), when faults affect either the actuators or the sensors,
model (1) can be rewritten in the state-space representation as⎧⎨

⎩
χ̇1(t) = χ2(t)
χ̇2(t) = f̂ (τ(t) + Δτ(t), χ1(t), χ2(t))
q(t) = χ1(t) + Δq(t)

(2)

where f̂(·) is obtained after an identification procedure such as
the one proposed in [4] and it is given by

f̂(τ + Δτ, χ1, χ2) = B−1(χ1) (τ + Δτ − n̂(χ1, χ2)) (3)

and n̂(q, q̇) is the known part of the model such that η(t) =
n(χ1, χ2) − n̂(χ1, χ2). The term η(t) is uncertain but can be
assumed to be bounded since, in real applications, the terms q
and q̇ are bounded, see [27].

IV. ACTUATORS FD STRATEGY

By relying on the so-called UIO approach [13], the efficient
estimators of the input torques can be designed [6], [28]. In this
paper, we propose to detect the actuator faults by means of the
UIOs of sliding-mode type as shown in the next subsection.

A. Observer Design

Let us consider the observer{ ˙̂χ1(t) = χ̂2(t) + z1(t)
˙̂χ2(t) = f̂ (τ(t), χ1(t), χ̂2(t)) + z2(t)

(4)

where χ̂1(t) ∈ R
n and χ̂2(t) ∈ R

n are the observer states
and z(t) = [z1(t), z2(t)]T is an auxiliary input signal, which
is designed relying on a sliding-mode approach. This signal
is introduced in order to guarantee the convergence of the
observer states to the actual state of the system.

B. Dynamics of the Observer Error

The proposed FD scheme requires to steer to zero the sig-
nal e(t) = [e1(t), e2(t)]T ∈ R

2n, the components of which are
given by {

e1(t) = χ1(t) − χ̂1(t)
e2(t) = χ2(t) − χ̂2(t).

(5)

By steering to zero these quantities, it is possible to guarantee
that the observer (4) gives a good estimation of the unknown
input. The dynamics of the error variable e(t) is represented by
a second-order dynamical system{

ė1(t) = e2(t) − z1(t)
ė2(t) = B−1 (χ1(t)) (Δτ(t) − η(χ1, χ2, χ̂2)) − z2(t).

(6)

Now, two different SOSM approaches are exploited to design
the multi-input-multistate UIO input law. The first approach is
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the so-called supertwisting algorithm [21], while the second is
the so-called suboptimal algorithm.

C. Supertwisting-Based Observer

The design of the observer input laws which are the com-
ponents of z(t) = [z1(t), z2(t)]T using a supertwisting-based
approach (see [21]) is given by

{
z1(t) = λ

√
|σ′(t)|sign (σ′(t))

z2(t) = αsign (σ′(t))
(7)

where σ′(t) = e1(t) = χ1(t) − χ̂1(t) and on the basis of [21],
the selection of parameters α and λ can be made, taking into
account the constraints

α > f+, λ >

√
2

α − f+

(α + f+)(1 + ν)
(1 − ν)

(8)

where f+ is an upper bound of the term η(χ1, χ2, χ̂2), which,
in our case, has been experimentally determined and ν is a
constant, 0 < ν < 1.

Note that the term z2(t) is a discontinuous signal, and by
the virtue of the filtering action considered in [21], the second
equation of the system (6) can be rewritten as

z2eq(t) = B−1 (χ1(t)) (Δτ(t) − η(t)) (9)

where z2eq(t) is the equivalent input signal corresponding to
the discontinuous signal z2(t), see [29]. Thus, theoretically,
the equivalent input signal is the result of an infinite switching
frequency of the discontinuous term αsign(σ′(t)). In fact, the
implementation of the observer produces high switching fre-
quency making necessary the application of a filter to obtain
useful information from signal z2(t). The filter has to eliminate
the high-frequency components of such a signal. In [30] and
[31], it is shown that it is possible to assume that the equivalent
input law (9) is equivalent to a filter output.

D. Suboptimal-Algorithm-Based Observer

The observer input laws of the suboptimal type are given by

{
z1(t) = 0, z2(0) = 0
ż2(t) = δW sign {σ′′(t) − 0.5σ′′

M} (10)

where σ′′(t) = e2(t) + βe1(t) is the sliding variable; in this
case, σ′′

M represents the last extremal value of the sliding
variable σ′′(t); and β > 0. The last extremal value of the
sliding variable σ′′(t) revealed before time instant t can be
found following two possible approaches: the peak-detection
algorithm proposed in [25] and [32] or considering the output
of a second-order robust-differentiator algorithm, see [33].

It can be proved that a suitable choice of δW exists such that
the suboptimal input laws guarantee the exponential stability of
the tracking error of this observer. In (10), on the basis of [25],

the selection of parameters W and δ can be made, taking into
account the constraints

W > max
(

f+

α∗ ;
4f+

3 − α∗

)
, f+ > |η|, α∗ > 0

δi =
{

α∗ if [σ′′(t) − 0.5σ′′
M ] ,

[
σ′′

M − σ′′(t)] > 0
1 if [σ′′(t) − 0.5σ′′

M ] ,
[
σ′′

M − σ′′(t)] ≤ 0.
(11)

E. Residual Generation for Actuator Faults

The residual signal considered for FD is obtained in both
cases from the input law z2(t).

As previously stated, to obtain suitable residual signals from
the discontinuous signals of the observers, it is necessary to
apply a filter. Let us consider the following fifth-order low-pass
filter (s is the Laplace operator):

F(s) =
b

1 − as−1 − as−2 − as−3 − as−4 − as−5
(12)

where a = 0.1961 and b = 15a have been chosen after an
experimental tuning procedure.

The residual signal useful to detect actuator faults is given by

ri(t) =
{

0 if |�(t) ∗ B (q(t)) z2i(t)| < Ti

1 if |�(t) ∗ B (q(t)) z2i(t)| > Ti
∀i (13)

where �(t) indicates the impulse response of F(s), ∗ indicates
the convolution product, and Ti denotes suitable thresholds
chosen on the basis of the amplitude of the noise which is
present on the system.

F. Identification of the Actuator-Fault Signals

The input signal z2(t), independent of the type of the input
law adopted between the two proposals previously described, is
also useful to give an estimation of the shape of the fault signal
Δτ . That is, the estimation Δ̂τ of the input fault Δτ is given by

Δ̂τ = �(t) ∗ B (q(t)) z2(t) (14)

and z2(t) can be obtained from both (7) and (10). The term
η(t) is just neglected in the present work, and no further con-
siderations on its bounds are proposed for robustness purposes.
Additionally, the choice of the thresholds is based on the exper-
imental determination of upper bounds on noise and unmodeled
effects. The proposals of the choices of the thresholds, for
instance, based on optimality criteria, can be found in [34].

Theorem IV.1 (Convergence of the Δ̂τ to Δτ by Using the
Supertwisting Input Laws): Using the input laws (7) in the
observer (4), a choice of the terms α and λ exists according to
(8) such that the condition [e1(t), e2(t)]T = 0, 0 being the null
vector ∈ R

2n, is reached in finite time. Then, in the absence of
noise ε(t), the signal Δ̂τ converges to Δτ exponentially.

The condition [e1(t), e2(t)]T = 0 is achieved in finite time as
it was developed in [21, Th. 1].

A similar result can be established for the suboptimal input
law (10).
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Fig. 2. GOS for an n sensor system.

Theorem IV.2 (Convergence of the Δ̂τ to Δτ by Using the
Suboptimal Input Laws): Using the input laws (10) in the
observer (4), a choice of the terms WiM and α∗ exists according
to (11) such that the observer-error state vector [e1(t), e2(t)]T

reaches the origin exponentially. Then, in the absence of noise
ε(t), the signal Δ̂τ converges to Δτ exponentially.

The proof that the condition [e1(t), e2(t)]T = 0 is achieved
exponentially was developed in [25, Th. 1] and [27, Th. 2].

V. SENSOR FD STRATEGY

To perform the detection of sensor faults, n observers are
used, one for each sensor (see Fig. 2). This strategy, called GOS
[8], and the proposed particular implementation are described
in this section.

In the sequel, the following notation is considered for the
vectors used in the GOS observers: χ̂

(i)
1 ∈ R

n is the vector of
the estimate of the q̄ vector made by the ith observer, e(i) ∈ R

n

contains the corresponding observation errors, while ρ(i) ∈ R
n

is the input law of observer i. Moreover, the components of χ̂
(i)
1

are χ̂
(i)
1 = [χ̂(i)

1,1 χ̂
(i)
1,2 · · · χ̂

(i)
1,n]T, i = 1, . . . , n. Now, the ith

GOS observer in our proposal is defined as⎧⎨
⎩

˙̂χ
(i)

1 = χ̂
(i)
2 + z

(i)
1 (t)

˙̂χ
(i)

2 = f̂
(
χ̂

(i)
1 , χ̂

(i)
2 , τ

)
+ ρ(i)(t).

(15)

In contrast to the actuator FD, for which a single observer is
used, for sensor FD, n sliding-mode observers are designed.

Then, also in this case, we design the input laws z
(i)
1 (t)

and ρ(i)(t) of each observer in (15) with the suboptimal and
supertwisting algorithms. Posing the ith component of z

(i)
1 (t)

and ρ(i)(t) equal to zero, i.e., for the suboptimal algorithm⎧⎪⎨
⎪⎩

ρ̇
(i)
j = δjWjsign

{
σ

(i)
j (t) − 0.5σ

(i)
jM

}
, j �= 1

ρ
(i)
j = 0, j = i, z1(t) = 0

σ(i)(t) = ė(i) + βe(i)

(16)

and for the supertwisting algorithm⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

z
(i)
1j (t) = λj

√∣∣∣σ(i)
j (t)

∣∣∣sign
(
σ

(i)
j (t)

)
, j �= i

ρ
(i)
j (t) = αjsign

(
σ(i)(t)

)
, j �= i

ρ
(i)
j = 0, z

(i)
1j (t) = 0, j = i

σ(i)(t) = ė(i) + βe(i)

(17)

TABLE I
SIGNATURE TABLE FOR SENSOR-FAULT ISOLATION

with j as the index of the component of the state vector
coinciding with the sensor number, while λj , αj , σ

(i)
jM , and

β > 0 are analogous to that defined for the actuators.
Note that, with this input law, the observer (15) has the ith

component in open loop. This can imply stability problems also
in the absence of faults, if the system is not open-loop stable
by itself. To circumvent stability problems while avoiding
a significant reduction of the detection performances, in the
experimental tests, a local small-gain proportional-derivative
feedback is closed to generate the ith input-law component of
the ith observer (16). That is,

ρ
(i)
i (t) = Kp

(
qi + Δqi − χ̂

(i)
1,i

)
+ Kd

(
−χ̂

(i)
2,i

)
(18)

for all i, with Kp > 0 and Kd > 0 small constants.
More precisely, if f̂(·) can be assumed to be a quite accurate

estimate of f(·), a fault can be detected considering Table I.
If, in contrast, f̂(·) differs from f(·), thresholds need to be
introduced. The entries of Table I expressed as ρ(i) �= 0 can be
replaced by the condition

if ∃ k s.t.
[
sign

{
ρ(i)

}
	 ρ(i)

]
k

> Tk (19)

while the entries of Table I expressed as ρ(i) = 0 become[
sign

{
ρ(i)

}
	 ρ(i)

]
k

< Tk ∀k = 1, . . . , n (20)

where sign {ρ(i)} is the vector containing the sign of each
component of ρ(i), the symbol 	 denotes the Schur product,
[·]k denotes the kth component of a vector, and Tk is a positive
real number representing the selected threshold.

A. FD Logic: Residual Generation and Fault Isolation

Fig. 1 shows the complete diagnostic scheme for robot
manipulators. The residual vector rτ is given by

rτi =
{

0 if |F(t) ∗ ρτ
i | < T τ

i

1 if |F(t) ∗ ρτ
i | < T τ

i
∀i (21)

while the residual vector rq is obtained by filtering the ρ
(i)
j �=i(t)

signals through the filter (12) and comparing these signals with
their thresholds Tk, according to Table I.

The isolation of a fault can be performed by comparing
the binary detection vector [rτ , rq] with the fault-signature
Table II.
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TABLE II
FAULT-SIGNATURE TABLE

Fig. 3. SMART3-S2 robot and the three-link planar manipulator.

VI. CASE STUDY

A. Considered Manipulator

The FD technique described in this paper has been exper-
imentally verified on a COMAU SMART3-S2 anthropomor-
phic rigid robot manipulator which is a classical example of
industrial manipulator (see Fig. 3). It consists of six links and
six rotational joints driven by brushless electric motors. During
the experiments, the robot has been constrained to move on a
vertical plane. Then, it is possible to consider the robot as a
three-link-three-joint, in the sequel numbered as {1, 2, 3}, pla-
nar manipulator (see Fig. 3). Nevertheless, the method proposed
in this paper holds for n-joint robots even of spatial type.

The controller has a sampling time of 0.001[s] and a 12-b
D/A and a 16-b A/D converters. The joint positions are acquired
by resolvers fastened on the three motors, holding mechanical
reducers with ratio {207, 60, 37}, while the maximum torques
are {1825, 528, 71}[N · m], respectively.

B. Experimental Tests

The faults are introduced in the control system by adding a
fault signal to the 3-D control variable or to the 3-D measured
displacements for the sensor faults.

The parameters for the suboptimal algorithm, chosen ac-
cording to the parameter-selection rules indicated in [25], are
UM = [362, 607, 10286]T, with β = 10, while the parameter
choice for the supertwisting is given by λ = [7, 4, 17]T and
α = [1.6, 2.0, 2.4]T according to [21, eq. (7)].

C. Experimental FD on Actuators

The case of abrupt faults on the actuators of each joint is
considered, i.e., a −50[N · m] fault signal acting on the first
actuator, a −20 [N · m] fault signal acting on the second actua-

Fig. 4. FD experiment (Δτ , Δ̂τ signals). Supertwisting.

Fig. 5. FD experiment (Δτ , Δ̂τ signals). Suboptimal.

tor, and a −10 [N · m] fault signal acting on the third actuator
are considered. Note that these fault signals are approximately
the 20% of the maximum torque allowed by the corresponding
actuator. In Fig. 4 for the supertwisting UIOs and in Fig. 5 for
the suboptimal UIOs, the fault signals are correctly detected,
isolated, and identified. The supertwisting approach, as for the
fault that occurred on the first and second actuators, provides
better performances, while as for the fault that occurred on the
third actuator, the suboptimal approach shows a superior capa-
bility to avoid false alarms. Note that, theoretically, suboptimal
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Fig. 6. Sensor 2 FD experiments: Suboptimal input law.

and supertwisting differentiators have the same performance
and this is confirmed by our experiments. The difference stands
in the fact that for realizing the differentiation process using the
suboptimal algorithm, a peak detector is required limiting the
maximum value of the incoming signal. Supertwisting differ-
entiator requires only the input signal. In turn, this can require
the same filtering of the input. As a consequence, we have
seen that one can use lower thresholds for the supertwisting,
making the detection more precise, and higher thresholds for
the suboptimal, reducing the false-alarm rate.

D. Experimental FD on Sensors

In the case of faults occurring on the sensors, the fault
signature given in Table I is considered. The plots of Figs. 6
and 7 show the two components different from the zero of
the input laws of the three GOS observers. Fig. 6 shows the
results obtained by applying the suboptimal approach, while
Fig. 7 reports the results obtained by applying the supertwisting
approach. The fault has occurred on sensor 2. Both approaches
can detect and isolate the fault, but they have different per-
formances in terms of the possibility of making a reliable
detection: The suboptimal strategy has produced a more clear
response than that obtained with the supertwisting strategy.

E. Numerical Comparison of the Experimental Results

In order to compare the performance of the two observer
approaches, the signals Δ̂τ(t) and ρ(i)(t) have been evaluated
in the case of actuator and sensor faults. Let tf be the time
instant in which the fault occurs. The sensitivity of the pro-
posed approach to a fault occurring on the actuator j is eval-
uated as

FS
(
Δ̂τ j(t)

)
= max

t>tf

∣∣∣Δ̂τ j(t)
∣∣∣ − max

0<t<tf

∣∣∣Δ̂τ j(t)
∣∣∣ (22)

Fig. 7. Sensor 2 FD experiments: supertwisting input law.

TABLE III
SENSITIVITY OF THE ACTUATOR FD STRATEGY

while the sensitivity of the proposed approach to a fault occur-
ring on the sensor j is evaluated as

FS
(
ρ
(i)
j (t)

)
= max

t>tf

∣∣∣ρ(i)
j (t)

∣∣∣ − max
0<t<tf

∣∣∣ρ(i)
j (t)

∣∣∣ . (23)

The positive values of FS(·) indicate that the fault has been
detected by the proposed approach, while null or the negative
values of FS(·) denote that the fault cannot be detected by
relying on the proposed approach. According to the properties
of the proposed modified GOS to detect sensor faults, a single
fault occurring on the jth sensor can be correctly isolated only
if it produces significant effects on the observers (i), i �= j, but
not on the observer (i), i = j. To evaluate this property, when a
fault occurs on sensor i, the tolerance of the (i)th GOS observer
to the fault occurring on sensor i is given as

FTij

(
ρ
(i)
j (t)

)
= max

t>tf

∣∣∣ρ(i)
j (t)

∣∣∣ j �= i. (24)

The lower values of FTij(·) indicate a better tolerance of
the observer (j) versus a fault occurring on sensor i. In
Tables III–V, the values of FS(Δ̂τ j(t)) and FS(ρ(i)

i (t)) have
been shown in different situations. Table III reports the val-
ues of FS(Δ̂τ j(t)) which have been evaluated in the case
of three nonsimultaneous actuator faults Δτ(t), one for each
component of the input signal τ(t). The first column reports the
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TABLE IV
SENSITIVITY OF THE SENSOR FD STRATEGY IN [RADIANS PER SECOND

SQUARED]. SUBOPTIMAL ALGORITHM IS ADOPTED

TABLE V
SENSITIVITY OF THE SENSOR FD [RADIANS PER SECOND SQUARED].

SUPERTWISTING ALGORITHM

results obtained with the suboptimal, and the second column
reports the results obtained with the supertwisting approach.
In Tables IV and V, the same evaluation is made in the case
of sensor faults. Three different experiments have been made.
For each experiment, a single nonsimultaneous fault has been
injected on a particular sensor. In Table IV are the reported
values of FS(ρ(i)

i (t)) using suboptimal, while Table V reports
the same values obtained using supertwisting. The values of
FTij(ρ

(i)
j (t)) are also reported in these two tables (see the

first value of each cell, in the column referred to the observer
associated to the faulty sensor).

From the numerical comparison shown in the tables, the sub-
optimal algorithm showed higher sensitivity values with respect

to the supertwisting algorithm. In contrast, better performances
in terms of tolerance have been obtained by considering the
supertwisting approach, as the values relative to FTij(·) shown
in Table V are smaller in all cases with respect to those obtained
by applying the suboptimal approach.

VII. CONCLUSION

An FD scheme for robot manipulators based on the concept
of SOSMs has been presented in this paper. The scheme pre-
sented in this paper allows to deal with the following cases:
faults (even multiple) occurring only on the actuators and
single faults occurring on actuators or sensors. The detection
of the faults’ presence on actuators is performed relying on
UIOs, while the detection of the faults’ presence on sensors
is performed relying on a modified GOS. The observer input
laws are designed according to two SOSM methodologies:
the suboptimal approach and the supertwisting approach. The
proposed FD approach can be extended also to some parametric
faults (nonadditive). Future work will be devoted to deal with
this topic. Experimental results on a real COMAU SMART3-
S2 are presented. The numerical comparison showed that the
proposed approach, when suboptimal algorithm is adopted for
the input laws, has good sensitivity in the detection both for the
actuators and for the sensors. In contrast, when the supertwist-
ing approach is adopted for the observers involved in the GOS,
it is possible to obtain better tolerance properties.
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